1
|
Boschen SL, A Mukerjee A, H Faroqi A, E Rabichow B, Fryer J. Research models to study lewy body dementia. Mol Neurodegener 2025; 20:46. [PMID: 40269912 PMCID: PMC12020038 DOI: 10.1186/s13024-025-00837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
Lewy body dementia (LBD) encompasses neurodegenerative dementias characterized by cognitive fluctuations, visual hallucinations, and parkinsonism. Clinical differentiation of LBD from Alzheimer's disease (AD) remains complex due to symptom overlap, yet approximately 25% of dementia cases are diagnosed as LBD postmortem, primarily identified by the presence of α-synuclein aggregates, tau tangles, and amyloid plaques. These pathological features position LBD as a comorbid condition of both Parkinson's disease (PD) and AD, with over 50% of LBD cases exhibiting co-pathologies. LBD's mixed pathology complicates the development of comprehensive models that reflect the full spectrum of LBD's etiological, clinical, and pathological features. While existing animal and cellular models have facilitated significant discoveries in PD and AD research, they lack specificity in capturing LBD's unique pathogenic mechanisms, limiting the exploration of therapeutic avenues for LBD specifically. This review assesses widely used PD and AD models in terms of their relevance to LBD, particularly focusing on their ability to replicate human disease pathology and assess treatment efficacy. Furthermore, we discuss potential modifications to these models to advance the understanding of LBD mechanisms and propose innovative research directions aimed at developing models with enhanced etiological, face, predictive, and construct validity.
Collapse
Affiliation(s)
- Suelen Lucio Boschen
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA.
- Department of Neurosurgery, Mayo Clinic Jacksonville, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA.
| | - Aarushi A Mukerjee
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Ayman H Faroqi
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Ben E Rabichow
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - John Fryer
- Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ, 850054, USA
| |
Collapse
|
2
|
Kumari S, Pradhan R, Dubey SK, Taliyan R. Exploration of the Therapeutic Potential of the Epigenetic Modulator Decitabine on 6-OHDA-Induced Experimental Models of Parkinson's Disease. ACS Chem Neurosci 2025; 16:1481-1499. [PMID: 40179313 DOI: 10.1021/acschemneuro.4c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Parkinson's disease (PD) poses a global menace, as the available treatment methods solely aim to mitigate symptoms. An effective strategy to address the pathogenesis of PD involves eliminating the accumulation of aggregated alpha-synuclein, emphasizing the role of epigenetics. Aberrant epigenetic changes significantly influence gene expression, which is pivotal in PD progression, impacting neuronal growth and degeneration. Epigenetic-related genes are regulated by histone modification and DNA methylation processes. Nevertheless, their significance in PD has not been confirmed. This research was carried out using both in vitro and in vivo approaches. In the in vitro investigations, N2A neuronal cell lines were utilized, and the neuroprotective effect of decitabine (DB) was observed at concentrations of 0.1 μM and 0.5 μM. In the in vivo study, PD induction led to significant motor deficits, which were notably ameliorated at the highest treatment dose. This improvement was accompanied by a marked attenuation of inflammatory mediators, including TNF-α, IL-6, IL-1β, and CRP levels. Additionally, there was a significant enhancement in antioxidative defense, evidenced by increased GSH (glutathione) levels and reduced oxidative stress marker NO (nitric oxide). Neurochemical analysis revealed a substantial rise in dopamine levels, a critical PD marker, alongside an elevation in BDNF, indicating neuroprotective effects. Furthermore, gene expression analysis indicated a notable upregulation in the mRNA expression of epigenetic genes and proteins linked to PD pathology. Histological assessments, including IHC, H&E, and CV staining of the substantia nigra, showed enhanced structural integrity following treatment. Collectively, these insights reveal DB's promise as a therapeutic solution for mitigating PD symptoms and pathology exacerbated by 6-OHDA.
Collapse
Affiliation(s)
- Shobha Kumari
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani, Rajasthan 333031, India
| | - Rajesh Pradhan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani, Rajasthan 333031, India
| | | | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani, Rajasthan 333031, India
| |
Collapse
|
3
|
Mishra R, Upadhyay A. An update on mammalian and non-mammalian animal models for biomarker development in neurodegenerative disorders. Cell Mol Life Sci 2025; 82:147. [PMID: 40192808 PMCID: PMC11977071 DOI: 10.1007/s00018-025-05668-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/08/2025] [Accepted: 03/19/2025] [Indexed: 04/10/2025]
Abstract
Neurodegeneration is one of the leading factor for death globally, affecting millions of people. Developing animal models are critical to understand biological processes and comprehend pathological hallmarks of neurodegenerative diseases. For decades, many animal models have served as excellent tools to determine the disease progression, develop diagnostic methods and design novel therapies against distinct pathologies. Here, we provide a comprehensive overview of both, mammalian and non-mammalian animal models, with a focus on three most common and aggressive neurodegenerative disorders: Alzheimer's disease, Parkinson's disease and Spinocerebellar ataxia-1. We highlight various approaches including transgene, gene transfer, and chemically-induced methods used to develop disease models. In particular, we discuss applications of both non-mammalian and mammalian contributions in research on neurodegeneration. It is exciting to learn the roles of animal models in disease pathomechanisms, identifying biomarkers and hence devising novel interventions to treat neuropathological conditions.
Collapse
Affiliation(s)
- Ribhav Mishra
- School of Health Sciences, Purdue University, West Lafayette, IN, USA.
| | - Arun Upadhyay
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Bhilai, Chhattisgarh, 491002, India
| |
Collapse
|
4
|
Roldán-Kalil JA, Vendrell-Gonzalez SE, Espinosa-Ponce N, Colón-Vasques J, Ortiz-Rivera J, Tsytsarev V, Alves JM, Inyushin M. Impact of 6-OHDA injection and microtrauma in the rat substantia nigra on local brain amyloid beta protein concentrations in the affected area. Histol Histopathol 2025; 40:485-492. [PMID: 39512105 PMCID: PMC11925656 DOI: 10.14670/hh-18-836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Amyloid beta peptides (Aβ) are key indicators of Alzheimer's disease and are also linked to cognitive decline in Parkinson's disease (PD) and other neurodegenerative disorders. This study explored the accumulation of Aβ in a standard 6-Hydroxydopamine (6-OHDA) model of PD. We unilaterally injected 6-OHDA into the substantia nigra of Wistar rats to induce dopaminergic cell degeneration and death, a characteristic of PD. The goal was to detect Aβ protein in tissues and blood vessels showing inflammation or degeneration from the 6-OHDA injection. Our results showed that 6-OHDA injection produced a statistically significant rise in Aβ concentration at the injection site 60 minutes after injection, which was slightly reduced 24 hours post-injection but still significantly higher than in controls. We also tried Gp120 injection in the same zone but it only produced effects comparable to control needle trauma. The presence of Aβ in tissues and blood vessel walls after injection was confirmed through ELISA tests and was supported by immunohistochemical staining of injection areas. We found that the increased Aβ concentration was visible in and around blood vessels and inside blood vessel walls, and also, to a lesser extent in some cells, most probably neurons, in the area. This research highlights the connection between dopaminergic cell poisoning and the accumulation of Aβ, offering insights into the progression of PD to cognitive disorders and dementia.
