1
|
Serafin PK, Popęda M, Bulak K, Zwara A, Galikowska-Bogut B, Przychodzka A, Mika A, Śledziński T, Stanisławowski M, Jendernalik K, Bolcewicz M, Laprus W, Stasiłojć G, Sądej R, Żaczek A, Kalinowski L, Koszałka P. Knock-out of CD73 delays the onset of HR-negative breast cancer by reprogramming lipid metabolism and is associated with increased tumor mutational burden. Mol Metab 2024; 89:102035. [PMID: 39304062 PMCID: PMC11462070 DOI: 10.1016/j.molmet.2024.102035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
OBJECTIVE CD73 (ecto-5'-nucleotidase, NT5E), a cell-surface enzyme converting 5'-AMP to adenosine, is crucial for cancer progression. However, its role in the tumorigenesis process remains mostly obscure. We aimed to demonstrate CD73's role in breast cancer (BC) tumorigenesis through metabolic rewiring of fatty acid metabolism, a process recently indicated to be regulated by BC major prognostic markers, hormone receptors (HR) for estrogen (ER), and progesterone (PR). METHODS A murine model of chemically induced mammary gland tumorigenesis was applied to analyze CD73 knock-out (KO)-induced changes at the transcriptome (RNA-seq), proteome (IHC, WB), and lipidome (GC-EI-MS) levels. CD73 KO-induced changes were correlated with scRNA-seq and bulk RNA-seq data for human breast tissues and BCs from public collections and confirmed at the proteome level with IHC or WB analysis of BC tissue microarrays and cell lines. RESULTS CD73 KO delayed the onset of HR/PR-negative mammary tumors in a murine model. This delay correlated with increased expression of genes related to biosynthesis and β-oxidation of fatty acids (FAs) in the CD73 KO group at the initiation stage. STRING analysis based on RNA-seq data indicated an interplay between CD73 KO, up-regulated expression of PR-coding gene, and DEGs involved in FA metabolism, with PPARγ, a main regulator of FA synthesis, as a main connective node. In epithelial cells of mammary glands, PPARγ expression correlated with CD73 at the RNA level. With cancer progression, CD73 KO increased the levels of PUFAn3/6 (polyunsaturated omega 3/6 FAs), known ligands of PPARγ and target for lipid peroxidation, which may lead to oxidative DNA damage. It correlated with the downregulation of genes involved in cellular stress response (Mlh1, Gsta3), PR-or CD73-dependent changes in the intracellular ROS levels and expression or activation of proteins involved in DNA repair or oxidative stress response in mammary tumor or human BC cell lines, increased tumor mutational burden (TMB) and genomic instability markers in CD73 low HR-negative human BCs, and the prolonged onset of tumors in the CD73 KO HR/PR-negative group. CONCLUSIONS CD73 has a significant role in tumorigenesis driving the reprogramming of lipid metabolism through the regulatory loop with PR and PPARγ in epithelial cells of mammary glands. Low CD73 expression/CD73 KO might enhance mutational burden by disrupting this regulatory loop, delaying the onset of HR-negative tumors. Our results support combining therapy targeting the CD73-adenosine axis and tumor lipidome against HR-negative tumors, especially at their earliest developmental stage.
Collapse
Affiliation(s)
- Paweł Kamil Serafin
- Laboratory of Cell Biology and Immunology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, Medical University of Gdańsk, Poland.
