1
|
Ding K, Shen Y, Bai Y, Wei W, Roberts N, Wang N, Wang X, Shen G, Zhang X, Sun C, Song X, Wang M. Free water imaging reveals asynchronous dopaminergic degeneration in substantia nigra and ventral tegmental area in prodromal and early Parkinson's disease. Brain Res Bull 2025; 224:111309. [PMID: 40096913 DOI: 10.1016/j.brainresbull.2025.111309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/24/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
PURPOSE The ventral tegmental area (VTA), which is rich in dopaminergic neurons, may play a role in influencing clinical symptoms in Parkinson's Disease (PD). However, the degeneration dynamics of the VTA during the early and prodromal stages of PD remain unclear. This study aims to explore microstructural changes in the VTA among prodromal PD patients with idiopathic REM sleep behavior disorder (iRBD) and early-stage PD patients using free water imaging (FWI) to assess free water (FW) and its correlation with clinical symptoms. METHOD Diffusion tensor imaging data from 238 participants, including 69 healthy controls (HC), 54 iRBD patients, and 115 PD patients. FW values were computed using a bi-tensor model, and comparisons were done between the HC, iRBD, and PD groups. Additionally, the relationship between FW values in the VTA and substantia nigra pars compacta (SNc) and clinical symptoms was explored through baseline assessments and longitudinal tracking of iRBD patients. RESULTS FW values in the SNc significantly increased in iRBD and PD patients compared to HC, with the PD group exhibiting even higher FW values. Initially, the FW values in the VTA in iRBD patients did not significantly differ from those of HC but increased in early PD, correlating with anxiety and motor deficits. Longitudinal tracking revealed FW increases in the SNc and VTA in iRBD patients over time. CONCLUSION The present findings revealed a desynchronized degeneration pattern between the VTA and SNc, with no degeneration observed in the prodromal phase but gradual changes over time, leading to pronounced VTA degeneration in early PD. This underscores the impact of early VTA changes on PD symptoms, contributing to understanding of PD pathophysiology.
Collapse
Affiliation(s)
- Kaiyue Ding
- Department of Radiology, Henan Provincial People's Hospital & the People's Hospital of Henan University, 7 Weiwu Road, Zhengzhou, Henan 450003, China
| | - Yu Shen
- Department of Radiology, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, 7 Weiwu Road, Zhengzhou, Henan 450003, China; Henan Key Laboratory of Neurological Imaging, Zhengzhou, Henan 450003, China
| | - Yan Bai
- Department of Radiology, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, 7 Weiwu Road, Zhengzhou, Henan 450003, China; Henan Key Laboratory of Neurological Imaging, Zhengzhou, Henan 450003, China
| | - Wei Wei
- Department of Radiology, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, 7 Weiwu Road, Zhengzhou, Henan 450003, China; Henan Key Laboratory of Neurological Imaging, Zhengzhou, Henan 450003, China
| | - Neil Roberts
- Biomedical Research Institute, Henan Academy of Sciences, Zhengzhou, Henan 450046, China; Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ningli Wang
- Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 450008, China; Henan Provincial People's Hospital, 7 Weiwu Road, Zhengzhou, Henan 450003, China
| | - Xinhui Wang
- Department of Radiology, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, 7 Weiwu Road, Zhengzhou, Henan 450003, China
| | - Guofeng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Shende Green Medical Era Healthcare Technology Co., Ltd., Shanghai 200233, China
| | - Xianchang Zhang
- MR Research Collaboration, Siemens Healthineers Ltd, Beijing 450003, China
| | - Chaowei Sun
- Henan Academy of Sciences, Zhengzhou, Henan 450046, China
| | - Xiaosheng Song
- Biomedical Research Institute, Henan Academy of Sciences, Zhengzhou, Henan 450046, China
| | - Meiyun Wang
- Department of Radiology, Henan Provincial People's Hospital & the People's Hospital of Henan University, 7 Weiwu Road, Zhengzhou, Henan 450003, China; Department of Radiology, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, 7 Weiwu Road, Zhengzhou, Henan 450003, China; Henan Key Laboratory of Neurological Imaging, Zhengzhou, Henan 450003, China; Biomedical Research Institute, Henan Academy of Sciences, Zhengzhou, Henan 450046, China.
