1
|
Hassan RU, Abbas N, Ko J. Toward Customizable Smart Gels: A Comprehensive Review of Innovative Printing Techniques and Applications. Gels 2025; 11:32. [PMID: 39852003 PMCID: PMC11765241 DOI: 10.3390/gels11010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
New production technologies have transformed modern engineering fields, including electronics, mechanics, robotics, and biomedicine. These advancements have led to the creation of smart materials such as alloys, polymers, and gels that respond to various stimuli. This review focuses on smart materials (SMs), including their variety and fabrication techniques, that can be used to construct three- or four-dimensional structures. The mechanisms and designs of smart materials, limitations of current printing technologies, and perspectives for their future uses are also discussed in this review. The printed smart materials are expected to have a major impact on the design of real-world applications.
Collapse
Affiliation(s)
- Rizwan Ul Hassan
- School of Chemical, Biological, and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Republic of Korea;
| | - Naseem Abbas
- Department of Mechanical Engineering, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Jongkuk Ko
- School of Chemical, Biological, and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
2
|
Liang W, Zhou C, Liu X, Xie Q, Xia L, Liu L, Bao W, Lin H, Xiong X, Zhang H, Zheng Z, Zhao J. Current status of nano-embedded growth factors and stem cells delivery to bone for targeted repair and regeneration. J Orthop Translat 2025; 50:257-273. [PMID: 39902262 PMCID: PMC11788687 DOI: 10.1016/j.jot.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/01/2024] [Accepted: 12/09/2024] [Indexed: 02/05/2025] Open
Abstract
Bone-related diseases like osteoarthritis and osteoporosis impact millions globally, affecting quality of life. Osteoporosis considerably enhances the probability of bone fractures of the wrist, hip, and spine. Enhancement and acceleration of functional bone development can be achieved through the sustained delivery of growth factors (GFs) and cells in biomaterial carriers. The delivery of bioactive compounds in a targeted, spatiotemporal way that most closely resembles the natural defect repair process can be achieved by designing the carrier system with established release kinetics. Furthermore, the carrier can serve as a substrate that mimics the extracellular matrix, facilitating osteoprogenitor cell infiltration and growth for integrative tissue healing. In this report, we explore the significance of GFs within the realm of bone and cartilage tissue engineering, encompassing their encapsulation and delivery methodologies, the kinetics of release, and their amalgamation with biomaterials and stem cells (SCs) to facilitate the mending of bone fractures. Moreover, the significance of GFs in evaluating the microenvironment of bone tissue through reciprocal signaling with cells and biomaterial scaffolds is emphasized which will serve as the foundation for prospective advances in bone and cartilage tissue engineering as well as therapeutic equipment. Nanoparticles are being used in regenerative medicine to promote bone regeneration and repair by delivering osteoinductive growth factors like BMP-2, VEGF, TGF-β. These nanocarriers allow controlled release, minimizing adverse effects and ensuring growth factors are concentrated at the injury site. They are also mixed with mesenchymal stem cells (MSCs) to improve their engraftment, differentiation, and survival. This approach is a key step in developing multi-model systems that more efficiently facilitate bone regeneration. Researchers are exploring smart nanoparticles with immunomodulatory qualities to improve bonre regeneration and reduce inflammation in injury site. Despite promising preclinical results, challenges include cost management, regulatory approval, and long term safety. However, incorporating stem cell transport and growth factors in nanoparticles could revolutionize bone regeneration and offer more personalized therapies for complex bone disorders and accidents. The translational potential of this article Stem cell transport and growth factors encapsulated in nanoparticles are becoming revolutionary methods for bone regeneration and repair. By encouraging stem cells to develop into osteoblasts, osteoinductive GFs like BMP-2, VEGF, and TGF-β can be delivered under control due to nanomaterials like nanoparticles, nanofibers, and nanotubes. By ensuring sustained release, these nanocarriers lessen adverse effects and enhance therapeutic results. In order to prove their survival and development, MCSs, which are essential for bone regeneration, are mixed with nanoparticles, frequently using scaffolds that resemble the ECM of bone. Furthermore, by adjusting to the injured environment and lowering inflammation, immunomodulatory nanostructures and stimuli-responsive nanomaterials can further maximize. While there are still shotcomings to overcome, including managing expenses, negotiating regulatory processes, and guaranteeing long-term safety, this method promises to outperform traditional bone grafting by providing quicker, more individualized, and more efficient treatments. Nano-embedded growth factors and stem cell technologies have the potential to revolutionize orthopedic therapy and significantly enhance patient outcomes with further research.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, 316000, China
| | - Xiankun Liu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Qiong Xie
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Linying Xia
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Lu Liu
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Wenwen Bao
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Hongming Lin
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Xiaochun Xiong
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Hao Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Zeping Zheng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| |
Collapse
|
3
|
Hossain MA, Illescas-Lopez S, Rahman MW, Mañas Torres MC, Contreras-Montoya R, Firouzeh S, Gavira JA, Álvarez de Cienfuegos L, Pramanik S. Efficient Transfer of Chirality in Complex Hybrid Materials and Impact on Chirality-induced Spin Selectivity. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:11449-11461. [PMID: 39678932 PMCID: PMC11635975 DOI: 10.1021/acs.chemmater.4c02108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024]
Abstract
Transfer of chirality, or transmission of asymmetric information from one system to another, plays an essential role in fundamental biological and chemical processes and, therefore, is essential for life. This phenomenon also holds immense potential in spintronics in the context of chirality-induced spin selectivity (CISS). In the CISS, the spatial arrangement of chiral molecules influences the spin state of electrons during the charge-transfer processes. Transfer of chirality from chiral molecules to an achiral material in a hybrid environment enables induction of spin polarization in the achiral material, thus vastly expanding the library of CISS-active electronic materials. Such "induced" CISS signals could have different responses compared to pure chiral molecules because the electronic properties of the achiral material come into play in the former case. In addition, multiple chiral sources can be used, which can have a nontrivial contribution to the induced CISS effect and can act either synergistically or antagonistically. This opens the way to achieving tunability of the CISS signals via chemical means. Earlier, such a chirality-transfer phenomenon and the resulting induced CISS effect were demonstrated in a hybrid system containing carbon nanotubes (CNTs) functionalized with a chiral agent (Fmoc-diphenylalanine l/d). In this context, we extend this result by investigating the role of an additional chiral moiety (l-lysozyme enzyme crystals) in this system. Here, the chiral crystal surrounds the chiral-functionalized CNTs, and we show that synergistic interactions result in more efficient chirality transfer, resulting in nontrivial changes in the CISS effect. This manifests in the form of (a) a stronger CISS signal compared to only one single chiral agent, (b) nonmonotonic temperature dependence and sign reversal of the CISS signal, and (c) persistence of the CISS signal at higher temperatures. Hybrid chiral materials with multiple chiral sources could, therefore, offer intricate control of the CISS signal via modification of its constituents, which is not possible in homogeneous chiral systems with single chiral sources.