Collapse
Affiliation(s)
- Joshua A Roldán-Kalil
- Department of Physiology, Universidad Central del Caribe School of Medicine, Bayamón, Puerto Rico
| | - Sara E Vendrell-Gonzalez
- Department of Microbiology and Immunology, Universidad Central del Caribe School of Medicine, Bayamón, Puerto Rico
| | - Natalia Espinosa-Ponce
- Department of Microbiology and Immunology, Universidad Central del Caribe School of Medicine, Bayamón, Puerto Rico
| | - Jadier Colón-Vasques
- Department of Physiology, Universidad Central del Caribe School of Medicine, Bayamón, Puerto Rico
| | - Jescelica Ortiz-Rivera
- Department of Physiology, Universidad Central del Caribe School of Medicine, Bayamón, Puerto Rico
| | - Vassiliy Tsytsarev
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Janaina M Alves
- Department of Microbiology and Immunology, Universidad Central del Caribe School of Medicine, Bayamón, Puerto Rico
| | - Mikhail Inyushin
- Department of Physiology, Universidad Central del Caribe School of Medicine, Bayamón, Puerto Rico.
| |
Collapse
|
5
|
Panda SP, Sinha S, Kesharwani A, Kumar S, Singh M, Kondepudi GM, Samuel A, Sanghi AK, Thapliyal S, Chaubey KK, Guru A. Role of OX/OXR cascade in insomnia and sleep deprivation link Alzheimer's disease and Parkinson's disease: Therapeutic avenue of Dual OXR Antagonist (DORA). Biochem Pharmacol 2025; 233:116794. [PMID: 39920976 DOI: 10.1016/j.bcp.2025.116794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/16/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Sleep plays a role in the elimination of neurotoxic metabolites that are accumulated in the waking brain as a result of neuronal activity. Long-term insomnia and sleep deprivation are associated with oxidative stress, neuroinflammation, amyloid beta (Aβ) deposition, and Lewy body formation, which are known to increase the risk of mild cognitive impairment (MCI) and dementia. Orexin A (OXA) and orexin B (OXB), two neuropeptides produced in the lateral hypothalamus, are known to influence the sleep-wake cycle and the stress responses through their interactions with OX receptor 1 (OX1R) and OX receptor 2 (OX2R), respectively. OX/OXR cascade demonstrates intricate neuroprotective and anti-inflammatory effects by inhibiting nuclear factor-kappa B (NF-kB) and PLC/Ca2+ pathway activation. OX1R binds OXA more strongly than OXB by one-order ratio, whereas OX2R binds both OXA and OXB with equal strengths. Overexpression of OXs in individuals experiences sleep deprivation, circadian rhythm disturbances, insomnia-associated MCI, Parkinson's disease (PD), and Alzheimer's disease (AD). Many dual OXR antagonists (DORAs) have been effective in their clinical studies, with suvorexant and daridorexant receiving FDA clearance for insomnia therapy in 2014 and 2022 respectively. The results of clinical studies suggested that there is a new pharmaceutical option for treating insomnia and the sleep deprivation-AD/PD relationship by targeting the OXR system. DORAs treatment reduces Aβ deposition in the brain and improves synaptic plasticity and circadian expression. This review indicates the link between sleep disorders and MCI, DORAs are an appropriate medication category for treating insomnia, and sleep deprivation links AD and PD.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Suman Sinha
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Sanjesh Kumar
- Rakshpal Bahadur College of Pharmacy, Bareilly, Uttar Pradesh, India.
| | - Mansi Singh
- Rakshpal Bahadur College of Pharmacy, Bareilly, Uttar Pradesh, India.
| | - Gana Manjusha Kondepudi
- Vignan Institute of Pharmaceutical Technology, BesidesVSEZ, Kapu Jaggaraju Peta, Duvvada Station Road, Visakhapatnam 530049, India.
| | - Abhishek Samuel
- Translam Institute of Pharmaceutical Education & Research, Mawana Road, Meerut, Uttar Pradesh, India.
| | | | - Shailendra Thapliyal
- Uttaranchal Institute of Management, Uttaranchal University, Dehradun 248007, Uttarakhand, India.
| | - Kundan Kumar Chaubey
- Department of Biotechnology, School of Basic and Applied Science, Sanskriti University, Mathura, UP, India.
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
6
|
Plewnia C, Masini D, Fisone G. Rewarding properties of L-Dopa in experimental parkinsonism are mediated by sensitized dopamine D1 receptors in the dorsal striatum. Mol Psychiatry 2025; 30:976-985. [PMID: 39227434 PMCID: PMC11835726 DOI: 10.1038/s41380-024-02721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
Treatment of Parkinson's disease (PD) is based on the use of dopaminergic drugs, such as L-Dopa and dopamine receptor agonists. These substances counteract motor symptoms, but their administration is accompanied by motor and non-motor complications. Among these latter conditions a neurobehavioral disorder similar to drug abuse, known as dopamine dysregulation syndrome (DDS), is attracting increasing interest because of its profound negative impact on the patients' quality of life. Here we replicate DDS in a PD mouse model based on a bilateral injection of 6-hydroxydopamine (6-OHDA) into the dorsal striatum. Administration of L-Dopa induced locomotor sensitization and conditioned place preference in 6-OHDA lesion, but not in control mice, indicative of the acquisition of addictive-like properties following nigrostriatal dopamine depletion. These behavioral effects were accompanied by abnormal dopamine D1 receptor (D1R) signaling in the medium spiny neurons of the dorsal striatum, leading to hyperactivation of multiple signaling cascades and increased expression of ΔFosB, a stable transcription factor involved in addictive behavior. Systemic administration of the D1R antagonist, SCH23390, abolished these effects and the development of place preference, thereby counteracting the psychostimulant-like effect of L-Dopa. The rewarding properties of L-Dopa were also prevented by chemogenetic inactivation of D1R-expressing neurons in the dorsal striatum. Our results indicate the association between abnormal D1R-mediated transmission and DDS in PD and identify potential approaches for the treatment of this disorder.
Collapse
Affiliation(s)
- Carina Plewnia
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Débora Masini
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden.
| |
Collapse
|
7
|
Santoro M, Lam RK, Blumenfeld SE, Tan W, Ciari P, Chu EK, Saw NL, Rijsketic DR, Lin JS, Heifets BD, Shamloo M. Mapping of catecholaminergic denervation, neurodegeneration, and inflammation in 6-OHDA-treated Parkinson's disease mice. NPJ Parkinsons Dis 2025; 11:28. [PMID: 39934193 PMCID: PMC11814337 DOI: 10.1038/s41531-025-00872-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Efforts to develop disease-modifying treatments for Parkinson's disease (PD) have been hindered by the lack of animal models replicating all hallmarks of PD and the insufficient attention to extra-nigrostriatal regions pathologically critical for the prodromal appearance of non-motor symptoms. Among PD models, 6-hydroxydopamine (6-OHDA) infusion in mice has gained prominence since 2012, primarily focusing on the nigrostriatal region. This study characterized tyrosine hydroxylase-positive neuron and fiber loss across the brain following a unilateral 6-OHDA (20 µg) infusion into the dorsal striatum. Our analysis integrates immunolabeling, brain clearing (iDISCO+), light sheet microscopy, and computational methods, including fMRI and machine learning tools. We also examined sex differences, disease progression, neuroinflammatory responses, and pro-apoptotic signaling in nigrostriatal regions of C57BL/6 mice exposed to varying 6-OHDA dosages (5, 10, or 20 µg) followed by 1, 7, and 14 days of recovery. This comprehensive, spatiotemporal analysis of 6-OHDA-induced pathology was used to map the time course of neuronal degeneration and the onset of neuroinflammation.
Collapse
Affiliation(s)
- Matteo Santoro
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Rachel K Lam
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sarah E Blumenfeld
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Weiqi Tan
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Peter Ciari
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Emily K Chu
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Nay L Saw
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Daniel Ryskamp Rijsketic
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jennifer S Lin
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
- Department of Bioengineering, Stanford University School of Medicine and School of Engineering, Stanford, CA, USA
| | - Boris D Heifets
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
8
|
Prates‐Rodrigues M, Schweizer BLA, de Paula Gomes C, Ribeiro ÂM, Padovan‐Neto FE, Masini D, Lopes‐Aguiar C. Challenges and Opportunities in Exploring Non-Motor Symptoms in 6-Hydroxydopamine Models of Parkinson's Disease: A Systematic Review. J Neurochem 2025; 169:e70008. [PMID: 39901598 PMCID: PMC11791392 DOI: 10.1111/jnc.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 02/05/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of midbrain dopaminergic neurons, leading to motor symptoms such as tremors, rigidity, and bradykinesia. Non-motor symptoms, including depression, hyposmia, and sleep disturbances, often emerge in the early stages of PD, but their mechanisms remain poorly understood. The 6-hydroxydopamine (6-OHDA) rodent model is a well-established tool for preclinical research, replicating key motor and non-motor symptoms of PD. In this review, we systematically analyzed 135 studies that used 6-OHDA rodent models of PD to investigate non-motor symptoms. The review process adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Our analysis highlights the growing use of 6-OHDA PD models for experimental research of non-motor symptoms. It also reveals significant variability in methodologies, including choices of brain target, toxin dosage, lesion verification strategies, and behavioral assessment reporting. Factors that hinder reproducibility and comparability of findings across studies. We highlight the need for standardization in 6-OHDA-based models with particular emphasis on consistent evaluation of lesion extent and reporting of the co-occurrence of non-motor symptoms. By fostering methodological coherence, this framework aims to enhance the reproducibility, reliability, and translational value of 6-OHDA models in PD non-motor symptom research.
