1
|
Di Costanzo D, Mazza M, Carbone A, Pratillo A, Di Perna F, Graziani V, Casals Marin C, Tartaglione S, Ponticiello A. Retrospective analysis of epidemiologic features and clinical course of COVID-19 patients and comparison between vaccinated and unvaccinated patients. Monaldi Arch Chest Dis 2024; 94. [PMID: 37860843 DOI: 10.4081/monaldi.2023.2771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
At our Pneumology Department, we dealt with three waves of COVID-19 pandemics. The purpose of this study is to compare patients' epidemiological and clinical characteristics across waves and to assess the effect of vaccination on clinical presentation, course, and prognosis. From March 2020 to March 2022, a retrospective cohort study was conducted to compare patient characteristics. Based on the time of hospital admission, data from 456 patients were collected and divided into three groups [first wave (IW), second wave (IIW), and third wave (IIIW)]. In addition, we looked at the link between vaccination, clinical presentation and hospitalization outcome. The average age and comorbidities of patients increased, as did the worsening of respiratory conditions at admission (partial pressure of oxygen/fraction of inspired oxygen ratio median 207 in IW, 95.5 in IIW, and 99 in IIIW). Continuous positive airway pressure was the primary respiratory support during the first wave, but an increase in the use of high-flow nasal cannula and non-invasive ventilation was later observed, resulting in a higher hospital discharge rate and a lower intubation rate. Vaccinated patients had less severe COVID-19-related respiratory failure, a better clinical course, and a higher hospital discharge rate (71.4% in the vaccinated group vs. 44.7% in the non-vaccinated group, p<0.001). Patients' characteristics changed over the three waves, possibly due to virus mutations. The advancement of clinical and therapeutic management knowledge has contributed to a reduction in the severity of respiratory failure. The vaccination campaign improved the clinical course and reduced mortality.
Collapse
Affiliation(s)
| | | | - Andreina Carbone
- Cardiology Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples
| | - Anna Pratillo
- Pneumology Department, Sant'Anna and San Sebastiano Hospital, Caserta
| | - Felice Di Perna
- Pneumology Department, Sant'Anna and San Sebastiano Hospital, Caserta
| | - Vittoria Graziani
- Pneumology Department, Sant'Anna and San Sebastiano Hospital, Caserta
| | | | | | | |
Collapse
|
2
|
Carriero F, Rubino V, Gelzo M, Scalia G, Raia M, Ciccozzi M, Gentile I, Pinchera B, Castaldo G, Ruggiero G, Terrazzano G. Immune Profile in COVID-19: Unveiling T R3-56 Cells in SARS-CoV-2 Infection. Int J Mol Sci 2024; 25:10465. [PMID: 39408792 PMCID: PMC11477006 DOI: 10.3390/ijms251910465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The emergence of COronaVIrus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), presented a global health challenge since its identification in December 2019. With clinical manifestations ranging from mild respiratory symptoms to severe multi-organ dysfunction, COVID-19 continues to affect populations worldwide. The complex interactions between SARS-CoV-2 variants and the human immune system are crucial for developing effective therapies, vaccines, and preventive measures. Understanding these immune responses highlights the intricate nature of COVID-19 pathogenesis. This retrospective study analyzed, by flow cytometry approach, a cohort of patients infected with SARS-CoV-2 during the initial pandemic waves from 2020 to 2021. It focused on untreated individuals at the time of hospital admission and examined the presence of TR3-56 cells in their immune profiles during the anti-viral immune response. Our findings provide additional insights into the complex immunological dynamics of SARS-CoV-2 infection and highlight the potential role of TR3-56 cells as crucial components of the immune response. We suggest that TR3-56 cells could serve as valuable biomarkers for identifying more severe cases of COVID-19, aiding in the assessment and management of the disease.