Collapse
Affiliation(s)
- Md Anik Hossain
- Department
of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Sara Illescas-Lopez
- Departamento
de Química Orgánica, Unidad de Excelencia Química
Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | - Md Wazedur Rahman
- Department
of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
- National
Research Council Canada, Edmonton, AB T6N 1E4, Canada
| | - Mari C. Mañas Torres
- Departamento
de Química Orgánica, Unidad de Excelencia Química
Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | | | - Seyedamin Firouzeh
- Department
of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - José A. Gavira
- Laboratorio
de Estudios Cristalográficos, Instituto Andaluz de Ciencias
de la Tierra (Consejo Superior de Investigaciones Científicas), Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Departamento
de Química Orgánica, Unidad de Excelencia Química
Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Av. de Madrid, 15, 18016 Granada, Spain
| | - Sandipan Pramanik
- Department
of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
4
|
Wulf V, Bisker G. Integrating Single-Walled Carbon Nanotubes into Supramolecular Assemblies: From Basic Interactions to Emerging Applications. ACS NANO 2024; 18:29380-29393. [PMID: 39428637 PMCID: PMC11526426 DOI: 10.1021/acsnano.4c06843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Integrating single-walled carbon nanotubes (SWCNTs) into supramolecular self-assemblies harnesses the distinctive mechanical, optical, and electronic properties of the nanoparticles alongside the structural and chemical properties of the assemblies. Organic molecules capable of forming supramolecular assemblies through hydrophobic, van der Waals, and π-π interactions have been demonstrated to be particularly effective in dispersing and functionalizing SWCNTs, as these same interactions facilitate the binding to the hydrophobic graphene-like surface of the SWCNTs. This review discusses a variety of self-assembling structures that were shown to integrate SWCNTs, ranging from simple micelles and ring structures to complex DNA origami and three-dimensional hydrogels formed by low-molecular-weight gelators. We explore the integration of SWCNTs into various supramolecular assemblies and highlight emerging applications of these composite materials, such as the mechanical enforcement of self-assembling hydrogels and leveraging the near-infrared (NIR) fluorescence properties of SWCNTs for monitoring the molecular self-assembly process. Notably, the distinctive NIR fluorescence of SWCNTs, which overlaps with the biological transparency window, offers significant opportunities for noninvasive sensing applications within the supramolecular platforms. Future research into a deeper understanding of the interactions between SWCNTs and different supramolecular frameworks will expand the potential applications of SWCNT-integrated supramolecular assemblies in fields like biomedical engineering, electronic devices, and environmental sensing.
Collapse
Affiliation(s)
- Verena Wulf
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel
Aviv University, Tel Aviv 6997801, Israel
- Center
for Light-Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
5
|
Zhao J, Gong S, Mu Y, Jia X, Zhou Y, Tian Y, Chao D. Wearable dual-drug controlled release patch for psoriasis treatment. J Colloid Interface Sci 2024; 669:835-843. [PMID: 38749222 DOI: 10.1016/j.jcis.2024.05.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/27/2024]
Abstract
Wearable drug delivery systems (DDS) have made significant advancements in the field of precision medicine, offering precise regulation of drug dosage, location, and timing. The performance qualities that wearable DDS has always strived for are simplicity, efficiency, and intelligence. This paper proposes a wearable dual-drug synergistic release patch. The patch is powered by a built-in magnesium battery and utilizes a hydrogel containing viologen-based hyperbranched polyamidoamine as both a cathode material and an integrated drug reservoir. This design allows for the simultaneous release of both dexamethasone and tannic acid, overcoming the limitations of monotherapy and ensuring effective synergy for on-demand therapy. In a mouse model with praziquimod-induced psoriasis, the patch demonstrated therapeutic efficacy at a low voltage. The inflammatory skin returned to normal after 5 days with the on-demand release of dual drugs. This work provides a promising treatment option considering its straightforward construction and the therapeutic advantages of dual-drug synergy.
Collapse
Affiliation(s)
- Jiaxin Zhao
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Shengen Gong
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Yueming Mu
- Department of Dermatology and Venerology of the First Hospital, Jilin University, Changchun 130021, China
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Yan Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Yaping Tian
- Department of Dermatology and Venerology of the First Hospital, Jilin University, Changchun 130021, China.
| | - Danming Chao
- College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
6
|
Martincic M, Tobías-Rossell G. UV-Vis quantification of the iron content in iteratively steam and HCl purified single-walled carbon nanotubes. PLoS One 2024; 19:e0303359. [PMID: 38728321 PMCID: PMC11086872 DOI: 10.1371/journal.pone.0303359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
As-produced carbon nanotubes contain impurities which can dominate the properties of the material and are thus undesired. Herein we present a multi-step purification treatment that combines the use of steam and hydrochloric acid in an iterative manner. This allows the reduction of the iron content down to 0.2 wt. % in samples of single-walled carbon nanotubes (SWCNTs). Remarkably, Raman spectroscopy analysis reveals that this purification strategy does not introduce structural defects into the SWCNTs' backbone. To complete the study, we also report on a simplified approach for the quantitative assessment of iron using UV-Vis spectroscopy. The amount of metal in SWCNTs is assessed by dissolving in HCl the residue obtained after the complete combustion of the sample. This leads to the creation of hexaaquairon(III) chloride which allows the determination of the amount of iron, from the catalyst, by UV-Vis spectroscopy. The main advantage of the proposed strategy is that it does not require the use of additional complexing agents.
Collapse
Affiliation(s)
- Markus Martincic
- Institut de Ciència de Materiales de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, Barcelona, Spain
| | - Gerard Tobías-Rossell
- Institut de Ciència de Materiales de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, Barcelona, Spain
| |
Collapse
|
7
|
Scarel E, De Corti M, Polentarutti M, Pierri G, Tedesco C, Marchesan S. Self-assembly of heterochiral, aliphatic dipeptides with Leu. J Pept Sci 2024; 30:e3559. [PMID: 38111175 DOI: 10.1002/psc.3559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/20/2023]
Abstract
This work describes the self-assembly behavior of heterochiral, aliphatic dipeptides, l-Leu-d-Xaa (Xaa = Ala, Val, Ile, Leu), in green solvents such as acetonitrile (MeCN) and buffered water at neutral pH. Interestingly, water plays a structuring role because at 1% v/v, it enables dipeptide self-assembly in MeCN to yield organogels, which then undergo transition towards crystals. Other organic solvents and oils were tested for gelation, and metastable gels were formed in tetrahydrofuran, although at high peptide concentration (80 mM). Single-crystal X-ray diffraction revealed the dipeptides' supramolecular packing modes in amphipathic layers, as opposed to water channels reported for the homochiral Leu-Leu, or hydrophobic columns reported for homochiral Leu-Val and Leu-Ile.
Collapse
Affiliation(s)
- Erica Scarel
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Marco De Corti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | | | - Giovanni Pierri
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano, Italy
| | - Consiglia Tedesco
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano, Italy
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
8
|
Ge L, Su N, Fan W, Yuan S. Risk Factors and Management of Intraocular Pressure Elevation After Vitrectomy Combined with Silicone Oil Tamponade. Int J Gen Med 2024; 17:447-456. [PMID: 38333017 PMCID: PMC10849908 DOI: 10.2147/ijgm.s446617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
Silicone oil has emerged as the common option for intraocular tamponade during complicated retina vitrectomy. However, the postoperative elevation of intraocular pressure (IOP), influenced by numerous factors, remains a significant and frequently encountered complication that poses a potential threat to vision. Extensive research has been conducted to investigate the risk factors associated with elevated IOP following silicone oil tamponade, including silicone oil viscosity, preoperative high IOP, diabetes, and lens status. This comprehensive review aims to gather and summarize the current research findings regarding the risk factors contributing to IOP elevation following silicone oil tamponade, as well as the optimal management strategies for secondary glaucoma. The analysis includes the physicochemical properties of silicone oil, preoperative and intraoperative risk factors, and the effective management of secondary glaucoma. Enhancing our understanding of the primary factors associated with silicone oil-induced IOP elevation will facilitate the guidance of timely and appropriate interventions.