Collapse
Affiliation(s)
- Mateus Prates‐Rodrigues
- Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC)Universidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Beatriz Lage Araújo Schweizer
- Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC)Universidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Clara de Paula Gomes
- Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC)Universidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Ângela Maria Ribeiro
- Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC)Universidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Fernando E. Padovan‐Neto
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão PretoUniversity of São PauloRibeirão PretoSPBrazil
| | - Debora Masini
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Cleiton Lopes‐Aguiar
- Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC)Universidade Federal de Minas GeraisBelo HorizonteBrazil
| |
Collapse
|
9
|
Kim NH, Goto Y, Lee YA. Effects of puerarin on gait disturbance in a 6-hydroxydopamine mouse model of Parkinson's disease. Pharmacol Rep 2025; 77:247-259. [PMID: 39466340 DOI: 10.1007/s43440-024-00673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder caused by dopamine (DA) neuronal dysfunction. Although DA agonists and N-methyl-D-aspartate receptor (NMDAR) antagonists are used to treat PD, chronic use causes severe side effects. Puerarin (PUE) is a natural bioactive compound that affects the DA system; however, its effect on PD-associated motor functions is unknown. Therefore, we investigated whether PUE treatment in a 6-hydroxydopamine (6-OHDA) PD mouse model affects motor dysfunction. METHODS Adult male ICR mice received unilateral 6-OHDA microinfusion into the right medial forebrain bundle. After a 2-week recovery period, PUE (20 or 50 mg/kg) or the vehicle (saline, VEH) was administered intraperitoneally once daily for 21 days. Motor dysfunction was assessed using the locomotion, gait cycle, and rotation tests. Local field potentials (LFPs) were measured in the substantia nigra compacta (SNc), striatum (STR), subthalamic nucleus (STN), and primary motor cortex. RESULTS 6-OHDA-lesioned PD mice showed increased gait cycle disturbance and unidirectional rotation. PUE treatment ameliorated the gait cycle disturbance, but not unidirectional rotation of PD mice. These effects differed with DA agonist treatment (which improved PD symptoms) and NMDAR antagonist treatment (which aggravated PD symptoms). Moreover, locomotion was increased only in NMDAR antagonist treatment. PUE treatment induced no changes in the attenuated LFP of the beta wave in the STR and STN, and SNc-STN delta-wave coherence was shown in PD animals. CONCLUSIONS This study suggests that PUE is a beneficial co-therapeutic agent for alleviating gait cycle disturbance in PD symptoms.
Collapse
Affiliation(s)
- Na-Hyun Kim
- Department of Food Science and Nutrition, Daegu Catholic University, 13-13 Hayang-Ro, Hayang-Eup, Gyeongsan, Gyeongbuk, 38430, Republic of Korea
| | - Yukiori Goto
- Department of Artificial Intelligence and Technology, Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Young-A Lee
- Department of Food Science and Nutrition, Daegu Catholic University, 13-13 Hayang-Ro, Hayang-Eup, Gyeongsan, Gyeongbuk, 38430, Republic of Korea.
| |
Collapse
|
10
|
Linen SR, Chang NH, Hess EJ, Stanley GB, Waiblinger C. The 6-OHDA Parkinson's Disease Mouse Model Shows Deficits in Sensory Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.05.597339. [PMID: 38895263 PMCID: PMC11185599 DOI: 10.1101/2024.06.05.597339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta, leading to dopamine depletion in the striatum and the hallmark motor symptoms of the disease. However, non-motor deficits, particularly sensory symptoms, often precede motor manifestations, offering a potential early diagnostic window. The impact of non-motor deficits on sensation behavior and the underlying mechanisms remain poorly understood. In this study, we examined changes in tactile sensation within a parkinsonian state by employing a mouse model of PD induced by 6-hydroxydopamine (6-OHDA) to deplete striatal DA. Leveraging the conserved mouse whisker system as a model for tactile-sensory stimulation, we conducted psychophysical experiments to assess sensory-driven behavioral performance during a tactile detection task in both the healthy and PD-like state. Our findings reveal a range of deficits across subjects following 6-OHDA lesion, including DA loss, motor asymmetry, weight loss, and varying levels of altered tactile sensation behavior. Behavioral changes ranged from no impairments in minor cases to isolated sensory-behavioral deficits in moderate cases and severe motor dysfunction in advanced stages. These results underscore the complex relationship between DA imbalance and sensory-motor processing, emphasizing the need for precise and multifaceted behavioral measurements to accurately capture the diverse manifestations of PD.
Collapse
Affiliation(s)
- Savannah R. Linen
- Program in Bioinformatics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nelson H. Chang
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ellen J. Hess
- Departments of Pharmacology and Chemical Biology and Neurology, Emory University, Atlanta, GA USA
| | - Garrett B. Stanley
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Christian Waiblinger
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| |
Collapse
|
11
|
Lamichhane S, Seo JE, Jeong JH, Lee S, Lee S. Ideal animal models according to multifaceted mechanisms and peculiarities in neurological disorders: present and challenges. Arch Pharm Res 2025; 48:62-88. [PMID: 39690343 DOI: 10.1007/s12272-024-01527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Neurological disorders, encompassing conditions such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), pose a significant global health challenge, affecting millions worldwide. With an aging population and increased life expectancy, the prevalence of these disorders is escalating rapidly, leading to substantial economic burdens exceeding trillions of dollars annually. Animal models play a crucial role in understanding the underlying mechanisms of these disorders and developing effective treatments. Various species, including rodents, non-human primates, and fruit flies, are utilized to replicate specific aspects of human neurological conditions. However, selecting the ideal animal model requires careful consideration of its proximity to human disease conditions and its ability to mimic disease pathobiology and pharmacological responses. An Animal Model Quality Assessment (AMQA) tool has been developed to facilitate this selection process, focusing on assessing models based on their similarity to human conditions and disease pathobiology. Therefore, integrating intrinsic and extrinsic factors linked to the disease into the study's objectives aids in constructing a biological information matrix for comparing disease progression between the animal model and human disease. Ultimately, selecting an ideal animal disease model depends on its predictive, face, and construct validity, ensuring relevance and reliability in translational research efforts.