Collapse
Affiliation(s)
- Flavia Carriero
- Dipartimento di Scienze della Salute, Università degli Studi della Basilicata, 85100 Potenza, Italy;
| | - Valentina Rubino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (G.R.)
| | - Monica Gelzo
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy; (M.G.); (G.S.); (M.R.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Giulia Scalia
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy; (M.G.); (G.S.); (M.R.); (G.C.)
| | - Maddalena Raia
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy; (M.G.); (G.S.); (M.R.); (G.C.)
| | - Massimo Ciccozzi
- Unità di Epidemiologia e Statistica Medica, Università Campus Biomedico, 00128 Rome, Italy;
| | - Ivan Gentile
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, 80131 Naples, Italy; (I.G.); (B.P.)
| | - Biagio Pinchera
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, 80131 Naples, Italy; (I.G.); (B.P.)
| | - Giuseppe Castaldo
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy; (M.G.); (G.S.); (M.R.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Giuseppina Ruggiero
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (G.R.)
| | - Giuseppe Terrazzano
- Dipartimento di Scienze della Salute, Università degli Studi della Basilicata, 85100 Potenza, Italy;
| |
Collapse
|
3
|
Meng R, Zhong X, Gong Y, Shi Y, Li J, Wu Z, Duan Q, Zhang X, Mei Y, Zhu J, Peng Z, Li Y, Song D. Discovery and development of novel 10,12-disubstituted aloperine derivatives against HCoV-OC43 by targeting allosteric site of host TMPRSS2. Bioorg Chem 2024; 147:107317. [PMID: 38583252 DOI: 10.1016/j.bioorg.2024.107317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
By inducing steric activation of the 10CH bond with a 12-acyl group to form a key imine oxime intermediate, 20 novel (10S)-10,12-disubstituted aloperine derivatives were successfully synthesized and assessed for their antiviral efficacy against HCoV-OC43. Of them, compound 3i exhibited the moderate activities against HCoV-OC43, as well as against the SARS-CoV-2 variant EG.5.1 with the comparable EC50 values of 4.7 and 4.1 μM. A mechanism study revealed that it inhibited the protease activity of host TMPRSS2 by binding to an allosteric site, rather than the known catalytic center, different from that of camostat. Also, the combination of compound 3i and molnupiravir, as an RdRp inhibitor, showed an additive antiviral effect against HCoV-OC43. The results provide a new binding mode and lead compound for targeting TMPRSS2, with an advantage in combating broad-spectrum coronavirus.
Collapse
Affiliation(s)
- Runze Meng
- Beijing Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Xiuli Zhong
- Beijing Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yue Gong
- Beijing Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yulong Shi
- Beijing Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Jiayu Li
- Beijing Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Zhiyun Wu
- Beijing Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Qionglu Duan
- Beijing Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Xintong Zhang
- Beijing Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yuheng Mei
- Beijing Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Jingyang Zhu
- Beijing Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Zonggen Peng
- Beijing Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yinghong Li
- Beijing Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Danqing Song
- Beijing Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| |
Collapse
|
4
|
Vacca N, Locci C, Serra F, Chicconi E, Puci MV, Sotgiu G, Amadu AM, Antonucci R. Impact of COVID-19 on Patients with Beta-Thalassemia Major: An Observational Study. Acta Haematol 2024; 147:615-624. [PMID: 38417413 DOI: 10.1159/000537912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/15/2024] [Indexed: 03/01/2024]
Abstract
INTRODUCTION The prevalence of COVID-19 is slightly lower, and its mortality is higher in beta-thalassemia patients than in the general population. We evaluated the impact of COVID-19 in terms of incidence, clinical course, management, and specific antibody response to vaccination, in a cohort of patients with beta-thalassemia major. METHODS We retrospectively enrolled all transfusion-dependent beta-thalassemia major patients attending the Thalassemia Day Care Center of the University Hospital of Sassari, Italy, from March 1, 2020, to May 31, 2021. For each patient, demographic, clinical, laboratory, instrumental, and therapy data were collected. Patients aged ≥16 years received two doses of mRNA COVID-19 vaccine. Anti-SARS-CoV-2 serum antibodies were tested before and after the first vaccine dose. RESULTS A total of 68 patients (median age: 36.5 years; IQR: 13-42 years) were included. Nasopharyngeal swab (NPS) for SARS-CoV-2 detection by RT-PCR was positive in 5 (7.35%) of 68 patients (4 symptomatic). No COVID-19-related complications, hospitalizations, or deaths were observed. The transfusion regimen and iron chelation therapy were not significantly changed. Prior to COVID-19 vaccination, anti-SARS-CoV-2 antibodies were tested in 61 patients, 51 negative and 10 positive; five of the latter were also positive for SARS-CoV-2 on NPS. The 46 vaccinated subjects had an antibody response, with higher levels in subjects previously infected with SARS-CoV-2. CONCLUSION Our findings suggest that patients with beta-thalassemia major are not at a higher risk of contracting SARS-CoV-2 infection and developing a severe form of COVID-19 despite being considered more vulnerable than the general population.