Collapse
Affiliation(s)
- Lexin Ge
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Na Su
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Wen Fan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Songtao Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| |
Collapse
|
9
|
Morrison N, Vogel BM. Factors That Influence Base-Catalyzed Thiol-Ene Hydrogel Synthesis. Gels 2023; 9:917. [PMID: 37999007 PMCID: PMC10671550 DOI: 10.3390/gels9110917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
Injectable, localized drug delivery using hydrogels made from ethoxylated trimethylolpropane tri-3-mercaptopropionate (ETTMP) and poly(ethylene glycol) diacrylate (PEGDA) has shown great potential due to these hydrogels' ability to exhibit non-swelling behavior and tunable drug release properties. However, current synthesis methods in the literature suffer from poor ETTMP solubility in water, slow gelation times exceeding 20 min, and a lack of reproducibility. To address these limitations, we have developed a reliable synthesis procedure and conducted a sensitivity analysis of key variables. This has enabled us to synthesize ETTMP-PEGDA hydrogels in a polymer concentration range of 15 to 90 wt% with gelation times of less than 2 min and moduli ranging from 3.5 to 190 kPa. We overcame two synthesis limitations by identifying the impact of residual mercaptopropionic acid and alumina purification column height on gelation time and by premixing ETTMP and PEGDA to overcome low ETTMP solubility in water. Our ETTMP-PEGDA mixture can be stored at -20 °C for up to 2 months without crosslinking, allowing easy storage and shipment. These and previous results demonstrate the potential of ETTMP-PEGDA hydrogels as promising candidates for injectable, localized drug delivery with tunable drug release properties.
Collapse
Affiliation(s)
| | - Brandon M. Vogel
- Department of Chemical Engineering, Bucknell University, Lewisburg, PA 17837, USA;
| |
Collapse
|
10
|
Stocco TD, Zhang T, Dimitrov E, Ghosh A, da Silva AMH, Melo WCMA, Tsumura WG, Silva ADR, Sousa GF, Viana BC, Terrones M, Lobo AO. Carbon Nanomaterial-Based Hydrogels as Scaffolds in Tissue Engineering: A Comprehensive Review. Int J Nanomedicine 2023; 18:6153-6183. [PMID: 37915750 PMCID: PMC10616695 DOI: 10.2147/ijn.s436867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
Carbon-based nanomaterials (CBNs) are a category of nanomaterials with various systems based on combinations of sp2 and sp3 hybridized carbon bonds, morphologies, and functional groups. CBNs can exhibit distinguished properties such as high mechanical strength, chemical stability, high electrical conductivity, and biocompatibility. These desirable physicochemical properties have triggered their uses in many fields, including biomedical applications. In this review, we specifically focus on applying CBNs as scaffolds in tissue engineering, a therapeutic approach whereby CBNs can act for the regeneration or replacement of damaged tissue. Here, an overview of the structures and properties of different CBNs will first be provided. We will then discuss state-of-the-art advancements of CBNs and hydrogels as scaffolds for regenerating various types of human tissues. Finally, a perspective of future potentials and challenges in this field will be presented. Since this is a very rapidly growing field, we expect that this review will promote interdisciplinary efforts in developing effective tissue regeneration scaffolds for clinical applications.
Collapse
Affiliation(s)
- Thiago Domingues Stocco
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - Tianyi Zhang
- Pennsylvania State University, University Park, PA, USA
| | | | - Anupama Ghosh
- Department of Chemical and Materials Engineering (DEQM), Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Wanessa C M A Melo
- FTMC, State Research institute Center for Physical Sciences and Technology, Department of Functional Materials and Electronics, Vilnius, Lithuanian
| | - Willian Gonçalves Tsumura
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - André Diniz Rosa Silva
- FATEC, Ribeirão Preto, SP, Brazil
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Gustavo F Sousa
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Bartolomeu C Viana
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | | | - Anderson Oliveira Lobo
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| |
Collapse
|
11
|
Kędzierska M, Bańkosz M, Sala K, Dudzik J, Potemski P, Tyliszczak B. Investigating the Effect of the Crosslinking Factor on the Properties of Hydrogel Materials Containing Tilia platyphyllos Hydrolate. Molecules 2023; 28:7035. [PMID: 37894514 PMCID: PMC10609053 DOI: 10.3390/molecules28207035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
The use of natural ingredients in recent years has been of great importance in many industries and medicine. In biomedical applications, hydrogel materials also play a significant role. In view of this, the aim of this study was to synthesize and characterize hydrogel materials enriched with broadleaf linden hydrolate. An important aspect was to carry out a series of syntheses with varying types and amounts of crosslinking agents so as to test the possibility of synthesizing materials with controlled properties. The obtained hydrogels were subjected to detailed physicochemical analysis. The results of the tests confirmed the relationship between the selected properties and the type of crosslinking agent used. A crosslinking agent with a lower molar mass (575 g/mol) results in a material with a compact and strongly crosslinked structure, which is characterized by high surface roughness. The use of a crosslinking agent with a molecular weight of 700 g/mol resulted in a material with a looser-packed polymer network capable of absorbing larger amounts of liquids. The work also proved that regardless of the type of crosslinking agent used, the addition of linden hydrolate provides antioxidant properties, which is particularly important in view of the target biomedical application of such materials.
Collapse
Affiliation(s)
- Magdalena Kędzierska
- Department of Chemotherapy, Medical University of Lodz, Copernicus Memorial Hospital of Lodz, 90-549 Lodz, Poland; (M.K.); (P.P.)
| | - Magdalena Bańkosz
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (K.S.); (J.D.)
| | - Katarzyna Sala
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (K.S.); (J.D.)
| | - Julia Dudzik
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (K.S.); (J.D.)
| | - Piotr Potemski
- Department of Chemotherapy, Medical University of Lodz, Copernicus Memorial Hospital of Lodz, 90-549 Lodz, Poland; (M.K.); (P.P.)
| | - Bożena Tyliszczak
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (K.S.); (J.D.)
| |
Collapse
|
12
|
Alletto P, Garcia AM, Marchesan S. Short Peptides for Hydrolase Supramolecular Mimicry and Their Potential Applications. Gels 2023; 9:678. [PMID: 37754360 PMCID: PMC10529927 DOI: 10.3390/gels9090678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Hydrolases are enzymes that have found numerous applications in various industrial sectors spanning from pharmaceuticals to foodstuff and beverages, consumers' products such as detergents and personal care, textiles, and even for biodiesel production and environmental bioremediation. Self-assembling and gelling short peptides have been designed for their mimicry so that their supramolecular organization leads to the creation of hydrophobic pockets for catalysis to occur. Catalytic gels of this kind can also find numerous industrial applications to address important global challenges of our time. This concise review focuses on the last 5 years of progress in this fast-paced, popular field of research with an eye towards the future.
Collapse
Affiliation(s)
- Paola Alletto
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Ana Maria Garcia
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
13
|
Barhoum A, Sadak O, Ramirez IA, Iverson N. Stimuli-bioresponsive hydrogels as new generation materials for implantable, wearable, and disposable biosensors for medical diagnostics: Principles, opportunities, and challenges. Adv Colloid Interface Sci 2023; 317:102920. [PMID: 37207377 DOI: 10.1016/j.cis.2023.102920] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Hydrogels are excellent water-swollen polymeric materials for use in wearable, implantable, and disposable biosensors. Hydrogels have unique properties such as low cost, ease of preparation, transparency, rapid response to external conditions, biocompatibility and self-adhesion to the skin, flexibility, and strain sensitivity, making them ideal for use in biosensor platforms. This review provides a detailed overview of advanced applications of stimuli-responsive hydrogels in biosensor platforms, from hydrogel synthesis and functionalization for bioreceptor immobilization to several important diagnostic applications. Emphasis is placed on recent advances in the fabrication of ultrasensitive fluorescent and electrically conductive hydrogels and their applications in wearable, implantable, and disposable biosensors for quantitative measurements. Design, modification, and assembly techniques of fluorescent, ionically conductive, and electrically conductive hydrogels to improve performance will be addressed. The advantages and performance improvements of immobilizing bioreceptors (e.g., antibodies, enzymes, and aptamers), and incorporating fluorescent and electrically conductive nanomaterials are described, as are their limitations. Potential applications of hydrogels in implantable, wearable, disposable portable biosensors for quantitative detection of the various bioanalytes (ions, molecules, drugs, proteins, and biomarkers) are discussed. Finally, the global market for hydrogel-based biosensors and future challenges and prospects are discussed in detail.