Collapse
Affiliation(s)
- Shrawani Lamichhane
- College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Jo-Eun Seo
- College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
12
|
Berezhnoi D, Chehade HD, Simms G, Chen L, Chu HY. Sub-second characterization of locomotor activities of mouse models of Parkinsonism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.26.630411. [PMID: 39763733 PMCID: PMC11703164 DOI: 10.1101/2024.12.26.630411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The degeneration of midbrain dopamine (DA) neurons disrupts the neural control of natural behavior, such as walking, posture, and gait in Parkinson's disease. While some aspects of motor symptoms can be managed by dopamine replacement therapies, others respond poorly. Recent advancements in machine learning-based technologies offer opportunities for unbiased segmentation and quantification of natural behavior in both healthy and diseased states. In the present study, we applied the motion sequencing (MoSeq) platform to study the spontaneous locomotor activities of neurotoxin and genetic mouse models of Parkinsonism as the midbrain DA neurons progressively degenerate. We also evaluated the treatment efficacy of levodopa (L-DOPA) on behavioral modules at fine time scales. We revealed robust changes in the kinematics and usage of the behavioral modules that encode spontaneous locomotor activity. Further analysis demonstrates that fast behavioral modules with higher velocities were more vulnerable to loss of DA and preferentially affected at early stages of Parkinsonism. Last, L-DOPA effectively improved the velocity, but not the usage and transition probability, of behavioral modules of Parkinsonian animals. In conclusion, the hypokinetic phenotypes in Parkinsonism are mediated by the decreased velocities of behavioral modules and the disrupted temporal organization of sub-second modules into actions. Moreover, we showed that the therapeutic effect of L-DOPA is mainly mediated by its effect on the velocities of behavior modules at fine time scales. This work documents robust changes in the velocity, usage, and temporal organization of behavioral modules and their responsiveness to dopaminergic treatment under the Parkinsonian state.
Collapse
Affiliation(s)
- Daniil Berezhnoi
- Department of Pharmacology and Physiology, Georgetown University of Medical Center, Washington DC, 20007, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20852, United States
| | - Hiba Douja Chehade
- Department of Pharmacology and Physiology, Georgetown University of Medical Center, Washington DC, 20007, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20852, United States
| | - Gabriel Simms
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, United States
| | - Liqiang Chen
- Department of Pharmacology and Physiology, Georgetown University of Medical Center, Washington DC, 20007, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20852, United States
| | - Hong-Yuan Chu
- Department of Pharmacology and Physiology, Georgetown University of Medical Center, Washington DC, 20007, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20852, United States
| |
Collapse
|
13
|
Pal C. Targeting mitochondria with small molecules: A promising strategy for combating Parkinson's disease. Mitochondrion 2024; 79:101971. [PMID: 39357561 DOI: 10.1016/j.mito.2024.101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder, is one of the most significant challenges confronting modern societies, affecting millions of patients globally each year. The pathophysiology of PD is significantly influenced by mitochondrial dysfunction, as evident by the contribution of altered mitochondrial dynamics, bioenergetics, and increased oxidative stress to neuronal death. This review examines the potential use of small molecules that target mitochondria as a therapeutic approach for treating PD. Progress in mitochondrial biology has revealed various mitochondrial targets that can be modulated to restore function and mitigate neurodegeneration. Small molecules that promote mitochondrial biogenesis, enhance mitochondrial dynamics, decrease oxidative stress, and prevent the opening of the mitochondrial permeability transition pore (mPTP) have shown promise in preclinical models. Additionally, targeting mitochondrial quality control mechanisms, such as mitophagy, provides another therapeutic approach. This review explores recent research on small molecules targeting mitochondria, examines their mechanisms of action, and assesses their potential efficacy and safety profiles. By highlighting the most promising candidates and addressing the challenges and future directions in this field, this review aims to offer a comprehensive overview of current and future prospects for mitochondrial-targeted therapies in PD. Ultimately, treating mitochondrial dysfunction holds significant promise for developing disease-modifying PD medications, giving patients hope for better outcomes and improved quality of life.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal 743273, India.
| |
Collapse
|
14
|
Santoro M, Lam RK, Blumenfeld SE, Tan W, Ciari P, Chu EK, Saw NL, Rijsketic DR, Lin JS, Heifets BD, Shamloo M. Mapping of catecholaminergic denervation, neurodegeneration, and inflammation in 6-OHDA-treated Parkinson's disease mice. RESEARCH SQUARE 2024:rs.3.rs-5206046. [PMID: 39483924 PMCID: PMC11527254 DOI: 10.21203/rs.3.rs-5206046/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Efforts to develop disease-modifying treatments for Parkinson's disease (PD) have been hindered by the lack of animal models replicating all hallmarks of PD and the insufficient attention to extra-nigrostriatal regions pathologically critical for the prodromal appearance of non-motor symptoms. Among PD models, 6-hydroxydopamine (6-OHDA) infusion in mice has gained prominence since 2012, primarily focusing on the nigrostriatal region. This study characterized widespread tyrosine hydroxylase-positive neuron and fiber loss across the brain following a unilateral 6-OHDA (20 μg) infusion into the dorsal striatum. Our analysis integrates immunolabeling, brain clearing (iDISCO+), light sheet microscopy, and computational methods, including fMRI and machine learning tools. We also examined sex differences, disease progression, neuroinflammatory responses, and pro-apoptotic signaling in nigrostriatal regions of C57BL/6 mice exposed to varying 6-OHDA dosages (5, 10, or 20 μg). This comprehensive, spatiotemporal analysis of 6-OHDA-induced pathology may guide the future design of experimental PD studies and neurotherapeutic development.
Collapse
Affiliation(s)
| | | | | | - Weiqi Tan
- Stanford University School of Medicine
| | | | | | - Nay L Saw
- Stanford University School of Medicine
| | | | | | | | | |
Collapse
|
15
|
Medeiros D, Masini D, Plewnia C, Boi L, Rosati M, Scalbert N, Fisone G. Dopamine D2 receptor activation counteracts olfactory dysfunction and related cellular abnormalities in experimental parkinsonism. Heliyon 2024; 10:e35948. [PMID: 39224310 PMCID: PMC11366923 DOI: 10.1016/j.heliyon.2024.e35948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Olfactory dysfunction is a common non-motor symptom associated with Parkinson's disease (PD). This condition usually appears before the onset of the cardinal motor symptoms and is still poorly understood. Here, we generated a mouse model of early-stage PD based on partial 6-hydroxydopamine (6-OHDA) lesion of the dorsal striatum to reproduce the olfactory deficit and associated cellular and electrophysiological anomalies observed in patients. Using this model, we investigated the effect of long-term, continuous administration of pramipexole, a dopamine D2/3 selective agonist, on olfactory dysfunction. We found that pramipexole reverted the impairment of odor discrimination displayed by the mouse model in the habituation/dishabituation test. In line with similar observations in PD patients, the mouse model showed an increase of dopamine cells paralleled by augmented levels of the dopamine marker, tyrosine hydroxylase, in the olfactory bulb (OB). These changes, which have been proposed to contribute to olfactory dysfunction, were abolished by oral administration of pramipexole. Local field potential recording in the OB of 6-OHDA lesion mice showed reduced oscillations in the beta frequency range, in comparison to healthy control mice. This abnormality, which is suggestive of defective long range OB transmission, was also counteracted by pramipexole. Altogether these findings indicate that prolonged pharmacological stimulation of dopamine D2-like receptors rescues olfactory discrimination observed in experimental parkinsonism. Moreover, they show that this protective effect is exerted in parallel to a normalization of dopamine neurons and beta band oscillations in the OB, providing information on the potential mechanisms involved in PD-related olfactory dysfunction.
Collapse
Affiliation(s)
| | | | - Carina Plewnia
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Laura Boi
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Martha Rosati
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Nicolas Scalbert
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
16
|
Kubota H, Zhou X, Zhang X, Watanabe H, Nagai T. Pramipexole Hyperactivates the External Globus Pallidus and Impairs Decision-Making in a Mouse Model of Parkinson's Disease. Int J Mol Sci 2024; 25:8849. [PMID: 39201535 PMCID: PMC11354263 DOI: 10.3390/ijms25168849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
In patients with Parkinson's disease (PD), dopamine replacement therapy with dopamine D2/D3 receptor agonists induces impairments in decision-making, including pathological gambling. The neurobiological mechanisms underlying these adverse effects remain elusive. Here, in a mouse model of PD, we investigated the effects of the dopamine D3 receptor (D3R)-preferring agonist pramipexole (PPX) on decision-making. PD model mice were generated using a bilateral injection of the toxin 6-hydroxydopamine into the dorsolateral striatum. Subsequent treatment with PPX increased disadvantageous choices characterized by a high-risk/high-reward in the touchscreen-based Iowa Gambling Task. This effect was blocked by treatment with the selective D3R antagonist PG-01037. In model mice treated with PPX, the number of c-Fos-positive cells was increased in the external globus pallidus (GPe), indicating dysregulation of the indirect pathway in the corticothalamic-basal ganglia circuitry. In accordance, chemogenetic inhibition of the GPe restored normal c-Fos activation and rescued PPX-induced disadvantageous choices. These findings demonstrate that the hyperactivation of GPe neurons in the indirect pathway impairs decision-making in PD model mice. The results provide a candidate mechanism and therapeutic target for pathological gambling observed during D2/D3 receptor pharmacotherapy in PD patients.