Collapse
Affiliation(s)
- Nadia Vacca
- Pediatric Clinic, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Cristian Locci
- Pediatric Clinic, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy,
| | - Fabiola Serra
- Pediatric Clinic, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Elena Chicconi
- Pediatric Clinic, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Mariangela V Puci
- Clinical Epidemiology and Medical Statistics Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | | | - Roberto Antonucci
- Pediatric Clinic, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| |
Collapse
|
5
|
Nigro E, D’Agnano V, Quarcio G, Mariniello DF, Bianco A, Daniele A, Perrotta F. Exploring the Network between Adipocytokines and Inflammatory Response in SARS-CoV-2 Infection: A Scoping Review. Nutrients 2023; 15:3806. [PMID: 37686837 PMCID: PMC10490077 DOI: 10.3390/nu15173806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Adipose tissue is actually regarded as an endocrine organ, rather than as an organ that merely stores energy. During the COVID-19 pandemic, obesity has undoubtedly emerged as one of the most important risk factors for disease severity and poor outcomes related to SARS-CoV-2 infection. The aberrant production of cytokine-like hormones, called adipokines, may contribute to alterations in metabolism, dysfunction in vascular endothelium and the creation of a state of general chronic inflammation. Moreover, chronic, low-grade inflammation linked to obesity predisposes the host to immunosuppression and excessive cytokine activation. In this respect, understanding the mechanisms that link obesity with the severity of SARS-CoV-2 infection could represent a real game changer in the development of new therapeutic strategies. Our review therefore examines the pathogenic mechanisms of SARS-CoV-2, the implications with visceral adipose tissue and the influences of the adipose tissue and its adipokines on the clinical behavior of COVID-19.
Collapse
Affiliation(s)
- Ersilia Nigro
- CEINGE-Biotecnologie Avanzate Scarl “Franco Salvatore”, Via G. Salvatore 486, 80145 Napoli, Italy; (E.N.); (A.D.)
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Vito D’Agnano
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80138 Naples, Italy; (V.D.); (G.Q.); (D.F.M.); (A.B.)
| | - Gianluca Quarcio
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80138 Naples, Italy; (V.D.); (G.Q.); (D.F.M.); (A.B.)
| | - Domenica Francesca Mariniello
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80138 Naples, Italy; (V.D.); (G.Q.); (D.F.M.); (A.B.)
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80138 Naples, Italy; (V.D.); (G.Q.); (D.F.M.); (A.B.)
| | - Aurora Daniele
- CEINGE-Biotecnologie Avanzate Scarl “Franco Salvatore”, Via G. Salvatore 486, 80145 Napoli, Italy; (E.N.); (A.D.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, 80055 Naples, Italy
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80138 Naples, Italy; (V.D.); (G.Q.); (D.F.M.); (A.B.)