Collapse
Affiliation(s)
- Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt; National Center for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9 D09 Y074, Dublin, Ireland.
| | - Omer Sadak
- Biological Systems Engineering Department, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Electrical and Electronics Engineering, Ardahan University, Ardahan, Turkey
| | - Ivon Acosta Ramirez
- Biological Systems Engineering Department, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Nicole Iverson
- Biological Systems Engineering Department, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
14
|
Rozhin P, Kralj S, Soula B, Marchesan S, Flahaut E. Hydrogels from a Self-Assembling Tripeptide and Carbon Nanotubes (CNTs): Comparison between Single-Walled and Double-Walled CNTs. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050847. [PMID: 36903725 PMCID: PMC10005271 DOI: 10.3390/nano13050847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 05/14/2023]
Abstract
Supramolecular hydrogels obtained from the self-organization of simple peptides, such as tripeptides, are attractive soft materials. Their viscoelastic properties can be enhanced through the inclusion of carbon nanomaterials (CNMs), although their presence can also hinder self-assembly, thus requiring investigation of the compatibility of CNMs with peptide supramolecular organization. In this work, we compared single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotubes (DWCNTs) as nanostructured additives for a tripeptide hydrogel, revealing superior performance by the latter. Several spectroscopic techniques, as well as thermogravimetric analyses, microscopy, and rheology data, provide details to elucidate the structure and behavior of nanocomposite hydrogels of this kind.
Collapse
Affiliation(s)
- Petr Rozhin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Brigitte Soula
- Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux, Université Paul Sabatier, UMR CNRS N°5085, 31062 Toulouse, France
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
- Correspondence: (S.M.); (E.F.)
| | - Emmanuel Flahaut
- Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux, Université Paul Sabatier, UMR CNRS N°5085, 31062 Toulouse, France
- Correspondence: (S.M.); (E.F.)
| |
Collapse
|
15
|
Wang Z, Li D, Shi Y, Sun Y, Okeke SI, Yang L, Zhang W, Zhang Z, Shi Y, Xiao L. Recent Implementations of Hydrogel-Based Microbial Electrochemical Technologies (METs) in Sensing Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:641. [PMID: 36679438 PMCID: PMC9866333 DOI: 10.3390/s23020641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Hydrogel materials have been used extensively in microbial electrochemical technology (MET) and sensor development due to their high biocompatibility and low toxicity. With an increasing demand for sensors across different sectors, it is crucial to understand the current state within the sectors of hydrogel METs and sensors. Surprisingly, a systematic review examining the application of hydrogel-based METs to sensor technologies has not yet been conducted. This review aimed to identify the current research progress surrounding the incorporation of hydrogels within METs and sensors development, with a specific focus on microbial fuel cells (MFCs) and microbial electrolysis cells (MECs). The manufacturing process/cost, operational performance, analysis accuracy and stability of typical hydrogel materials in METs and sensors were summarised and analysed. The current challenges facing the technology as well as potential direction for future research were also discussed. This review will substantially promote the understanding of hydrogel materials used in METs and benefit the development of electrochemical biosensors using hydrogel-based METs.
Collapse
Affiliation(s)
- Zeena Wang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Dunzhu Li
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Yunhong Shi
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Yifan Sun
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Saviour I. Okeke
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Luming Yang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Wen Zhang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Zihan Zhang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Yanqi Shi
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Liwen Xiao
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
- TrinityHaus, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
16
|
Brindhadevi K, Garalleh HAL, Alalawi A, Al-Sarayreh E, Pugazhendhi A. Carbon nanomaterials: Types, synthesis strategies and their application as drug delivery system for Cancer therapy. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
17
|
Marin D, Bartkowski M, Kralj S, Rosetti B, D’Andrea P, Adorinni S, Marchesan S, Giordani S. Supramolecular Hydrogels from a Tripeptide and Carbon Nano-Onions for Biological Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:nano13010172. [PMID: 36616081 PMCID: PMC9824889 DOI: 10.3390/nano13010172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 05/27/2023]
Abstract
Nanocomposite hydrogels have attracted researchers' attention in recent years to achieve superior performances in a variety of materials applications. In this work, we describe the outcome of three different strategies to combine a self-assembling tripeptide and carbon nano-onions (CNOs), through covalent and non-covalent approaches, into supramolecular and nanostructured hydrogels. Importantly, the tripeptide coated the nano-onions and extended their aqueous dispersions' stability by several hours. Furthermore, CNOs could be loaded in the tripeptide hydrogels at the highest level ever reported for nanocarbons, indicating high compatibility between the components. The materials were formed in phosphate-buffered solutions, thus paving the way for biological applications, and were characterized by several spectroscopic, microscopic, thermogravimetric, and rheological techniques. In vitro experiments demonstrated excellent cytocompatibility.
Collapse
Affiliation(s)
- Davide Marin
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Michał Bartkowski
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland
| | - Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Beatrice Rosetti
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Paola D’Andrea
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Simone Adorinni
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Silvia Giordani
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland
| |
Collapse
|
18
|
Bagheri B, Surwase SS, Lee SS, Park H, Faraji Rad Z, Trevaskis NL, Kim YC. Carbon-based nanostructures for cancer therapy and drug delivery applications. J Mater Chem B 2022; 10:9944-9967. [PMID: 36415922 DOI: 10.1039/d2tb01741e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Synthesis, design, characterization, and application of carbon-based nanostructures (CBNSs) as drug carriers have attracted a great deal of interest over the past half of the century because of their promising chemical, thermal, physical, optical, mechanical, and electrical properties and their structural diversity. CBNSs are well-known in drug delivery applications due to their unique features such as easy cellular uptake, high drug loading ability, and thermal ablation. CBNSs, including carbon nanotubes, fullerenes, nanodiamond, graphene, and carbon quantum dots have been quite broadly examined for drug delivery systems. This review not only summarizes the most recent studies on developing carbon-based nanostructures for drug delivery (e.g. delivery carrier, cancer therapy and bioimaging), but also tries to deal with the challenges and opportunities resulting from the expansion in use of these materials in the realm of drug delivery. This class of nanomaterials requires advanced techniques for synthesis and surface modifications, yet a lot of critical questions such as their toxicity, biodistribution, pharmacokinetics, and fate of CBNSs in biological systems must be answered.
Collapse
Affiliation(s)
- Babak Bagheri
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. .,School of Engineering, University of Southern Queensland, Springfield Central, QLD, 4300, Australia
| | - Sachin S Surwase
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Su Sam Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Heewon Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Zahra Faraji Rad
- School of Engineering, University of Southern Queensland, Springfield Central, QLD, 4300, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC, 3052, Australia
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
19
|
Llenas M, Cuenca L, Santos C, Bdikin I, Gonçalves G, Tobías-Rossell G. Sustainable Synthesis of Highly Biocompatible 2D Boron Nitride Nanosheets. Biomedicines 2022; 10:3238. [PMID: 36551994 PMCID: PMC9775030 DOI: 10.3390/biomedicines10123238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
2D ultrafine nanomaterials today represent an emerging class of materials with very promising properties for a wide variety of applications. Biomedical fields have experienced important new achievements with technological breakthroughs obtained from 2D materials with singular properties. Boron nitride nanosheets are a novel 2D layered material comprised of a hexagonal boron nitride network (BN) with interesting intrinsic properties, including resistance to oxidation, extreme mechanical hardness, good thermal conductivity, photoluminescence, and chemical inertness. Here, we investigated different methodologies for the exfoliation of BN nanosheets (BNNs), using ball milling and ultrasound processing, the latter using both an ultrasound bath and tip sonication. The best results are obtained using tip sonication, which leads to the formation of few-layered nanosheets with a narrow size distribution. Importantly, it was observed that with the addition of pluronic acid F127 to the medium, there was a significant improvement in the BN nanosheets (BNNs) production yield. Moreover, the resultant BNNs present improved stability in an aqueous solution. Cytotoxicity studies performed with HeLa cells showed the importance of taking into account the possible interferences of the nanomaterial with the selected assay. The prepared BNNs coated with pluronic presented improved cytotoxicity at concentrations up to 200 μg mL-1 with more than 90% viability after 24 h of incubation. Confocal microscopy also showed high cell internalization of the nanomaterials and their preferential biodistribution in the cell cytoplasm.