Collapse
Affiliation(s)
- Hisayoshi Kubota
- Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake 470-1192, Aichi, Japan; (H.K.)
| | - Xinzhu Zhou
- Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake 470-1192, Aichi, Japan; (H.K.)
| | - Xinjian Zhang
- Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake 470-1192, Aichi, Japan; (H.K.)
| | - Hirohisa Watanabe
- Department of Neurology, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Taku Nagai
- Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake 470-1192, Aichi, Japan; (H.K.)
| |
Collapse
|
17
|
Park JM, Rahmati M, Lee SC, Shin JI, Kim YW. Effects of mesenchymal stem cell on dopaminergic neurons, motor and memory functions in animal models of Parkinson's disease: a systematic review and meta-analysis. Neural Regen Res 2024; 19:1584-1592. [PMID: 38051903 PMCID: PMC10883506 DOI: 10.4103/1673-5374.387976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/09/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Parkinson's disease is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, and although restoring striatal dopamine levels may improve symptoms, no treatment can cure or reverse the disease itself. Stem cell therapy has a regenerative effect and is being actively studied as a candidate for the treatment of Parkinson's disease. Mesenchymal stem cells are considered a promising option due to fewer ethical concerns, a lower risk of immune rejection, and a lower risk of teratogenicity. We performed a meta-analysis to evaluate the therapeutic effects of mesenchymal stem cells and their derivatives on motor function, memory, and preservation of dopaminergic neurons in a Parkinson's disease animal model. We searched bibliographic databases (PubMed/MEDLINE, Embase, CENTRAL, Scopus, and Web of Science) to identify articles and included only peer-reviewed in vivo interventional animal studies published in any language through June 28, 2023. The study utilized the random-effect model to estimate the 95% confidence intervals (CI) of the standard mean differences (SMD) between the treatment and control groups. We use the systematic review center for laboratory animal experimentation's risk of bias tool and the collaborative approach to meta-analysis and review of animal studies checklist for study quality assessment. A total of 33 studies with data from 840 Parkinson's disease model animals were included in the meta-analysis. Treatment with mesenchymal stem cells significantly improved motor function as assessed by the amphetamine-induced rotational test. Among the stem cell types, the bone marrow MSCs with neurotrophic factor group showed largest effect size (SMD [95% CI] = -6.21 [-9.50 to -2.93], P = 0.0001, I2 = 0.0 %). The stem cell treatment group had significantly more tyrosine hydroxylase positive dopaminergic neurons in the striatum ([95% CI] = 1.04 [0.59 to 1.49], P = 0.0001, I2 = 65.1 %) and substantia nigra (SMD [95% CI] = 1.38 [0.89 to 1.87], P = 0.0001, I2 = 75.3 %), indicating a protective effect on dopaminergic neurons. Subgroup analysis of the amphetamine-induced rotation test showed a significant reduction only in the intracranial-striatum route (SMD [95% CI] = -2.59 [-3.25 to -1.94], P = 0.0001, I2 = 74.4 %). The memory test showed significant improvement only in the intravenous route (SMD [95% CI] = 4.80 [1.84 to 7.76], P = 0.027, I2 = 79.6 %). Mesenchymal stem cells have been shown to positively impact motor function and memory function and protect dopaminergic neurons in preclinical models of Parkinson's disease. Further research is required to determine the optimal stem cell types, modifications, transplanted cell numbers, and delivery methods for these protocols.
Collapse
Affiliation(s)
- Jong Mi Park
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
| | - Sang Chul Lee
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Wook Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
18
|
Boi L, Johansson Y, Tonini R, Moratalla R, Fisone G, Silberberg G. Serotonergic and dopaminergic neurons in the dorsal raphe are differentially altered in a mouse model for parkinsonism. eLife 2024; 12:RP90278. [PMID: 38940422 PMCID: PMC11213571 DOI: 10.7554/elife.90278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
Parkinson's disease (PD) is characterized by motor impairments caused by degeneration of dopamine neurons in the substantia nigra pars compacta. In addition to these symptoms, PD patients often suffer from non-motor comorbidities including sleep and psychiatric disturbances, which are thought to depend on concomitant alterations of serotonergic and noradrenergic transmission. A primary locus of serotonergic neurons is the dorsal raphe nucleus (DRN), providing brain-wide serotonergic input. Here, we identified electrophysiological and morphological parameters to classify serotonergic and dopaminergic neurons in the murine DRN under control conditions and in a PD model, following striatal injection of the catecholamine toxin, 6-hydroxydopamine (6-OHDA). Electrical and morphological properties of both neuronal populations were altered by 6-OHDA. In serotonergic neurons, most changes were reversed when 6-OHDA was injected in combination with desipramine, a noradrenaline (NA) reuptake inhibitor, protecting the noradrenergic terminals. Our results show that the depletion of both NA and dopamine in the 6-OHDA mouse model causes changes in the DRN neural circuitry.
Collapse
Affiliation(s)
- Laura Boi
- Department of Neuroscience, Karolinska InstituteStockholmSweden
| | - Yvonne Johansson
- Department of Neuroscience, Karolinska InstituteStockholmSweden
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College LondonLondonUnited Kingdom
| | - Raffaella Tonini
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Istituto Italiano di TecnologiaGenovaItaly
| | - Rosario Moratalla
- Cajal Institute, Spanish National Research Council (CSIC)MadridSpain
- CIBERNED, Instituto de Salud Carlos IIIMadridSpain
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska InstituteStockholmSweden
| | | |
Collapse
|
19
|
Alsina-Llanes M, Olazábal DE. NMDA- and 6-OHDA-induced Lesions in the Nucleus Accumbens Differently Affect Maternal and Infanticidal Behavior in Pup-naïve Female and Male Mice. Neuroscience 2024; 539:35-50. [PMID: 38176609 DOI: 10.1016/j.neuroscience.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Virgin and pups-naïve female and male adult mice display two opposite responses when they are exposed to pups for the first time. While females generally take care of the pups, males attack them. Since the nucleus accumbens (NA), and its dopaminergic modulation, is critical in integrating information and processing reward and aversion, we investigated if NMDA- and 6-OHDA-induced lesions, damaging mostly NA output and dopaminergic inputs respectively, affected female maternal behavior (MB) or male infanticidal behavior (IB) in mice. Our results revealed minor or no effects of both smaller and larger NMDA-induced lesions in MB and IB. On the other hand, while 6-OHDA-induced lesions in females reduced the incidence of full MB (12.5% 6-OHDA vs. 85.7% SHAM) increasing the latency to retrieve the pups, those lesions did not affect IB in males. There were no differences in locomotor and exploratory activity between the lesioned- and SHAM- females. Despite those lesions did not induce any major effect on IB, NMDA-lesioned males spent less time in the central area of an open field, while dopaminergic-lesioned males showed reduced number of rearing and peripheral crosses. The current study shows that an intact NA is not necessary for the expression of MB and IB. However, dopaminergic inputs to NA play different role in MB and IB. While damaging dopaminergic terminals into the NA did not affect IB, it clearly delayed the more flexible and rewarding expression of parental behavior.