| | - Marta Popęda
- Department of Pathomorphology, Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Kamila Bulak
- Department of Pathomorphology and Forensic Veterinary Medicine, University of Life Sciences in Lublin, Poland
| | - Agata Zwara
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Poland
| | - Barbara Galikowska-Bogut
- Laboratory of Molecular Enzymology and Oncology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, Medical University of Gdańsk, Poland
| | - Anna Przychodzka
- Laboratory of Molecular Enzymology and Oncology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, Medical University of Gdańsk, Poland
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Poland
| | - Tomasz Śledziński
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Poland
| | | | - Kamila Jendernalik
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Faculty of Pharmacy, Medical University of Gdańsk, Poland
| | - Marika Bolcewicz
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Faculty of Pharmacy, Medical University of Gdańsk, Poland
| | - Wiktoria Laprus
- Laboratory of Cell Biology and Immunology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, Medical University of Gdańsk, Poland
| | - Grzegorz Stasiłojć
- Laboratory of Cell Biology and Immunology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, Medical University of Gdańsk, Poland
| | - Rafał Sądej
- Laboratory of Molecular Enzymology and Oncology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, Medical University of Gdańsk, Poland
| | - Anna Żaczek
- Laboratory of Translational Oncology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, Medical University of Gdańsk, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Faculty of Pharmacy, Medical University of Gdańsk, Poland; BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, Gdansk, Poland
| | - Patrycja Koszałka
- Laboratory of Cell Biology and Immunology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, Medical University of Gdańsk, Poland.
| |
Collapse
|
2
|
Boretto C, Muzio G, Autelli R. PPARγ antagonism as a new tool for preventing or overcoming endocrine resistance in luminal A breast cancers. Biomed Pharmacother 2024; 180:117461. [PMID: 39326102 DOI: 10.1016/j.biopha.2024.117461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
PURPOSE This research investigates the role of PPARγ in the complex molecular events underlying the acquisition of resistance to tamoxifen (Tam) in luminal A breast cancer (BC) cells. Furthermore, it focuses on evaluating the possibility of repurposing Imatinib mesylate, an FDA-approved anticancer agent recently recognized also as a PPARγ antagonist, for the personalized therapy of endocrine-resistant BC with increased PPARγ expression. METHODS Differential gene expression between parental and Tam-resistant MCF7 cells was assessed by RNA-seq followed by bioinformatics analysis and validation by RT-qPCR. PPARγ was downregulated by esiRNAs or inhibited by the antagonist GW9662. Cell viability and proliferation were measured by MTT and colony formation assays. Spheroids were prepared from parental and Tam-resistant MCF7 cells. Other luminal A BC cell lines resistant to Tam were generated. RESULTS In MCF7-TamR cells, PPARγ and several of its target genes were significantly upregulated. Increased PPARγ expression was due to the modulation of its positive/negative transcriptional regulators. Downregulating PPARγ with esiRNAs or GW9662 effectively killed parental and Tam-resistant cells and spheroids. Imatinib revealed to be as effective as GW9662 in restoring Tam susceptibility of these cells. PPARγ overexpression was also observed in the newly-selected Tam-resistant luminal A BC cells, in which GW9662 and Imatinib restored their susceptibility to Tam. CONCLUSION Our findings demonstrate that the overexpression of PPARγ is a frequent occurrence during acquisition of Tam resistance in luminal A BC cells, and that PPARγ antagonism represents an alternative therapeutic approach for the personalized treatment of BC showing dysregulation of this nuclear receptor.
Collapse
Affiliation(s)
- Cecilia Boretto
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, Turin 10125, Italy
| | - Giuliana Muzio
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, Turin 10125, Italy
| | - Riccardo Autelli
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, Turin 10125, Italy.
| |
Collapse
|
3
|
Wang X, Liu J, Mao C, Mao Y. Phase separation-mediated biomolecular condensates and their relationship to tumor. Cell Commun Signal 2024; 22:143. [PMID: 38383403 PMCID: PMC10880379 DOI: 10.1186/s12964-024-01518-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Phase separation is a cellular phenomenon where macromolecules aggregate or segregate, giving rise to biomolecular condensates resembling "droplets" and forming distinct, membrane-free compartments. This process is pervasive in biological cells, contributing to various essential cellular functions. However, when phase separation goes awry, leading to abnormal molecular aggregation, it can become a driving factor in the development of diseases, including tumor. Recent investigations have unveiled the intricate connection between dysregulated phase separation and tumor pathogenesis, highlighting its potential as a novel therapeutic target. This article provides an overview of recent phase separation research, with a particular emphasis on its role in tumor, its therapeutic implications, and outlines avenues for further exploration in this intriguing field.