Collapse
Affiliation(s)
- Marina Llenas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Spain
| | - Lorenzo Cuenca
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Spain
| | - Carla Santos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- CQE—Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Igor Bdikin
- TEMA-Nanotechnology Research Group, Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Intelligent Systems Associate Laboratory (LASI), 3810-193 Aveiro, Portugal
| | - Gil Gonçalves
- TEMA-Nanotechnology Research Group, Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Intelligent Systems Associate Laboratory (LASI), 3810-193 Aveiro, Portugal
| | - Gerard Tobías-Rossell
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Spain
| |
Collapse
|
20
|
Raja IS, Kang MS, Hong SW, Bae H, Kim B, Hwang YS, Cha JM, Han DW. State-of-the-art techniques for promoting tissue regeneration: Combination of three-dimensional bioprinting and carbon nanomaterials. Int J Bioprint 2022; 9:635. [PMID: 36844243 PMCID: PMC9947385 DOI: 10.18063/ijb.v9i1.635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/23/2022] [Indexed: 11/06/2022] Open
Abstract
181Biofabrication approaches, such as three-dimensional (3D) bioprinting of hydrogels, have recently garnered increasing attention, especially in the construction of 3D structures that mimic the complexity of tissues and organs with the capacity for cytocompatibility and post-printing cellular development. However, some printed gels show poor stability and maintain less shape fidelity if parameters such as polymer nature, viscosity, shear-thinning behavior, and crosslinking are affected. Therefore, researchers have incorporated various nanomaterials as bioactive fillers into polymeric hydrogels to address these limitations. Carbon-family nanomaterials (CFNs), hydroxyapatites, nanosilicates, and strontium carbonates have been incorporated into printed gels for application in various biomedical fields. In this review, following the compilation of research publications on CFNs-containing printable gels in various tissue engineering applications, we discuss the types of bioprinters, the prerequisites of bioink and biomaterial ink, as well as the progress and challenges of CFNs-containing printable gels in this field.
Collapse
Affiliation(s)
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, South Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, South Korea
| | - Hojae Bae
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul, 05029, Republic of Korea
| | - Bongju Kim
- Dental Life Science Research Institute/Innovation Research & Support Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, South Korea
| | - Yu-Shik Hwang
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 02447, South Korea
| | - Jae Min Cha
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon 22012, South Korea,Corresponding authors: Jae Min Cha () Dong-Wook Han ()
| | - Dong-Wook Han
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, South Korea,Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, South Korea,Corresponding authors: Jae Min Cha () Dong-Wook Han ()
| |
Collapse
|
21
|
Long Y, Wang Z, Xu F, Jiang B, Xiao J, Yang J, Wang ZL, Hu W. Mechanically Ultra-Robust, Elastic, Conductive, and Multifunctional Hybrid Hydrogel for a Triboelectric Nanogenerator and Flexible/Wearable Sensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203956. [PMID: 36228096 DOI: 10.1002/smll.202203956] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/28/2022] [Indexed: 06/16/2023]
Abstract
Flexibility/wearable electronics such as strain/pressure sensors in human-machine interactions (HMI) are highly developed nowadays. However, challenges remain because of the lack of flexibility, fatigue resistance, and versatility, leading to mechanical damage to device materials during practical applications. In this work, a triple-network conductive hydrogel is fabricated by combining 2D Ti3 C2 Tx nanosheets with two kinds of 1D polymer chains, polyacrylamide, and polyvinyl alcohol. The Ti3 C2 Tx nanosheets act as the crosslinkers, which combine the two polymer chains of PAM and PVA via hydrogen bonds. Such a unique structure endows the hydrogel (MPP-hydrogel) with merits such as mechanical ultra-robust, super-elasticity, and excellent fatigue resistance. More importantly, the introduced Ti3 C2 Tx nanosheets not only enhance the hydrogel's conductivity but help form double electric layers (DELs) between the MXene nanosheets and the free water molecules inside the MPP-hydrogel. When the MPP-hydrogel is used as the electrode of the triboelectric nanogenerator (MPP-TENG), due to the dynamic balance of the DELs under the initial potential difference generated from the contact electrification as the driving force, an enhanced electrical output of the TENG is generated. Moreover, flexible strain/pressure sensors for tiny and low-frequency human motion detection are achieved. This work demonstrates a promising flexible electronic material for e-skin and HMI.
Collapse
Affiliation(s)
- Yong Long
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Zhuo Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Fan Xu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bin Jiang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Junfeng Xiao
- School of Electronic Communication Technology, Shenzhen Institute of Information Technology, Shenzhen, 518172, P. R. China
| | - Jun Yang
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518000, P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Weiguo Hu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
22
|
Rahman MW, Mañas-Torres MC, Firouzeh S, Illescas-Lopez S, Cuerva JM, Lopez-Lopez MT, de Cienfuegos LÁ, Pramanik S. Chirality-Induced Spin Selectivity in Heterochiral Short-Peptide-Carbon-Nanotube Hybrid Networks: Role of Supramolecular Chirality. ACS NANO 2022; 16:16941-16953. [PMID: 36219724 DOI: 10.1021/acsnano.2c07040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Supramolecular short-peptide assemblies have been widely used for the development of biomaterials with potential biomedical applications. These peptides can self-assemble in a multitude of chiral hierarchical structures triggered by the application of different stimuli, such as changes in temperature, pH, solvent, etc. The self-assembly process is sensitive to the chemical composition of the peptides, being affected by specific amino acid sequence, type, and chirality. The resulting supramolecular chirality of these materials has been explored to modulate protein and cell interactions. Recently, significant attention has been focused on the development of chiral materials with potential spintronic applications, as it has been shown that transport of charge carriers through a chiral environment polarizes the carrier spins. This effect, named chirality-induced spin selectivity or CISS, has been studied in different chiral organic molecules and materials, as well as carbon nanotubes functionalized with chiral molecules. Nevertheless, this effect has been primarily explored in homochiral systems in which the chirality of the medium, and hence the resulting spin polarization, is defined by the chirality of the molecule, with limited options for tunability. Herein, we have developed heterochiral carbon-nanotube-short-peptide materials made by the combination of two different chiral sources: that is, homochiral peptides (l/d) + glucono-δ-lactone. We show that the presence of a small amount of glucono-δ-lactone with fixed chirality can alter the supramolecular chirality of the medium, thereby modulating the sign of the spin signal from "up" to "down" and vice versa. In addition, small amounts of glucono-δ-lactone can even induce nonzero spin polarization in an otherwise achiral and spin-inactive peptide-nanotube composite. Such "chiral doping" strategies could allow the development of complementary CISS-based spintronic devices and circuits on a single material platform.