| |
Collapse
|
2
|
Lakshminarasimhan K, Buck J, Kellendonk C, Horga G. A corticostriatal learning mechanism linking excess striatal dopamine and auditory hallucinations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643990. [PMID: 40166304 PMCID: PMC11956939 DOI: 10.1101/2025.03.18.643990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Auditory hallucinations are linked to elevated striatal dopamine, but their underlying computational mechanisms have been obscured by regional heterogeneity in striatal dopamine signaling. To address this, we developed a normative circuit model in which corticostriatal plasticity in the ventral striatum is modulated by reward prediction errors to drive reinforcement learning while that in the sensory-dorsal striatum is modulated by sensory prediction errors derived from internal belief to drive self-supervised learning. We then validate the key predictions of this model using dopamine recordings across striatal regions in mice, as well as human behavior in a hybrid learning task. Finally, we find that changes in learning resulting from optogenetic stimulation of the sensory striatum in mice and individual variability in hallucination proneness in humans are best explained by selectively enhancing dopamine levels in the model sensory striatum. These findings identify plasticity mechanisms underlying biased learning of sensory expectations as a biologically plausible link between excess dopamine and hallucinations.
Collapse
Affiliation(s)
- Kaushik Lakshminarasimhan
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA
| | - Justin Buck
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University, New York, NY, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
| | - Guillermo Horga
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Cai A, Zheng D, Xu F, Wang F, Sajikumar S, Wang J. Variations of Aberrant Volume, Activity, and Network Connectivity of Hippocampus in Adolescent Male Rats Exposed to Juvenile Stress. Brain Sci 2025; 15:284. [PMID: 40149805 PMCID: PMC11940772 DOI: 10.3390/brainsci15030284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Childhood is a crucial period for brain development, and short-term juvenile stress has demonstrated long-lasting effects on cognitive and cellular functions in the hippocampus. However, the influence of such stress on the brain's overall network remains unclear. METHODS In this study, we employed functional magnetic resonance imaging (fMRI) to explore the effects of transient wild stress on juvenile male rats. Pregnant rats were purchased and housed in a specific pathogen-free (SPF) environment, with pups separated by sex on postnatal day 21 (PD21). From PD27 to PD29, male rats were subjected to transient wild stress, which included forced swimming, elevated platform exposure, and restraint stress. Following stress exposure, all animals were carefully maintained and scanned at 42 days of age (PD42) using fMRI. Structural analysis was performed using voxel-based morphometry (VBM) to assess changes in gray matter volume, while functional activity was evaluated through regional homogeneity (ReHo) and voxel-wise functional connectivity. RESULTS The results showed significant reductions in gray matter volume in several brain regions in the stress group, including the periaqueductal gray (PAG), entorhinal cortex (Ent), and dentate gyrus (DG). In terms of functional activity, cortical regions, particularly the primary somatosensory areas, exhibited decreased activity, whereas increased activity was observed in the PAG, DG, and medulla. Furthermore, functional connectivity analysis revealed a significant reduction in connectivity between the DG and entorhinal cortex, while the DG-PAG connectivity was significantly enhanced. CONCLUSIONS These findings suggest that juvenile stress leads to profound alterations in both brain structure and function, potentially disrupting emotional regulation and memory processing by affecting the development and connectivity of key brain regions.
Collapse
Affiliation(s)
- Aoling Cai
- Department of Radiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; (A.C.)
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Danhao Zheng
- Department of Radiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; (A.C.)
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanyong Xu
- Department of Radiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; (A.C.)
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210000, China
- Department of Mental Health, School of Public Health, Nanjing Medical University, Nanjing 210000, China
| | - Sreedharan Sajikumar
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
- Life Sciences Institute Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Jie Wang
- Department of Radiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; (A.C.)