| |
Collapse
|
6
|
Mariniello DF, Aronne L, Vitale M, Schiattarella A, Pagliaro R, Komici K. Current challenges and perspectives in lung cancer care during COVID-19 waves. Curr Opin Pulm Med 2023; 29:239-247. [PMID: 37132294 PMCID: PMC10241323 DOI: 10.1097/mcp.0000000000000967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
PURPOSE OF REVIEW In the era of the SARS-Cov2 pandemic, the multidisciplinary care of patients with lung cancer is the main challenge for clinicians. The depiction of complex networking between SARS-CoV2 and cancer cells is crucial to understanding the downstream signalling pathways leading to more severe clinical behaviour of COVID-19 among lung cancer patients. RECENT FINDINGS The immunosuppressive status caused by both blunted immune response and active anticancer treatments (e.g. radiotherapy, chemotherapy) affects also the response to vaccines. Furthermore, the COVID-19 pandemic has significantly influenced early detection, therapeutic management, and clinical research for patients with lung cancer. SUMMARY SARS-CoV-2 infection does undoubtedly represent a challenge for care of patients with lung cancer. Since symptoms of infection may overlap with underlying condition, diagnosis must be reached and treatment should start as soon as possible. Although any cancer treatment should be procrastinated as long as infection is not cured, every choice must be pondered on individual basis, according to clinical conditions. Underdiagnosis should be avoided, and both surgical and medical treatment must be tailored to each patient. Therapeutic scenario standardization represents a major challenge for clinicians and researchers.
Collapse
Affiliation(s)
| | - Luigi Aronne
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli
| | - Maria Vitale
- CEINGE, Biotecnologie Avanzate
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples
| | - Angela Schiattarella
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli
| | - Raffaella Pagliaro
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli
| | - Klara Komici
- Department of Medicine and Health Sciences University of Molise, Campobasso, Italy
| |
Collapse
|
7
|
Adiponectin, Leptin, and Resistin Are Dysregulated in Patients Infected by SARS-CoV-2. Int J Mol Sci 2023; 24:ijms24021131. [PMID: 36674646 PMCID: PMC9861572 DOI: 10.3390/ijms24021131] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Obesity, through adipose tissue (AT) inflammation and dysregulation, represents a critical factor for COVID-19; here, we investigated whether serum levels of adiponectin, HMW oligomers, leptin, and resistin are modulated and/or correlated with clinical and biochemical parameters of severe COVID-19 patients. This study included 62 severe COVID-19 patients; 62 age and sex-matched healthy subjects were recruited as a control group. Anthropometric and biochemical parameters were obtained and compared. Adiponectin, HMW oligomers, leptin, and resistin were analyzed by ELISA. The adiponectin oligomerization state was visualized by Western blotting. When compared to healthy subjects, total adiponectin levels were statistically lower in severe COVID-19 while, in contrast, the levels of leptin and resistin were statistically higher. Interestingly, HMW adiponectin oligomers negatively correlated with leptin and were positively associated with LUS scores. Resistin showed a positive association with IL-6, IL-2R, and KL-6. Our data strongly support that adipose tissue might play a functional role in COVID-19. Although it needs to be confirmed in larger cohorts, adiponectin HMW oligomers might represent a laboratory resource to predict patient seriousness. Whether adipokines can be integrated as a potential additional tool in the evolving landscape of biomarkers for the COVID-19 disease is still a matter of debate. Other studies are needed to understand the molecular mechanisms behind adipokine's involvement in COVID-19.
Collapse
|
8
|
Mariniello DF, Allocca V, D’Agnano V, Villaro R, Lanata L, Bagnasco M, Aronne L, Bianco A, Perrotta F. Strategies Tackling Viral Replication and Inflammatory Pathways as Early Pharmacological Treatment for SARS-CoV-2 Infection: Any Potential Role for Ketoprofen Lysine Salt? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248919. [PMID: 36558048 PMCID: PMC9782495 DOI: 10.3390/molecules27248919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
COVID-19 is an infective disease resulting in widespread respiratory and non-respiratory symptoms prompted by SARS-CoV-2 infection. Interaction between SARS-CoV-2 and host cell receptors prompts activation of pro-inflammatory pathways which are involved in epithelial and endothelial damage mechanisms even after viral clearance. Since inflammation has been recognized as a critical step in COVID-19, anti-inflammatory therapies, including both steroids and non-steroids as well as cytokine inhibitors, have been proposed. Early treatment of COVID-19 has the potential to affect the clinical course of the disease regardless of underlying comorbid conditions. Non-steroidal anti-inflammatory drugs (NSAIDs), which are widely used for symptomatic relief of upper airway infections, became the mainstay of early phase treatment of COVID-19. In this review, we discuss the current evidence for using NSAIDs in early phases of SARS-CoV-2 infection with focus on ketoprofen lysine salt based on its pharmacodynamic and pharmacokinetic features.