Collapse
Affiliation(s)
- Md Wazedur Rahman
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AlbertaT6G 1H9, Canada
| | - Mari C Mañas-Torres
- Universidad de Granada, Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071Granada, Spain
| | - Seyedamin Firouzeh
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AlbertaT6G 1H9, Canada
| | - Sara Illescas-Lopez
- Universidad de Granada, Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071Granada, Spain
| | - Juan Manuel Cuerva
- Universidad de Granada, Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071Granada, Spain
| | - Modesto T Lopez-Lopez
- Universidad de Granada, Departamento de Física Aplicada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071Granada, Spain
- Instituto de Investigación Biosanitaria ibs.Avda. De Madrid, 15, E-18012Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Universidad de Granada, Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071Granada, Spain
- Instituto de Investigación Biosanitaria ibs.Avda. De Madrid, 15, E-18012Granada, Spain
| | - Sandipan Pramanik
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AlbertaT6G 1H9, Canada
| |
Collapse
|
23
|
de Carvalho Lima EN, Barros Martins GL, Diaz RS, Schechter M, Piqueira JRC, Justo JF. Effects of Carbon Nanomaterials and Aloe vera on Melanomas-Where Are We? Recent Updates. Pharmaceutics 2022; 14:2004. [PMID: 36297440 PMCID: PMC9607275 DOI: 10.3390/pharmaceutics14102004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is an aggressive skin cancer that affects approximately 140,000 people worldwide each year, with a high fatality rate. Available treatment modalities show limited efficacy in more severe cases. Hence, the search for new treatment modalities, including immunotherapies, for curing, mitigating, and/or preventing cancer is important and urgently needed. Carbon nanoparticles associated with some plant materials, such as Aloe vera, have shown appealing antineoplastic activity, derived mainly from the compounds aloin, aloe-emodin, barbaloin acemannan, and octapeptide, thus representing new possibilities as antitumor agents. This systematic review aims to arouse interest and present the possibilities of using Aloe vera combined with carbon-based nanomaterials as an antineoplastic agent in the treatment and prevention of melanoma. Limitations and advances in melanoma treatment using functionalized carbon nanomaterials are discussed here. Moreover, this review provides the basis for further studies designed to fully explore the potential of carbon nanomaterials associated with Aloe vera in the treatment of various cancers, with a focus on melanoma.
Collapse
Affiliation(s)
- Elidamar Nunes de Carvalho Lima
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, Avenida Prof. Luciano Gualberto, Travessa 3, 158, São Paulo 05508-010, Brazil
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo 05508-010, Brazil
| | - Guilherme Leão Barros Martins
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, Avenida Prof. Luciano Gualberto, Travessa 3, 158, São Paulo 05508-010, Brazil
| | - Ricardo Sobhie Diaz
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - Mauro Schechter
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - José Roberto Castilho Piqueira
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, Avenida Prof. Luciano Gualberto, Travessa 3, 158, São Paulo 05508-010, Brazil
| | - João Francisco Justo
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo 05508-010, Brazil
| |
Collapse
|
24
|
Aziz T, Ullah A, Ali A, Shabeer M, Shah MN, Haq F, Iqbal M, Ullah R, Khan FU. Manufactures of bio‐degradable and bio‐based polymers for bio‐materials in the pharmaceutical field. J Appl Polym Sci 2022; 139. [DOI: 10.1002/app.52624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/17/2022] [Indexed: 12/19/2022]
Abstract
AbstractIn recent years, bio‐based polymers have emerged as an alternative to petroleum‐based polymers in various industries. The bio‐based materials are made from raw materials originating from natural sources, such as starch, cellulose, chitin, or bio‐degradable synthetic polymers (i.e., polycaprolactone and polylactic acid). In spite of several desirable properties of biodegradable polymers, for example, fully renewable, non‐toxic. Some properties like melt and impact strength, thermal stability, permeability, and so forth, still do not meet the demands for end‐use applications. One way to improve the properties of biopolymers and greatly enhance their commercial potential is to incorporate nanosized reinforcement in the polymer. The access of nano‐carriers to smart polymeric and bio‐materials are limited by polymerization methods. Bio‐polymers are considered an alternative to petroleum‐based fibers. These are directly produced by organisms. Smart nanoparticles are used in different medicines and their applications are size‐dependent. Among the different techniques used for sensitivity, selectivity, and interactions among the nanoparticles. More so, different approaches were found for polymerization. Methodologies such as the preparation of nano‐gels, bio‐degradable, and bio‐polymers manufacturing in the pharmaceutical field are discussed in detail. Their applications, properties in gene delivery, smart imaging, and multivalency approach are also highlighted.
Collapse
Affiliation(s)
- Tariq Aziz
- School of Engineering Westlake University Hangzhou China
| | - Asmat Ullah
- School of Pharmacy Xi'an Jiaotong University Shaanxi China
| | - Amjad Ali
- Institute of Polymer Material, School of Material Science & Engineering Jiangsu University Zhenjiang China
| | | | - Muhammad Naeem Shah
- College of Electronics and Information Engineering Shenzhen University Shenzhen China
| | - Fazal Haq
- Department of Chemistry Gomal University D I Khan KPK Pakistan
| | - Mudassir Iqbal
- College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Roh Ullah
- School of Chemistry and Chemical Engineering Beijing Institute of Technology (BIT) Beijing China
| | - Farman Ullah Khan
- Department of Chemistry University of Science & Technology, Bannu KPK Pakistan
| |
Collapse
|
25
|
Bhoopathy J. Plant Extract–Derived Nanomaterials for Wound Healing: a Mini Review. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00265-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
26
|
Kalkan B, Orakdogen N. Anionically modified N-(alkyl)acrylamide-based semi-IPN hybrid gels reinforced with SiO 2 for enhanced on-off switching and responsive properties. SOFT MATTER 2022; 18:4582-4603. [PMID: 35695386 DOI: 10.1039/d2sm00319h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Semi-interpenetrated (semi-IPN) poly(N-isopropylacrylamide-co-methacrylic acid)/polyacrylamide P(NIPA-MA)/PAAm hybrid gels containing linear poly(acrylamide) PAAm chains were designed by incorporation of different amounts of silica particles (SiP). Formation of temperature-sensitive semi-IPN hybrid gels was evaluated by simultaneous radical polymerization under different polymerization temperatures, and the effect of polymer/particle interfaces on the swelling and elasticity was explained. Nanoparticle-mediated enhancements were studied to understand the effect of addition of SiP to anionically modified semi-IPNs. Hybrid network formation was confirmed by FTIR, with an increase in SiP resulting in an increased Si-O-Si absorption peak in hybrid samples. P(NIPA-MA)/PAAm/SiP gels showed a reduction in the degree of swelling with the addition of SiP. The Flory-Huggins interaction parameter of the semi-IPN hybrid-solvent was estimated using the extended equation. The compression test results showed an improvement in the stiffness and modulus attributed to stress transfer from the hybrid network to nanoparticles. Swelling processes of semi-IPN hybrids prepared by cold polymerization have anomalous diffusion owing to polymer relaxation, while Fickian behavior was observed for the hybrids obtained by warm polymerization. During oscillation shrinking-swelling of semi-IPN hybrids upon ionic-strength switching in NaCl solutions, the gels retained their shape and integrity for 10 cycles of testing. To evaluate the adsorption characteristics of semi-IPN hybrids, methyl violet (MV) was chosen as a model cationic dye. The effects of contact time, silica content and initial dye concentration were studied and the time-dependent adsorption data were fitted with six kinetic models. The MV uptake capacity of semi-IPN hybrids increased with an increase in the initial MV concentration as well as with silica content. The adsorption process followed pseudo-second order type adsorption kinetics and the mechanism of process was better described by intraparticle diffusion. These results will contribute to the understanding of roles of anionic comonomer and linear polymer doping in nanoparticle-mediated synthesis of hybrid gels and to the development of next-generation materials for pharmaceutical and environmental-based applications.