Collapse
Affiliation(s)
- Xi Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Jiameng Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Chaoming Mao
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Yufei Mao
- Department of Ultrasound Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
4
|
Ghigna MR, Cotteret S, Arbab A, Bani MA, Scoazec JY. Small cell lung cancer with SYN2::PPARG fusion. Pathol Res Pract 2023; 251:154904. [PMID: 38238071 DOI: 10.1016/j.prp.2023.154904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Small cell lung cancer (SCLC) accounts for 15% of lung cancers worldwide. It is an aggressive tumor that is typically diagnosed at an advanced stage. Treatment involves chemo-immunotherapy and/or radiotherapy. Identifying druggable targets activated by specific genetic alterations represents a significant challenge in improving patient outcomes. METHODS We conducted a retrospective examination of molecular findings in lung cancer patients' records from 2021 to 2022. We discovered a unique case of SCLC harboring the SYN2-PPARG fusion. Histopathological analysis confirmed the diagnosis of SCLC. CASE REPORT A 60-year-old woman, a heavy smoker, came to our attention due to a persistent cough with slight hemoptysis. Imaging, including axial contrast-enhanced computed tomography, revealed an advanced disease with extra-thoracic spread. Tumor histology showed a sheet-like proliferation of small-sized cells with a neuroendocrine phenotype and a high proliferation tumor cell fraction. Molecular genetic analysis using NGS approach revealed a fusion involving the SYN2 and PPARG genes. CONCLUSION The SYN2-PPARG fusion has recently been documented in sinonasal adenocarcinoma and has been reported in only a single SCLC case previously. Highlighting the molecular heterogeneity within this aggressive form of lung cancer could potentially aid in the selection of specific therapies.
Collapse
Affiliation(s)
- M R Ghigna
- Gustave Roussy Department of Biopathology, 114 Rue Edouard Vaillant, Villejuif, FR 94805, France.
| | - S Cotteret
- Gustave Roussy Department of Biopathology, 114 Rue Edouard Vaillant, Villejuif, FR 94805, France
| | - A Arbab
- Gustave Roussy Department of Biopathology, 114 Rue Edouard Vaillant, Villejuif, FR 94805, France
| | - M A Bani
- Gustave Roussy Department of Biopathology, 114 Rue Edouard Vaillant, Villejuif, FR 94805, France
| | - J Y Scoazec
- Gustave Roussy Department of Biopathology, 114 Rue Edouard Vaillant, Villejuif, FR 94805, France
| |
Collapse
|
5
|
Yang X, Yang R, Zhang Y, Shi Y, Ma M, Li F, Xie Y, Han X, Liu S. Xianlinglianxiafang Inhibited the growth and metastasis of triple-negative breast cancer via activating PPARγ/AMPK signaling pathway. Biomed Pharmacother 2023; 165:115164. [PMID: 37478577 DOI: 10.1016/j.biopha.2023.115164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by high invasion and metastasis rates. Xian-Ling-Lian-Xia formula (XLLX) is a traditional Chinese medicine prescription widely used in China for treating TNBC. Clinical studies have shown that XLLX significantly reduces the recurrence and metastasis rate of TNBC and improves disease-free survival. However, the potential molecular mechanisms of XLLX on TNBC are not clear yet. Here, we investigated the effects of XLLX on TNBC using a mouse model and tumor cell lines. The results showed that XLLX significantly inhibited the proliferation, migration, and invasion abilities of TNBC cell lines MDA-MB-231 and 4T1 in vitro, induced apoptosis, and regulated the expression of proliferation, apoptosis, and EMT marker proteins in tumor cells. In in vivo experiments, XLLX treatment significantly reduced the progression of TNBC tumors and lung metastasis. Transcriptomics reveals that XLLX treatment significantly enriched differentially expressed genes in the peroxisome proliferator-activated receptor gamma (PPARγ) and AMP-dependent protein kinase (AMPK) signaling pathways. The western blot results confirmed that XLLX significantly upregulated the protein expression of PPARγ and p-AMPK in TNBC cells, tumors, and lung tissues. It is noteworthy that GW9662 (a PPARγ inhibitor) and Compound C (an AMPK inhibitor) partially reversed the anti-proliferation and anti-metastasis effects of XLLX in TNBC cells. Therefore, XLLX may effectively inhibit the growth and metastasis of TNBC by activating the PPARγ/AMPK signaling pathway.