Collapse
Affiliation(s)
- Domenica Francesca Mariniello
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy
- U.O.C. Clinica Pneumologica “L. Vanvitelli”, A.O. dei Colli, Ospedale Monaldi, 80131 Naples, Italy
| | - Valentino Allocca
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy
- U.O.C. Clinica Pneumologica “L. Vanvitelli”, A.O. dei Colli, Ospedale Monaldi, 80131 Naples, Italy
| | - Vito D’Agnano
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy
- U.O.C. Clinica Pneumologica “L. Vanvitelli”, A.O. dei Colli, Ospedale Monaldi, 80131 Naples, Italy
| | - Riccardo Villaro
- Section of Infectious Diseases, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Luigi Lanata
- Medical Deptartment, Dompé Farmaceutici SpA, 20122 Milan, Italy
| | | | - Luigi Aronne
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy
- U.O.C. Clinica Pneumologica “L. Vanvitelli”, A.O. dei Colli, Ospedale Monaldi, 80131 Naples, Italy
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy
- U.O.C. Clinica Pneumologica “L. Vanvitelli”, A.O. dei Colli, Ospedale Monaldi, 80131 Naples, Italy
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy
- U.O.C. Clinica Pneumologica “L. Vanvitelli”, A.O. dei Colli, Ospedale Monaldi, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
9
|
D’Agnano V, Scialò F, Perna F, Atripaldi L, Sanduzzi S, Allocca V, Vitale M, Pastore L, Bianco A, Perrotta F. Exploring the Role of Krebs von den Lungen-6 in Severe to Critical COVID-19 Patients. Life (Basel) 2022; 12:1141. [PMID: 36013321 PMCID: PMC9409731 DOI: 10.3390/life12081141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 01/02/2023] Open
Abstract
COVID-19 encompasses a broad spectrum of clinical conditions caused by SARS-CoV-2 infection. More severe cases experience acute respiratory and/or multiorgan failure. KL-6 is a glycoprotein expressed mainly from type II alveolar cells with pro-fibrotic properties. Serum KL-6 concentrations have been found in patients with COVID-19. However, the relevance of KL-6 in patients with severe and critical COVID-19 has not been fully elucidated. Methods: Retrospective data from consecutive severe to critical COVID-19 patients were collected at UOC Clinica Pnuemologica “Vanvitelli”, A.O. dei Colli, Naples, Italy. The study included patients with a positive rhinopharyngeal swab for SARS-CoV-2 RNA with severe or critical COVID-19. Results: Among 87 patients, 24 had poor outcomes. The median KL-6 value in survivors was significantly lower when compared with dead or intubated patients (530 U/mL versus 1069 U/mL p < 0.001). KL-6 was correlated with body mass index (BMI) (r: 0.279, p: 0.009), lung ultrasound score (LUS) (r: 0.429, p < 0.001), Chung Score (r: 0.390, p < 0.001). KL-6 was associated with the risk of death or oro-tracheal intubation (IOT) after adjusting for gender, BMI, Charlson Index, Chung Score, and PaO2/FIO2 (OR 1.003 95% CI 1.001−1.004, p < 0.001). Serum KL-6 value of 968 has a sensitivity of 79.2%, specificity of 87.1%, PPV 70.4%, NPV 91.5%, AUC: O.85 for risk of death or IOT. Conclusions: The presented research highlights the relevance of serum KL-6 in severe to critical COVID-19 patients in predicting the risk of death or IOT.
Collapse
Affiliation(s)
- Vito D’Agnano
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy; (V.D.); (F.S.); (L.A.); (S.S.); (V.A.); (A.B.)
| | - Filippo Scialò
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy; (V.D.); (F.S.); (L.A.); (S.S.); (V.A.); (A.B.)