Collapse
Affiliation(s)
- Birgul Kalkan
- Department of Chemistry, Istanbul Technical University, Soft Materials Research Laboratory, 34469, Maslak, Istanbul, Turkey.
| | - Nermin Orakdogen
- Department of Chemistry, Istanbul Technical University, Soft Materials Research Laboratory, 34469, Maslak, Istanbul, Turkey.
| |
Collapse
|
27
|
Kang MS, Lee H, Jeong SJ, Eom TJ, Kim J, Han DW. State of the Art in Carbon Nanomaterials for Photoacoustic Imaging. Biomedicines 2022; 10:biomedicines10061374. [PMID: 35740396 PMCID: PMC9219987 DOI: 10.3390/biomedicines10061374] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Photoacoustic imaging using energy conversion from light to ultrasound waves has been developed as a powerful tool to investigate in vivo phenomena due to their complex characteristics. In photoacoustic imaging, endogenous chromophores such as oxygenated hemoglobin, deoxygenated hemoglobin, melanin, and lipid provide useful biomedical information at the molecular level. However, these intrinsic absorbers show strong absorbance only in visible or infrared optical windows and have limited light transmission, making them difficult to apply for clinical translation. Therefore, the development of novel exogenous contrast agents capable of increasing imaging depth while ensuring strong light absorption is required. We report here the application of carbon nanomaterials that exhibit unique physical, mechanical, and electrochemical properties as imaging probes in photoacoustic imaging. Classified into specific structures, carbon nanomaterials are synthesized with different substances according to the imaging purposes to modulate the absorption spectra and highly enhance photoacoustic signals. In addition, functional drugs can be loaded into the carbon nanomaterials composite, and effective in vivo monitoring and photothermal therapy can be performed with cell-specific targeting. Diverse applied cases suggest the high potential of carbon nanomaterial-based photoacoustic imaging in in vivo monitoring for clinical research.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
| | - Haeni Lee
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
| | - Seung Jo Jeong
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Korea;
| | - Tae Joong Eom
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
- Correspondence: (T.J.E.); (J.K.); (D.-W.H.)
| | - Jeesu Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
- Correspondence: (T.J.E.); (J.K.); (D.-W.H.)
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Korea;
- Correspondence: (T.J.E.); (J.K.); (D.-W.H.)
| |
Collapse
|
28
|
Vlăsceanu GM, Ioniță M, Popescu CC, Giol ED, Ionescu I, Dumitrașcu AM, Floarea M, Boerasu I, Necolau MI, Olăreț E, Ghițman J, Iovu H. Chitosan-Based Materials Featuring Multiscale Anisotropy for Wider Tissue Engineering Applications. Int J Mol Sci 2022; 23:ijms23105336. [PMID: 35628150 PMCID: PMC9140409 DOI: 10.3390/ijms23105336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 12/10/2022] Open
Abstract
We designed graphene oxide composites with increased morphological and structural variability using fatty acid-coupled polysaccharide co-polymer as the continuous phase. The matrix was synthesized by N, O-acylation of chitosan with palmitic and lauric acid. The obtained co-polymer was crosslinked with genipin and composited with graphene oxide. FTIR spectra highlighted the modification and multi-components interaction. DLS, SEM, and contact angle tests demonstrated that the conjugation of hydrophobic molecules to chitosan increased surface roughness and hydrophilicity, since it triggered a core-shell macromolecular structuration. Nanoindentation revealed a notable durotaxis gradient due to chitosan/fatty acid self-organization and graphene sheet embedment. The composited building blocks with graphene oxide were more stable during in vitro enzymatic degradation tests and swelled less. In vitro viability, cytotoxicity, and inflammatory response tests yielded promising results, and the protein adsorption test demonstrated potential antifouling efficacy. The robust and stable substrates with heterogeneous architecture we developed show promise in biomedical applications.
Collapse
Affiliation(s)
- George Mihail Vlăsceanu
- Faculty of Medical Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.M.V.); (C.C.P.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.D.G.); (M.I.N.); (E.O.); (J.G.); (H.I.)
| | - Mariana Ioniță
- Faculty of Medical Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.M.V.); (C.C.P.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.D.G.); (M.I.N.); (E.O.); (J.G.); (H.I.)
- Correspondence: ; Tel.: +40-214-022-709
| | - Corina Cristiana Popescu
- Faculty of Medical Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.M.V.); (C.C.P.)
| | - Elena Diana Giol
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.D.G.); (M.I.N.); (E.O.); (J.G.); (H.I.)
- Cantacuzino National Medico-Military Institute for Research and Development, 050096 Bucharest, Romania; (I.I.); (A.-M.D.); (M.F.)
| | - Irina Ionescu
- Cantacuzino National Medico-Military Institute for Research and Development, 050096 Bucharest, Romania; (I.I.); (A.-M.D.); (M.F.)
| | - Andrei-Mihai Dumitrașcu
- Cantacuzino National Medico-Military Institute for Research and Development, 050096 Bucharest, Romania; (I.I.); (A.-M.D.); (M.F.)
| | - Mădălina Floarea
- Cantacuzino National Medico-Military Institute for Research and Development, 050096 Bucharest, Romania; (I.I.); (A.-M.D.); (M.F.)
| | - Iulian Boerasu
- Department of Lasers, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania;
| | - Mădălina Ioana Necolau
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.D.G.); (M.I.N.); (E.O.); (J.G.); (H.I.)
| | - Elena Olăreț
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.D.G.); (M.I.N.); (E.O.); (J.G.); (H.I.)
| | - Jana Ghițman
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.D.G.); (M.I.N.); (E.O.); (J.G.); (H.I.)
| | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.D.G.); (M.I.N.); (E.O.); (J.G.); (H.I.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| |
Collapse
|
29
|
Khan MUA, Razak SIA, Hassan A, Qureshi S, Stojanović GM, Ihsan-Ul-Haq. Multifunctional Arabinoxylan-functionalized-Graphene Oxide Based Composite Hydrogel for Skin Tissue Engineering. Front Bioeng Biotechnol 2022; 10:865059. [PMID: 35573248 PMCID: PMC9093069 DOI: 10.3389/fbioe.2022.865059] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
Wound healing is an important physiological process involving a series of cellular and molecular developments. A multifunctional hydrogel that prevents infection and promotes wound healing has great significance for wound healing applications in biomedical engineering. We have functionalized arabinoxylan and graphene oxide (GO) using the hydrothermal method, through cross-linking GO-arabinoxylan and polyvinyl alcohol (PVA) with tetraethyl orthosilicate (TEOS) to get multifunctional composite hydrogels. These composite hydrogels were characterized by FTIR, SEM, water contact angle, and mechanical testing to determine structural, morphological, wetting, and mechanical behavior, respectively. Swelling and biodegradation were also conducted in different media. The enhanced antibacterial activities were observed against different bacterial strains (E. coli, S. aureus, and P. aeruginosa); anticancer activities and biocompatibility assays were found effective against U-87 and MC3T3-E1 cell lines due to the synergic effect of hydrogels. In vivo activities were conducted using a mouse full-thickness skin model, and accelerated wound healing was found without any major inflammation within 7 days with improved vascularization. From the results, these composite hydrogels might be potential wound dressing materials for biomedical applications.