Collapse
Affiliation(s)
- Xiaojuan Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Yang
- department of breast surgery, Shanxi Provincial Cancer Hospital, Shanxi, China
| | - Yang Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Youyang Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mei Ma
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Feifei Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Xie
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xianghui Han
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Sheng Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
6
|
E. coli Secretome Metabolically Modulates MDA-MB-231 Breast Cancer Cells' Energy Metabolism. Int J Mol Sci 2023; 24:ijms24044219. [PMID: 36835626 PMCID: PMC9964955 DOI: 10.3390/ijms24044219] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Breast cancer (BC) is commonly diagnosed in women. BC cells are associated with altered metabolism, which is essential to support their energetic requirements, cellular proliferation, and continuous survival. The altered metabolism of BC cells is a result of the genetic abnormalities of BC cells. Risk factors can also enhance it, including age, lifestyle, hormone disturbances, etc. Other unknown BC-promoting risk factors are under scientific investigation. One of these investigated factors is the microbiome. However, whether the breast microbiome found in the BC tissue microenvironment can impact BC cells has not been studied. We hypothesized that E. coli, part of a normal breast microbiome with more presence in BC tissue, secretes metabolic molecules that could alter BC cells' metabolism to maintain their survival. Thus, we directly examined the impact of the E. coli secretome on the metabolism of BC cells in vitro. MDA-MB-231 cells, an in vitro model of aggressive triple-negative BC cells, were treated with the E. coli secretome at different time points, followed by untargeted metabolomics analyses via liquid chromatography-mass spectrometry to identify metabolic alterations in the treated BC cell lines. MDA-MB-231 cells that were not treated were used as controls. Moreover, metabolomic analyses were performed on the E. coli secretome to profile the most significant bacterial metabolites affecting the metabolism of the treated BC cell lines. The metabolomics results revealed about 15 metabolites that potentially have indirect roles in cancer metabolism that were secreted from E. coli in the culture media of MDA-MB-231 cells. The cells treated with the E. coli secretome showed 105 dysregulated cellular metabolites compared to controls. The dysregulated cellular metabolites were involved in the metabolism of fructose and mannose, sphingolipids, amino acids, fatty acids, amino sugar, nucleotide sugar, and pyrimidine, which are vital pathways required for the pathogenesis of BC. Our findings are the first to show that the E. coli secretome modulates the BC cells' energy metabolism, highlighting insights into the possibility of altered metabolic events in BC tissue in the actual BC tissue microenvironment that are potentially induced by the local bacteria. Our study provides metabolic data that could be as a basis for future studies searching for the underlying mechanisms mediated by bacteria and their secretome to alter the metabolism of BC cells.
Collapse
|
7
|
Ballav S, Biswas B, Sahu VK, Ranjan A, Basu S. PPAR-γ Partial Agonists in Disease-Fate Decision with Special Reference to Cancer. Cells 2022; 11:3215. [PMID: 36291082 PMCID: PMC9601205 DOI: 10.3390/cells11203215] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPAR-γ) has emerged as one of the most extensively studied transcription factors since its discovery in 1990, highlighting its importance in the etiology and treatment of numerous diseases involving various types of cancer, type 2 diabetes mellitus, autoimmune, dermatological and cardiovascular disorders. Ligands are regarded as the key determinant for the tissue-specific activation of PPAR-γ. However, the mechanism governing this process is merely a contradictory debate which is yet to be systematically researched. Either these receptors get weakly activated by endogenous or natural ligands or leads to a direct over-activation process by synthetic ligands, serving as complete full agonists. Therefore, fine-tuning on the action of PPAR-γ and more subtle modulation can be a rewarding approach which might open new avenues for the treatment of several diseases. In the recent era, researchers have sought to develop safer partial PPAR-γ agonists in order to dodge the toxicity induced by full agonists, akin to a balanced activation. With a particular reference to cancer, this review concentrates on the therapeutic role of partial agonists, especially in cancer treatment. Additionally, a timely examination of their efficacy on various other disease-fate decisions has been also discussed.