Collapse
Affiliation(s)
- M Alsina-Llanes
- Departamento de Fisiología, Facultad de Medicina, UdelaR. Av. Gral. Flores 2125, Montevideo 11800, Uruguay.
| | - D E Olazábal
- Departamento de Fisiología, Facultad de Medicina, UdelaR. Av. Gral. Flores 2125, Montevideo 11800, Uruguay.
| |
Collapse
|
20
|
Zeljkovic Jovanovic M, Stanojevic J, Stevanovic I, Ninkovic M, Nedeljkovic N, Dragic M. Sustained Systemic Antioxidative Effects of Intermittent Theta Burst Stimulation beyond Neurodegeneration: Implications in Therapy in 6-Hydroxydopamine Model of Parkinson's Disease. Antioxidants (Basel) 2024; 13:218. [PMID: 38397816 PMCID: PMC10885904 DOI: 10.3390/antiox13020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Parkinson's disease (PD) is manifested by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and caudoputamen (Cp), leading to the development of motor and non-motor symptoms. The contribution of oxidative stress to the development and progression of PD is increasingly recognized. Experimental models show that strengthening antioxidant defenses and reducing pro-oxidant status may have beneficial effects on disease progression. In this study, the neuroprotective potential of intermittent theta burst stimulation (iTBS) is investigated in a 6-hydroxydopamine (6-OHDA)-induced PD model in rats seven days after intoxication which corresponds to the occurrence of first motor symptoms. Two-month-old male Wistar rats were unilaterally injected with 6-OHDA to mimic PD pathology and were subsequently divided into two groups to receive either iTBS or sham stimulation for 21 days. The main oxidative parameters were analyzed in the caudoputamen, substantia nigra pars compacta, and serum. iTBS treatment notably mitigated oxidative stress indicators, simultaneously increasing antioxidative parameters in the caudoputamen and substantia nigra pars compacta well after 6-OHDA-induced neurodegeneration process was over. Serum analysis confirmed the systemic effect of iTBS with a decrease in oxidative markers and an increase in antioxidants. Prolonged iTBS exerts a modulatory effect on oxidative/antioxidant parameters in the 6-OHDA-induced PD model, suggesting a potential neuroprotective benefit, even though at this specific time point 6-OHDA-induced oxidative status was unaltered. These results emphasize the need to further explore the mechanisms of iTBS and argue in favor of considering it as a therapeutic intervention in PD and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Milica Zeljkovic Jovanovic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
| | - Jelena Stanojevic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (J.S.); (I.S.); (M.N.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Ivana Stevanovic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (J.S.); (I.S.); (M.N.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Milica Ninkovic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (J.S.); (I.S.); (M.N.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milorad Dragic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia
| |
Collapse
|
21
|
Singh A, Panhelainen A, Reunanen S, Luk KC, Voutilainen MH. Combining fibril-induced alpha-synuclein aggregation and 6-hydroxydopamine in a mouse model of Parkinson's disease and the effect of cerebral dopamine neurotrophic factor on the induced neurodegeneration. Eur J Neurosci 2024; 59:132-153. [PMID: 38072889 DOI: 10.1111/ejn.16196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 01/12/2024]
Abstract
The existent pre-clinical models of Parkinson's disease do not simultaneously recapitulate severe degeneration of dopamine neurons and the occurrence of alpha-synuclein (aSyn) aggregation in one study system. In this study, we injected aSyn pre-formed fibrils (PFF) and 6-hydroxydopamine (6-OHDA) unilaterally into the striatum of C57BL/6 wild-type male mice at an interval of 2 weeks to induce aggregation of aSyn protein and trigger the loss of dopamine neurons simultaneously in one model and studied the behavioural effects of the combination in these mice. 6-OHDA was tested at three different doses, and 2 μg of 6-OHDA combined with PFF-induced aSyn aggregation was found to produce the most optimal disease phenotype. At 14 weeks timepoint, mice injected with a combination of PFF and 6-OHDA sustained significant damage to the nigrostriatal pathway and exhibited aSyn-positive aggregation. Our data suggest that the neurons that formed large aSyn aggregates were particularly vulnerable to 6-OHDA-induced degeneration. We also demonstrate the manifestation of a relatively aggressive pathology in 2- to 4-month-old mice, as compared to younger 7- to 9-week-old ones. Furthermore, cerebral dopamine neurotrophic factor (CDNF) administered intrastriatally rescued dopamine neurons and motor behaviour of the animals to some extent from 6-OHDA toxicity. However, no such effect could be seen in the novel 6-OHDA + PFFs combination model. For the first time, we demonstrate the combined effect of PFF and 6-OHDA simultaneously in one model. We further discuss the scope for further optimizing this combination model to develop it as a promising pre-clinical platform for drug screening and development.
Collapse
Affiliation(s)
- Aastha Singh
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Anne Panhelainen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Saku Reunanen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Kelvin C Luk
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Merja H Voutilainen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
22
|
Medeiros DDC, Plewnia C, Mendes RV, Pisanò CA, Boi L, Moraes MFD, Aguiar CL, Fisone G. A mouse model of sleep disorders in Parkinson's disease showing distinct effects of dopamine D2-like receptor activation. Prog Neurobiol 2023; 231:102536. [PMID: 37805096 DOI: 10.1016/j.pneurobio.2023.102536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Excessive daytime sleepiness (EDS) and sleep fragmentation are often observed in Parkinson's disease (PD) patients and are poorly understood despite their considerable impact on quality of life. We examined the ability of a neurotoxin-based mouse model of PD to reproduce these disorders and tested the potential counteracting effects of dopamine replacement therapy. Experiments were conducted in female mice with a unilateral 6-hydroxydopamine lesion of the medial forebrain bundle, leading to the loss of dopamine neurons projecting to the dorsal and ventral striatum. Sham-operated mice were used as control. Electroencephalographic and electromyographic recording was used to identify and quantify awaken, rapid eye movement (REM) and non-REM (NREM) sleep states. PD mice displayed enhanced NREM sleep and reduced wakefulness during the active period of the 24-hour circadian cycle, indicative of EDS. In addition, they also showed fragmentation of NREM sleep and increased slow-wave activity, a marker of sleep pressure. Electroencephalographic analysis of the PD model also revealed decreased density and increased length of burst-like thalamocortical oscillations (spindles). Treatment of PD mice with the dopamine receptor agonist, pramipexole, but not with L-DOPA, counteracted EDS by reducing the number, but not the length, of NREM sleep episodes during the first half of the active period. The present model recapitulates some prominent PD-related anomalies affecting sleep macro- and micro-structure. Based on the pharmacological profile of pramipexole these results also indicate the involvement of impaired dopamine D2/D3 receptor transmission in EDS.
Collapse
Affiliation(s)
| | - Carina Plewnia
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Laura Boi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Marcio Flávio Dutra Moraes
- Núcleo de Neurociências, Department of Physiology and Biophysics, Institute of Biological Science, Federal University of Minas Gerais, Brazil
| | | | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
23
|
Boi L, Fisone G. Investigating affective neuropsychiatric symptoms in rodent models of Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 174:119-186. [PMID: 38341228 DOI: 10.1016/bs.irn.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Affective neuropsychiatric disorders such as depression, anxiety and apathy are among the most frequent non-motor symptoms observed in people with Parkinson's disease (PD). These conditions often emerge during the prodromal phase of the disease and are generally considered to result from neurodegenerative processes in meso-corticolimbic structures, occurring in parallel to the loss of nigrostriatal dopaminergic neurons. Depression, anxiety, and apathy are often treated with conventional medications, including selective serotonin reuptake inhibitors, tricyclic antidepressants, and dopaminergic agonists. The ability of these pharmacological interventions to consistently counteract such neuropsychiatric symptoms in PD is still relatively limited and the development of reliable experimental models represents an important tool to identify more effective treatments. This chapter provides information on rodent models of PD utilized to study these affective neuropsychiatric symptoms. Neurotoxin-based and genetic models are discussed, together with the main behavioral tests utilized to identify depression- and anxiety-like behaviors, anhedonia, and apathy. The ability of various therapeutic approaches to counteract the symptoms observed in the various models is also reviewed.