Collapse
|
30
|
Gao C, Song S, Lv Y, Huang J, Zhang Z. Recent Development of Conductive Hydrogels for Tissue Engineering: Review and Perspective. Macromol Biosci 2022; 22:e2200051. [PMID: 35472125 DOI: 10.1002/mabi.202200051] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/29/2022] [Indexed: 11/11/2022]
Abstract
In recent years, tissue engineering techniques have been rapidly developed and offer a new therapeutic approach to organ or tissue damage repair. However, most of tissue engineering scaffolds are nonconductive and cannot establish effective electrical coupling with tissue for the electroactive tissues. Electroconductive hydrogels (ECHs) have received increasing attention in tissue engineering owing to their electroconductivity, biocompatibility and high water content. In vitro, ECHs can not only promote the communication of electrical signals between cells, but also mediate the adhesion, proliferation, migration, and differentiation of different kinds of cells. In vivo, ECHs can transmit the electric signal to electroactive tissues and activate bioelectrical signaling pathways to promote tissue repair. As a result, implanting ECHs into damaged tissues can effectively reconstruct physiological functions related to electrical conduction. In this review, we first present an overview about the classifications and the fabrication methods of ECHs. And then, the applications of ECHs in tissue engineering, including cardiac, nerve, skin and skeletal muscle tissue, are highlighted. At last, we provide some rational guidelines for designing ECHs towards clinical applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chen Gao
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China
| | - Shaoshuai Song
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, People's Republic of China
| | - Yinjuan Lv
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China
| | - Jie Huang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, People's Republic of China
| | - Zhijun Zhang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, People's Republic of China
| |
Collapse
|
31
|
Rozhin P, Abdel Monem Gamal J, Giordani S, Marchesan S. Carbon Nanomaterials (CNMs) and Enzymes: From Nanozymes to CNM-Enzyme Conjugates and Biodegradation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1037. [PMID: 35160982 PMCID: PMC8838330 DOI: 10.3390/ma15031037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023]
Abstract
Carbon nanomaterials (CNMs) and enzymes differ significantly in terms of their physico-chemical properties-their handling and characterization require very different specialized skills. Therefore, their combination is not trivial. Numerous studies exist at the interface between these two components-especially in the area of sensing-but also involving biofuel cells, biocatalysis, and even biomedical applications including innovative therapeutic approaches and theranostics. Finally, enzymes that are capable of biodegrading CNMs have been identified, and they may play an important role in controlling the environmental fate of these structures after their use. CNMs' widespread use has created more and more opportunities for their entry into the environment, and thus it becomes increasingly important to understand how to biodegrade them. In this concise review, we will cover the progress made in the last five years on this exciting topic, focusing on the applications, and concluding with future perspectives on research combining carbon nanomaterials and enzymes.
Collapse
Affiliation(s)
- Petr Rozhin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Jada Abdel Monem Gamal
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland;
- Department of Chemistry, Faculty of Mathematical, Physical and Natural Sciences, University Sapienza of Rome, 00185 Rome, Italy
| | - Silvia Giordani
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland;
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
32
|
Rahman MW, Mañas-Torres MC, Firouzeh S, Cuerva JM, Álvarez de Cienfuegos L, Pramanik S. Molecular Functionalization and Emergence of Long-Range Spin-Dependent Phenomena in Two-Dimensional Carbon Nanotube Networks. ACS NANO 2021; 15:20056-20066. [PMID: 34870421 DOI: 10.1021/acsnano.1c07739] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular functionalization of CNTs is a routine procedure in the field of nanotechnology. However, whether and how these molecules affect the spin polarization of the charge carriers in CNTs are largely unknown. In this work we demonstrate that spin polarization can indeed be induced in two-dimensional (2D) CNT networks by "certain" molecules and the spin signal routinely survives length scales significantly exceeding 1 μm. This result effectively connects the area of molecular spintronics with that of carbon-based 2D nanoelectronics. By using the versatility of peptide chemistry, we further demonstrate how spin polarization depends on molecular structural features such as chirality as well as molecule-nanotube interactions. A chirality-independent effect was detected in addition to the more common chirality-dependent effect, and the overall spin signal was found to be a combination of both. Finally, the magnetic field dependence of the spin signals has been explored, and the "chirality-dependent" signal has been found to exist only in certain field angles.
Collapse
Affiliation(s)
- Md Wazedur Rahman
- Department of Electrical and Computer Engineering, University of Alberta, Alberta T6G 1H9, Canada
| | - Mari C Mañas-Torres
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
| | - Seyedamin Firouzeh
- Department of Electrical and Computer Engineering, University of Alberta, Alberta T6G 1H9, Canada
| | - Juan Manuel Cuerva
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
| | - Sandipan Pramanik
- Department of Electrical and Computer Engineering, University of Alberta, Alberta T6G 1H9, Canada
| |
Collapse
|
33
|
Huang C, Yu M, Li H, Wan X, Ding Z, Zeng W, Zhou Z. Research Progress of Bioactive Glass and Its Application in Orthopedics. ADVANCED MATERIALS INTERFACES 2021. [DOI: 10.1002/admi.202100606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chao Huang
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Min Yu
- Department of Anesthesiology North‐Kuanren General Hospital No. 69 Xingguang Avenue, Yubei District Chongqing 401121 P. R. China
| | - Hao Li
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Xufeng Wan
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Zichuan Ding
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Weinan Zeng
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Zongke Zhou
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| |
Collapse
|
34
|
Malik S, Marchesan S. Growth, Properties, and Applications of Branched Carbon Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2728. [PMID: 34685169 PMCID: PMC8540255 DOI: 10.3390/nano11102728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022]
Abstract
Nanomaterials featuring branched carbon nanotubes (b-CNTs), nanofibers (b-CNFs), or other types of carbon nanostructures (CNSs) are of great interest due to their outstanding mechanical and electronic properties. They are promising components of nanodevices for a wide variety of advanced applications spanning from batteries and fuel cells to conductive-tissue regeneration in medicine. In this concise review, we describe the methods to produce branched CNSs, with particular emphasis on the most widely used b-CNTs, the experimental and theoretical studies on their properties, and the wide range of demonstrated and proposed applications, highlighting the branching structural features that ultimately allow for enhanced performance relative to traditional, unbranched CNSs.
Collapse
Affiliation(s)
- Sharali Malik
- Karlsruhe Institute of Technology, Institute of Quantum Materials and Technology, Hermann-von-Helmholtz-Platz 1, 76131 Karlsruhe, Germany
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy;
| |
Collapse
|
35
|
Carbon Nanotubes-Based Hydrogels for Bacterial Eradiation and Wound-Healing Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209550] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biocompatible nanomaterials have attracted enormous interest for biomedical applications. Carbonaceous materials, including carbon nanotubes (CNTs), have been widely explored in wound healing and other applications because of their superior physicochemical and potential biomedical properties to the nanoscale level. CNTs-based hydrogels are widely used for wound-healing and antibacterial applications. CNTs-based materials exhibited improved antimicrobial, antibacterial, adhesive, antioxidants, and mechanical properties, which are beneficial for the wound-healing process. This review concisely discussed the preparation of CNTs-based hydrogels and their antibacterial and wound-healing applications. The conductive potential of CNTs and their derivatives is discussed. It has been observed that the conductivity of CNTs is profoundly affected by their structure, temperature, and functionalization. CNTs properties can be easily modified by surface functionalization. CNTs-based composite hydrogels demonstrated superior antibacterial potential to corresponding pure polymer hydrogels. The accelerated wound healing was observed with CNTs-based hydrogels.
Collapse
|
36
|
Rozhin P, Melchionna M, Fornasiero P, Marchesan S. Nanostructured Ceria: Biomolecular Templates and (Bio)applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2259. [PMID: 34578575 PMCID: PMC8467784 DOI: 10.3390/nano11092259] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022]
Abstract
Ceria (CeO2) nanostructures are well-known in catalysis for energy and environmental preservation and remediation. Recently, they have also been gaining momentum for biological applications in virtue of their unique redox properties that make them antioxidant or pro-oxidant, depending on the experimental conditions and ceria nanomorphology. In particular, interest has grown in the use of biotemplates to exert control over ceria morphology and reactivity. However, only a handful of reports exist on the use of specific biomolecules to template ceria nucleation and growth into defined nanostructures. This review focusses on the latest advancements in the area of biomolecular templates for ceria nanostructures and existing opportunities for their (bio)applications.
Collapse
Affiliation(s)
- Petr Rozhin
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
| | - Michele Melchionna
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| | - Paolo Fornasiero
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche (ICCOM-CNR), 34127 Trieste, Italy
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| |
Collapse
|