- CEINGE-Biotecnologie Avanzate, 80131 Naples, Italy; (M.V.); (L.P.)
| | - Francesco Perna
- Section of Respiratory Diseases, Department of Clinical Medicine and Surgery, Monaldi Hospital, University of Naples Federico II, 80131 Naples, Italy;
- Section of Biochemical Clinical Laboratory, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Lidia Atripaldi
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy; (V.D.); (F.S.); (L.A.); (S.S.); (V.A.); (A.B.)
| | - Stefano Sanduzzi
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy; (V.D.); (F.S.); (L.A.); (S.S.); (V.A.); (A.B.)
| | - Valentino Allocca
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy; (V.D.); (F.S.); (L.A.); (S.S.); (V.A.); (A.B.)
| | - Maria Vitale
- CEINGE-Biotecnologie Avanzate, 80131 Naples, Italy; (M.V.); (L.P.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Lucio Pastore
- CEINGE-Biotecnologie Avanzate, 80131 Naples, Italy; (M.V.); (L.P.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy; (V.D.); (F.S.); (L.A.); (S.S.); (V.A.); (A.B.)
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy; (V.D.); (F.S.); (L.A.); (S.S.); (V.A.); (A.B.)
| |
Collapse
|
10
|
Sex differences in global metabolomic profiles of COVID-19 patients. Cell Death Dis 2022; 13:461. [PMID: 35568706 PMCID: PMC9106988 DOI: 10.1038/s41419-022-04861-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 12/14/2022]
Abstract
Coronavirus disease (COVID-19), caused by SARS-CoV-2, leads to symptoms ranging from asymptomatic disease to death. Although males are more susceptible to severe symptoms and higher mortality due to COVID-19, patient sex has rarely been examined. Sex-associated metabolic changes may implicate novel biomarkers and therapeutic targets to treat COVID-19. Here, using serum samples, we performed global metabolomic analyses of uninfected and SARS-CoV-2-positive male and female patients with severe COVID-19. Key metabolic pathways that demonstrated robust sex differences in COVID-19 groups, but not in controls, involved lipid metabolism, pentose pathway, bile acid metabolism, and microbiome-related metabolism of aromatic amino acids, including tryptophan and tyrosine. Unsupervised statistical analysis showed a profound sexual dimorphism in correlations between patient-specific clinical parameters and their global metabolic profiles. Identification of sex-specific metabolic changes in severe COVID-19 patients is an important knowledge source for researchers striving for development of potential sex-associated biomarkers and druggable targets for COVID-19 patients.
Collapse
|
11
|
Ambrosino P, Bachetti T, D’Anna SE, Galloway B, Bianco A, D’Agnano V, Papa A, Motta A, Perrotta F, Maniscalco M. Mechanisms and Clinical Implications of Endothelial Dysfunction in Arterial Hypertension. J Cardiovasc Dev Dis 2022; 9:136. [PMID: 35621847 PMCID: PMC9146906 DOI: 10.3390/jcdd9050136] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
The endothelium is composed of a monolayer of endothelial cells, lining the interior surface of blood and lymphatic vessels. Endothelial cells display important homeostatic functions, since they are able to respond to humoral and hemodynamic stimuli. Thus, endothelial dysfunction has been proposed as a key and early pathogenic mechanism in many clinical conditions. Given the relevant repercussions on cardiovascular risk, the complex interplay between endothelial dysfunction and systemic arterial hypertension has been a matter of study in recent years. Numerous articles have been published on this issue, all of which contribute to providing an interesting insight into the molecular mechanisms of endothelial dysfunction in arterial hypertension and its role as a biomarker of inflammation, oxidative stress, and vascular disease. The prognostic and therapeutic implications of endothelial dysfunction have also been analyzed in this clinical setting, with interesting new findings and potential applications in clinical practice and future research. The aim of this review is to summarize the pathophysiology of the relationship between endothelial dysfunction and systemic arterial hypertension, with a focus on the personalized pharmacological and rehabilitation strategies targeting endothelial dysfunction while treating hypertension and cardiovascular comorbidities.
Collapse
Affiliation(s)
- Pasquale Ambrosino
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy;
| | - Tiziana Bachetti
- Istituti Clinici Scientifici Maugeri IRCCS, Scientific Direction, 27100 Pavia, Italy;
| | - Silvestro Ennio D’Anna
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy;
| | - Brurya Galloway
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (B.G.); (A.B.); (V.D.); (F.P.)