| |
Collapse
|
4
|
Yu L, Feng M, Shang Y, Ren Z, Xing H, Chang Y, Dong K, Xiao Y, Dai H. Reduced Functional Connectivity in Nucleus Accumbens Subregions Associates With Cognitive Changes in Alzheimer's Disease. Brain Behav 2025; 15:e70440. [PMID: 40135639 PMCID: PMC11938111 DOI: 10.1002/brb3.70440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/21/2024] [Accepted: 02/16/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND AND PURPOSE The nucleus accumbens (NAc), an important component of the reward circuit, is believed to play an indispensable role in Alzheimer's disease (AD). This study aimed to explore alterations in the functional connectivity (FC) of NAc subregions in AD patients and to explore their associations with neuropsychological profiles. METHODS Total 45 AD patients and 41 healthy controls (HCs) were recruited for this study. Four subregions of the NAc were used as regions of interest for whole-brain FC analysis. Correlation analyses were conducted to explore the relationships between the changed FC of brain regions with significant differences and neuropsychological profiles. RESULTS Compared with HCs, decreased FC was observed between NAc subregions and regions of the orbitofrontal cortex (OFC), precuneus (PCUN), insula (INS), cerebellum 8, and putamen in AD patients (Gaussian random field [GRF] corrected, voxel-level p < 0.001, cluster-level p < 0.05). Furthermore, the FC between the left core and left PCUN was correlated with the score of the auditory verbal learning test immediate recall task in AD patients (r = 0.441, p = 0.003, Bonferroni corrected). CONCLUSION Disruptions in connectivity between the NAc subregions and important cognitive-related areas may be related to the cognitive deficits observed in AD patients, especially episodic memory function.
Collapse
Affiliation(s)
- Lefan Yu
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Mengmeng Feng
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yi Shang
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zhaohai Ren
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Hanqi Xing
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yue Chang
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ke Dong
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yao Xiao
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Hui Dai
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Medical Imaging, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
5
|
Dahleh MMM, Muller SG, Klann IP, Marques LS, da Rosa JL, Fontoura MB, Burger ME, Nogueira CW, Prigol M, Boeira SP, Segat HJ. Chemistry to cognition: Therapeutic potential of (m-CF 3-PhSe) 2 targeting rats' striatum dopamine proteins in amphetamine dependence. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111238. [PMID: 39732316 DOI: 10.1016/j.pnpbp.2024.111238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Amphetamine (AMPH) abuse represents a major global public health issue, highlighting the urgent need for effective therapeutic interventions to manage addiction caused by this psychostimulant. This study aimed to assess the potential of m-trifluoromethyl-diphenyldiselenide [(m-CF3-PhSe)2] in preventing the addictive effects induced by AMPH through targeting dopamine metabolism proteins. (m-CF3-PhSe)2 is of interest due to its demonstrated efficacy in mitigating opioid abuse, establishing it as a promising candidate for addiction treatment research. Initially, in silico studies examined the affinity of AMPH and (m-CF3-PhSe)2 for dopamine 1, 2, and 3 receptors (D1R, D2R, D3R), and dopamine transporter (DAT). In our experimental design, male Wistar rats were divided into four groups: I) Control; II) (m-CF3-PhSe)2; III) AMPH; IV) (m-CF3-PhSe)2 + AMPH. Animals were administered (m-CF3-PhSe)2 (0.1 mg/kg, by gavage) or canola oil (vehicle) 30 min before AMPH (4.0 mg/kg, i.p.) administration. Drug administration occurred for 8 days in the conditioned place preference (CPP) paradigm. Twenty-four hours after the last CPP conditioning section, preference for the drug-compartment was assessed, with anxiety-related effects and working memory were evaluated using the Y-maze test. Finally, animals were euthanized for striatal dissection to quantify D1R, D2R, D3R, and DAT levels in western blot. In silico findings suggest that (m-CF3-PhSe)2 may prevent AMPH activation in DAT, interacting with Asp46 and Phe319, preventing possible addictive effects of AMPH in DAT. In vivo results showed that (m-CF3-PhSe)2 attenuated AMPH effects, reducing preference for the drug-compartment in CPP test. Furthermore, (m-CF3-PhSe)2 prevented AMPH-induced anxiogenic effects in the elevated plus maze (EPM) test, similarly to light/dark test. No differences in locomotion or working memory were observed among the experimental groups in the Y-maze test. Ex vivo western blot analyses of the entire striatum indicates that (m-CF3-PhSe)2 prevented the AMPH-induced increase in D1R levels and decrease in D2R and DAT levels, with no changes in D3R levels. Overall, our study suggests that (m-CF3-PhSe)2 may interact with DAT sites similarly to AMPH, reducing drug-compartment preference and anxiogenic behaviors while maintaining dopaminergic metabolism proteins in the striatum, a key region involved in the onset and perpetuation of addiction.