Collapse
Affiliation(s)
- Laura Boi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
24
|
Muksuris K, Scarisbrick DM, Mahoney JJ, Cherkasova MV. Noninvasive Neuromodulation in Parkinson's Disease: Insights from Animal Models. J Clin Med 2023; 12:5448. [PMID: 37685514 PMCID: PMC10487610 DOI: 10.3390/jcm12175448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
The mainstay treatments for Parkinson's Disease (PD) have been limited to pharmacotherapy and deep brain stimulation. While these interventions are helpful, a new wave of research is investigating noninvasive neuromodulation methods as potential treatments. Some promising avenues have included transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), electroconvulsive therapy (ECT), and focused ultrasound (FUS). While these methods are being tested in PD patients, investigations in animal models of PD have sought to elucidate their therapeutic mechanisms. In this rapid review, we assess the available animal literature on these noninvasive techniques and discuss the possible mechanisms mediating their therapeutic effects based on these findings.
Collapse
Affiliation(s)
- Katherine Muksuris
- Department of Psychology, West Virginia University, Morgantown, WV 26506, USA
| | - David M. Scarisbrick
- Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - James J. Mahoney
- Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Mariya V. Cherkasova
- Department of Psychology, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
25
|
Lai TT, Gericke B, Feja M, Conoscenti M, Zelikowsky M, Richter F. Anxiety in synucleinopathies: neuronal circuitry, underlying pathomechanisms and current therapeutic strategies. NPJ Parkinsons Dis 2023; 9:97. [PMID: 37349373 DOI: 10.1038/s41531-023-00547-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
Synucleinopathies are neurodegenerative disorders characterized by alpha-synuclein (αSyn) accumulation in neurons or glial cells, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). αSyn-related pathology plays a critical role in the pathogenesis of synucleinopathies leading to the progressive loss of neuronal populations in specific brain regions and the development of motor and non-motor symptoms. Anxiety is among the most frequent non-motor symptoms in patients with PD, but it remains underrecognized and undertreated, which significantly reduces the quality of life for patients. Anxiety is defined as a neuropsychiatric complication with characteristics such as nervousness, loss of concentration, and sweating due to the anticipation of impending danger. In patients with PD, neuropathology in the amygdala, a central region in the anxiety and fear circuitry, may contribute to the high prevalence of anxiety. Studies in animal models reported αSyn pathology in the amygdala together with alteration of anxiety or fear learning response. Therefore, understanding the progression, extent, and specifics of pathology in the anxiety and fear circuitry in synucleinopathies will suggest novel approaches to the diagnosis and treatment of neuropsychiatric symptoms. Here, we provide an overview of studies that address neuropsychiatric symptoms in synucleinopathies. We offer insights into anxiety and fear circuitry in animal models and the current implications for therapeutic intervention. In summary, it is apparent that anxiety is not a bystander symptom in these disorders but reflects early pathogenic mechanisms in the cortico-limbic system which may even contribute as a driver to disease progression.
Collapse
Affiliation(s)
- Thuy Thi Lai
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Birthe Gericke
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Malte Feja
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | | | | | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
26
|
Siddique I, Kamble K, Gupta S, Solanki K, Bhola S, Ahsan N, Gupta S. ARL6IP5 Ameliorates α-Synuclein Burden by Inducing Autophagy via Preventing Ubiquitination and Degradation of ATG12. Int J Mol Sci 2023; 24:10499. [PMID: 37445677 DOI: 10.3390/ijms241310499] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023] Open
Abstract
Recent advanced studies in neurodegenerative diseases have revealed several links connecting autophagy and neurodegeneration. Autophagy is the major cellular degradation process for the removal of toxic protein aggregates responsible for neurodegenerative diseases. More than 30 autophagy-related proteins have been identified as directly participating in the autophagy process. Proteins regulating the process of autophagy are much more numerous and unknown. To address this, in our present study, we identified a novel regulator (ARL6IP5) of neuronal autophagy and showed that the level of ARL6IP5 decreases in the brain with age and in Parkinson's disease in mice and humans. Moreover, a cellular model of PD (Wild type and A53T mutant α-synuclein overexpression) has also shown decreased levels of ARL6IP5. ARL6IP5 overexpression reduces α-synuclein aggregate burden and improves cell survival in an A53T model of Parkinson's disease. Interestingly, detailed mechanistic studies revealed that ARL6IP5 is an autophagy inducer. ARL6IP5 enhances Rab1-dependent autophagosome initiation and elongation by stabilizing free ATG12. We report for the first time that α-synuclein downregulates ARL6IP5 to inhibit autophagy-dependent clearance of toxic aggregates that exacerbate neurodegeneration.
Collapse
Affiliation(s)
- Ibrar Siddique
- Molecular Science Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Kajal Kamble
- Molecular Science Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Sakshi Gupta
- Molecular Science Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Kavita Solanki
- Molecular Science Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Sumnil Bhola
- Molecular Science Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Nuzhat Ahsan
- Molecular Science Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Sarika Gupta
- Molecular Science Laboratory, National Institute of Immunology, New Delhi 110067, India
| |
Collapse
|
27
|
Khan E, Hasan I, Haque ME. Parkinson's Disease: Exploring Different Animal Model Systems. Int J Mol Sci 2023; 24:ijms24109088. [PMID: 37240432 DOI: 10.3390/ijms24109088] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Disease modeling in non-human subjects is an essential part of any clinical research. To gain proper understanding of the etiology and pathophysiology of any disease, experimental models are required to replicate the disease process. Due to the huge diversity in pathophysiology and prognosis in different diseases, animal modeling is customized and specific accordingly. As in other neurodegenerative diseases, Parkinson's disease is a progressive disorder coupled with varying forms of physical and mental disabilities. The pathological hallmarks of Parkinson's disease are associated with the accumulation of misfolded protein called α-synuclein as Lewy body, and degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) area affecting the patient's motor activity. Extensive research has already been conducted regarding animal modeling of Parkinson's diseases. These include animal systems with induction of Parkinson's, either pharmacologically or via genetic manipulation. In this review, we will be summarizing and discussing some of the commonly employed Parkinson's disease animal model systems and their applications and limitations.
Collapse
Affiliation(s)
- Engila Khan
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ikramul Hasan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - M Emdadul Haque
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
28
|
Knezovic A, Piknjac M, Osmanovic Barilar J, Babic Perhoc A, Virag D, Homolak J, Salkovic-Petrisic M. Association of Cognitive Deficit with Glutamate and Insulin Signaling in a Rat Model of Parkinson's Disease. Biomedicines 2023; 11:683. [PMID: 36979662 PMCID: PMC10045263 DOI: 10.3390/biomedicines11030683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Cognitive deficit is a frequent non-motor symptom in Parkinson's disease (PD) with an unclear pathogenesis. Recent research indicates possible involvement of insulin resistance and glutamate excitotoxicity in PD development. We investigated cognitive performance and the brain glutamate and insulin signaling in a rat model of PD induced by bilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA). Cognitive functions were assessed with Passive Avoidance (PA) and Morris Water Maze (MWM) tests. The expression of tyrosine hydroxylase (TH) and proteins involved in insulin (insulin receptor - IR, phosphoinositide 3 kinase - pI3K, extracellular signal-regulated kinases-ERK) and glutamate receptor (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptos-AMPAR, N-methyl-D-aspartate receptor - NMDAR) signaling was assessed in the hippocampus (HPC), hypothalamus (HPT) and striatum (S) by immunofluorescence, Western blot and enzyme-linked immunosorbent assay (ELISA). Three months after 6-OHDA treatment, cognitive deficit was accompanied by decreased AMPAR activity and TH levels (HPC, S), while levels of the proteins involved in insulin signaling remained largely unchanged. Spearman's rank correlation revealed a strong positive correlation for pAMPAR-PA (S), pNMDAR-pI3K (HPC) and pNMDAR-IR (all regions). Additionally, a positive correlation was found for TH-ERK and TH-pI3K, and a negative one for TH-MWM/errors and pI3K-MWM/time (S). These results suggest a possible association between brain glutamate (but not insulin) signaling dysfunction and cognitive deficit in a rat PD model, detected three months after 6-OHDA treatment.