Collapse
Affiliation(s)
- Sangeeta Ballav
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Bini Biswas
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Vishal Kumar Sahu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Amit Ranjan
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Soumya Basu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| |
Collapse
|
8
|
Malakouti P, Mohammadi M, Boshagh MA, Amini A, Rezaee MA, Rahmani MR. Combined effects of pioglitazone and doxorubicin on migration and invasion of MDA-MB-231 breast cancer cells. J Egypt Natl Canc Inst 2022; 34:13. [PMID: 35342925 DOI: 10.1186/s43046-022-00110-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Despite antitumor properties, chemotherapy medication can create conditions in tumor cells that work in favor of the tumor. Doxorubicin, commonly prescribed chemotherapy agents, can increase the risk of migration and invasion of tumor cells through overexpression of the CXCR4 gene by affecting downstream signaling pathways. The regulatory role of CXCR7 on CXCR4 function has been demonstrated. Therefore, it is hypothesized that combining doxorubicin with another anticancer drug could be a promising approach. METHODS In this research, we evaluated the anti-invasive property of pioglitazone along with antitumor effects of doxorubicin on MDA-MB-231 breast cancer cell lines. RESULTS There was no significant difference between two treatment groups in neither the expression nor changes in the expression of CXCR7 and CXCR4 genes (P < 0.05). Pioglitazone-doxorubicin combination reduced cell migration in tumor cells to a significantly higher extent compared to doxorubicin alone (P < 0.05). CONCLUSIONS Co-administration of pioglitazone and doxorubicin might reduce cell migration in breast cancer tumor cells, and that cell migration function is independent of some specific proteins.
Collapse
Affiliation(s)
- Parisa Malakouti
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Immunology and Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mobin Mohammadi
- Department of Immunology and Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Amin Boshagh
- Department of Immunology and Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Abbasali Amini
- Department of Immunology and Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Ali Rezaee
- Department of Medical Laboratory Sciences, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Reza Rahmani
- Department of Immunology and Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
9
|
Augimeri G, Montalto FI, Giordano C, Barone I, Lanzino M, Catalano S, Andò S, De Amicis F, Bonofiglio D. Nutraceuticals in the Mediterranean Diet: Potential Avenues for Breast Cancer Treatment. Nutrients 2021; 13:2557. [PMID: 34444715 PMCID: PMC8400469 DOI: 10.3390/nu13082557] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 12/12/2022] Open
Abstract
The traditional Mediterranean Diet constitutes a food model that refers to the dietary patterns of the population living in countries bordering the Mediterranean Sea in the early 1960s. A huge volume of literature data suggests that the Mediterranean-style diet provides several dietary compounds that have been reported to exert beneficial biological effects against a wide spectrum of chronic illnesses, such as cardiovascular and neurodegenerative diseases and cancer including breast carcinoma. Among bioactive nutrients identified as protective factors for breast cancer, natural polyphenols, retinoids, and polyunsaturated fatty acids (PUFAs) have been reported to possess antioxidant, anti-inflammatory, immunomodulatory and antitumoral properties. The multiple anticancer mechanisms involved include the modulation of molecular events and signaling pathways associated with cell survival, proliferation, differentiation, migration, angiogenesis, antioxidant enzymes and immune responses. This review summarizes the anticancer action of some polyphenols, like resveratrol and epigallocatechin 3-gallate, retinoids and omega-3 PUFAs by highlighting the important hallmarks of cancer in terms of (i) cell cycle growth arrest, (ii) apoptosis, (iii) inflammation and (iv) angiogenesis. The data collected from in vitro and in vivo studies strongly indicate that these natural compounds could be the prospective candidates for the future anticancer therapeutics in breast cancer disease.
Collapse
Affiliation(s)
- Giuseppina Augimeri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
| | - Francesca Ida Montalto
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Marilena Lanzino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| |
Collapse
|