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (B.G.); (A.B.); (V.D.); (F.P.)
| | - Vito D’Agnano
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (B.G.); (A.B.); (V.D.); (F.P.)
| | - Antimo Papa
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy;
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, Italy;
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (B.G.); (A.B.); (V.D.); (F.P.)
| | - Mauro Maniscalco
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy;
- Department of Clinical Medicine and Surgery, “Federico II” University, 80131 Naples, Italy
| |
Collapse
|
12
|
Ning Q, Wu D, Wang X, Xi D, Chen T, Chen G, Wang H, Lu H, Wang M, Zhu L, Hu J, Liu T, Ma K, Han M, Luo X. The mechanism underlying extrapulmonary complications of the coronavirus disease 2019 and its therapeutic implication. Signal Transduct Target Ther 2022; 7:57. [PMID: 35197452 PMCID: PMC8863906 DOI: 10.1038/s41392-022-00907-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is a highly transmissible disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that poses a major threat to global public health. Although COVID-19 primarily affects the respiratory system, causing severe pneumonia and acute respiratory distress syndrome in severe cases, it can also result in multiple extrapulmonary complications. The pathogenesis of extrapulmonary damage in patients with COVID-19 is probably multifactorial, involving both the direct effects of SARS-CoV-2 and the indirect mechanisms associated with the host inflammatory response. Recognition of features and pathogenesis of extrapulmonary complications has clinical implications for identifying disease progression and designing therapeutic strategies. This review provides an overview of the extrapulmonary complications of COVID-19 from immunological and pathophysiologic perspectives and focuses on the pathogenesis and potential therapeutic targets for the management of COVID-19.
Collapse
Affiliation(s)
- Qin Ning
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Di Wu
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing Wang
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Xi
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Chen
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guang Chen
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongwu Wang
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiling Lu
- National Medical Center for Major Public Health Events, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Wang
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Zhu
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjian Hu
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Liu
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Ma
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meifang Han
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoping Luo
- National Medical Center for Major Public Health Events, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Kamperi N, Kanara I, Kodukula K, Mavrakis AN, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Steliou K, Tamvakopoulos C, Vavvas DG, Zamboni RJ, Sampani K. Pathogenic mitochondrial dysfunction and metabolic abnormalities. Biochem Pharmacol 2021; 193:114809. [PMID: 34673016 DOI: 10.1016/j.bcp.2021.114809] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
Herein we trace links between biochemical pathways, pathogenesis, and metabolic diseases to set the stage for new therapeutic advances. Cellular and acellular microorganisms including bacteria and viruses are primary pathogenic drivers that cause disease. Missing from this statement are subcellular compartments, importantly mitochondria, which can be pathogenic by themselves, also serving as key metabolic disease intermediaries. The breakdown of food molecules provides chemical energy to power cellular processes, with mitochondria as powerhouses and ATP as the principal energy carrying molecule. Most animal cell ATP is produced by mitochondrial synthase; its central role in metabolism has been known for >80 years. Metabolic disorders involving many organ systems are prevalent in all age groups. Progressive pathogenic mitochondrial dysfunction is a hallmark of genetic mitochondrial diseases, the most common phenotypic expression of inherited metabolic disorders. Confluent genetic, metabolic, and mitochondrial axes surface in diabetes, heart failure, neurodegenerative disease, and even in the ongoing coronavirus pandemic.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.
| | - Douglas V Faller
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Ioannis P Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | - David N Harpp
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Natalia Kamperi
- Center for Clinical, Experimental Surgery and Translational Research Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | | | - Anastasios N Mavrakis
- Department of Medicine, Tufts University School of Medicine, St. Elizabeth's Medical Center, Boston, MA, USA
| | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Whitney R Powers
- Department of Health Sciences, Boston University, Boston, MA, USA; Department of Anatomy, Boston University School of Medicine, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA; PhenoMatriX, Inc., Natick, MA, USA
| | - Constantin Tamvakopoulos
- Center for Clinical, Experimental Surgery and Translational Research Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Demetrios G Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Robert J Zamboni
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|