Collapse
Affiliation(s)
- Ana Knezovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marija Piknjac
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Davor Virag
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Jan Homolak
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Melita Salkovic-Petrisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
29
|
Goncalves VC, Silva da Fonsêca V, de Paula Faria D, Izidoro MA, Berretta AA, de Almeida ACG, Affonso Fonseca FL, Scorza FA, Scorza CA. Propolis induces cardiac metabolism changes in 6-hydroxydopamine animal model: A dietary intervention as a potential cardioprotective approach in Parkinson’s disease. Front Pharmacol 2022; 13:1013703. [PMID: 36313332 PMCID: PMC9606713 DOI: 10.3389/fphar.2022.1013703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
While there is sustained growth of the older population worldwide, ageing is a consistent risk factor for neurodegenerative diseases, such as Parkinson’s-disease (PD). Considered an emblematic movement disorder, PD comprises a miscellany of non-motor symptoms, for which effective management remains an unfulfilled need in clinical practice. Highlighted are the cardiovascular abnormalities, that cause significant burden in PD patients. Evidence suggests that key biological processes underlying PD pathophysiology can be modulated by diet-derived bioactive compounds, such as green propolis, a natural functional food with biological and pharmacological properties. The effects of propolis on cardiac affection associated to PD have received little coverage. In this study, a metabolomics approach and Positron Emission Tomography (PET) imaging were used to assess the metabolic response to diet supplementation with green propolis on heart outcomes of rats with Parkinsonism induced by 6-hydroxydopamine (6-OHDA rats). Untargeted metabolomics approach revealed four cardiac metabolites (2-hydroxybutyric acid, 3-hydroxybutyric acid, monoacylglycerol and alanine) that were significantly modified between animal groups (6-OHDA, 6-OHDA + Propolis and sham). Propolis-induced changes in the level of these cardiac metabolites suggest beneficial effects of diet intervention. From the metabolites affected, functional analysis identified changes in propanoate metabolism (a key carbohydrate metabolism related metabolic pathway), glucose-alanine cycle, protein and fatty acid biosynthesis, energy metabolism, glutathione metabolism and urea cycle. PET imaging detected higher glucose metabolism in the 17 areas of the left ventricle of all rats treated with propolis, substantially contrasting from those rats that did not consume propolis. Our results bring new insights into cardiac metabolic substrates and pathways involved in the mechanisms of the effects of propolis in experimental PD and provide potential novel targets for research in the quest for future therapeutic strategies.
Collapse
Affiliation(s)
- Valeria C. Goncalves
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- *Correspondence: Valeria C. Goncalves, ; Carla Alessandra Scorza,
| | - Victor Silva da Fonsêca
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Daniele de Paula Faria
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
| | - Mario Augusto Izidoro
- Laboratório de Espectrometria de Massas—Associação Beneficente de Coleta de Sangue (COLSAN), São Paulo, Brazil
| | | | - Antônio-Carlos G. de Almeida
- Laboratório de Neurociências Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João Del-Rei (UFSJ), Minas Gerais, Brazil
| | - Fernando Luiz Affonso Fonseca
- Laboratório de Análises Clínicas da Faculdade de Medicina Do ABC, Santo André, São Paulo, Brazil
- Departamento de Ciencias Farmaceuticas da Universidade Federal de Sao Paulo (UNIFESP), Diadema, Brazil
| | - Fulvio Alexandre Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Carla Alessandra Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- *Correspondence: Valeria C. Goncalves, ; Carla Alessandra Scorza,
| |
Collapse
|
30
|
Tian Y, Pan L, Yuan X, Xiong M, Zhang Z, Meng L, Zheng Y, Bu L, Xu X, Zhang Z. 7,8-Dihydroxyflavone ameliorates mitochondrial impairment and motor dysfunction in the α-synuclein 1–103 transgenic mice. Neurobiol Dis 2022; 169:105736. [DOI: 10.1016/j.nbd.2022.105736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022] Open
|
31
|
Neuroprotective effects of microRNA 124 in Parkinson's disease mice. Arch Gerontol Geriatr 2022; 99:104588. [DOI: 10.1016/j.archger.2021.104588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/02/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022]
|
32
|
Masini D, Kiehn O. Targeted activation of midbrain neurons restores locomotor function in mouse models of parkinsonism. Nat Commun 2022; 13:504. [PMID: 35082287 PMCID: PMC8791953 DOI: 10.1038/s41467-022-28075-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 01/07/2022] [Indexed: 12/26/2022] Open
Abstract
The pedunculopontine nucleus (PPN) is a locomotor command area containing glutamatergic neurons that control locomotor initiation and maintenance. These motor actions are deficient in Parkinson’s disease (PD), where dopaminergic neurodegeneration alters basal ganglia activity. Being downstream of the basal ganglia, the PPN may be a suitable target for ameliorating parkinsonian motor symptoms. Here, we use in vivo cell-type specific PPN activation to restore motor function in two mouse models of parkinsonism made by acute pharmacological blockage of dopamine transmission. With a combination of chemo- and opto-genetics, we show that excitation of caudal glutamatergic PPN neurons can normalize the otherwise severe locomotor deficit in PD, whereas targeting the local GABAergic population only leads to recovery of slow locomotion. The motor rescue driven by glutamatergic PPN activation is independent of activity in nearby locomotor promoting glutamatergic Cuneiform neurons. Our observations point to caudal glutamatergic PPN neurons as a potential target for neuromodulatory restoration of locomotor function in PD. Here, the authors use cell-type specific stimulation of brainstem neurons within the caudal pedunculopontine nucleus to show that activation of excitatory neurons can normalize severe locomotor deficit in mouse models of parkinsonism. The study defines a potential target for neuromodulatory restoration of locomotor function in Parkinson’s disease.
Collapse
Affiliation(s)
- Débora Masini
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Ole Kiehn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark. .,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
33
|
Mendes-Pinheiro B, Soares-Cunha C, Marote A, Loureiro-Campos E, Campos J, Barata-Antunes S, Monteiro-Fernandes D, Santos D, Duarte-Silva S, Pinto L, José Salgado A. Unilateral Intrastriatal 6-Hydroxydopamine Lesion in Mice: A Closer Look into Non-Motor Phenotype and Glial Response. Int J Mol Sci 2021; 22:ijms222111530. [PMID: 34768962 PMCID: PMC8584172 DOI: 10.3390/ijms222111530] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a prevalent movement disorder characterized by the progressive loss of dopaminergic neurons in substantia nigra pars compacta (SNpc). The 6-hydroxydopamine (6-OHDA) lesion is still one of the most widely used techniques for modeling Parkinson’s disease (PD) in rodents. Despite commonly used in rats, it can be challenging to reproduce a similar lesion in mice. Moreover, there is a lack of characterization of the extent of behavioral deficits and of the neuronal loss/neurotransmitter system in unilateral lesion mouse models. In this study, we present an extensive behavioral and histological characterization of a unilateral intrastriatal 6-OHDA mouse model. Our results indicate significant alterations in balance and fine motor coordination, voluntary locomotion, and in the asymmetry’s degree of forelimb use in 6-OHDA lesioned animals, accompanied by a decrease in self-care and motivational behavior, common features of depressive-like symptomatology. These results were accompanied by a decrease in tyrosine hydroxylase (TH)-labelling and dopamine levels within the nigrostriatal pathway. Additionally, we also identify a marked astrocytic reaction, as well as proliferative and reactive microglia in lesioned areas. These results confirm the use of unilateral intrastriatal 6-OHDA mice for the generation of a mild model of nigrostriatal degeneration and further evidences the recapitulation of key aspects of PD, thereby being suitable for future studies beholding new therapeutical interventions for this disease.
Collapse
Affiliation(s)
- Bárbara Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Ana Marote
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Eduardo Loureiro-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Sandra Barata-Antunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Daniela Monteiro-Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Diogo Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Correspondence: ; Tel.: +351-253-60-49-47
| |
Collapse
|