Collapse
Affiliation(s)
- Mustafa Munir Mustafa Dahleh
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas (LaftamBio Pampa), Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Sabrina Grendene Muller
- Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | | | - Luiza Souza Marques
- Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | | | | | | | - Cristina Wayne Nogueira
- Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas (LaftamBio Pampa), Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Silvana Peterini Boeira
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas (LaftamBio Pampa), Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Hecson Jesser Segat
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas (LaftamBio Pampa), Universidade Federal do Pampa, Itaqui, RS, Brazil.
| |
Collapse
|
6
|
Gonçalez JL, Shen J, Li W. Molecular Mechanisms of Rett Syndrome: Emphasizing the Roles of Monoamine, Immunity, and Mitochondrial Dysfunction. Cells 2024; 13:2077. [PMID: 39768168 PMCID: PMC11674639 DOI: 10.3390/cells13242077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Rett syndrome (RTT), which predominantly affects females, arises in most cases from mutations in the Methyl-CpG-binding Protein-2 (MECP2) gene. When MeCP2 is impaired, it disrupts the regulation of numerous genes, causing the production of dysfunctional proteins associated with various multi-systemic issues in RTT. In this review, we explore the current insights into molecular signaling related to monoamines, immune response, and mitochondrial function, and their implications for the pathophysiology of RTT. Research has shown that monoamines-such as dopamine, norepinephrine, epinephrine, serotonin, and histamine-exhibit alterations in RTT, contributing to a range of neurological symptoms. Furthermore, the immune system in RTT individuals demonstrates dysfunction through the abnormal activity of microglia, macrophages, lymphocytes, and non-immune cells, leading to the atypical release of inflammatory mediators and disruptions in the NF-κB signaling pathway. Moreover, mitochondria, essential for energy production and calcium storage, also show dysfunction in this condition. The delicate balance of producing and scavenging reactive oxygen species-termed redox balance-is disrupted in RTT. Targeting these molecular pathways presents a promising avenue for developing effective therapies.
Collapse
Affiliation(s)
- Julia Lopes Gonçalez
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.L.G.); (J.S.)
- Graduate Program in Behavioral Neuroscience, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jenny Shen
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.L.G.); (J.S.)
| | - Wei Li
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.L.G.); (J.S.)
| |
Collapse
|
7
|
Kawata A, Kaneda Y, Matsunaga D, Nakagawa H, Togo F, Yasumatsu M, Ishiwata T. Influence of extreme light/dark cycles on monoamine levels, physiological indices, and emotional behaviors in rats. Chronobiol Int 2024; 41:1516-1532. [PMID: 39618305 DOI: 10.1080/07420528.2024.2434173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024]
Abstract
Aberrant light/dark (LD) cycles are prevalent in modern society due to electric light usage, leading to mood disorders from circadian disruption or misalignment. However, research on the physiological and behavioral effects of LD variations on brain neurotransmitters is limited. We investigated the effects of extreme LD cycles on body weight (BW), core body temperature (Tcore), locomotor activity (ACT), emotional behaviors, and monoamine levels (noradrenaline [NA], dopamine [DA], and serotonin [5-HT]) in male Wistar rats that were exposed to 1 month of either long light phase (20 L:4D), long dark phase (4 L:20D), or normal (12 L:12D) LD cycles. The 20 L:4D rats exhibited blunted rhythms, with decreased amplitude and advanced/delayed acrophase in Tcore and ACT, alongside increased BW. The 4 L:20D rats showed circadian misalignment, with increased/decreased amplitude in Tcore or ACT and delayed acrophase in Tcore and ACT, also gaining BW. In the 20 L:4D group, NA and 5-HT levels decreased in the suprachiasmatic nucleus and amygdala, respectively, while the 4 L:20D group had increased DA and 5-HT levels in the caudate putamen and dorsomedial hypothalamus, respectively. Open field and social interaction tests indicated anxiety-like behaviors in both test groups. Overall, each extreme LD cycle affected Tcore, ACT amplitude, acrophase, and monoamine levels differently, inducing anxiogenic responses.
Collapse
Affiliation(s)
- Akira Kawata
- Graduate School of Community and Human Services, Rikkyo University, Saitama, Japan
| | - Yuta Kaneda
- Graduate School of Community and Human Services, Rikkyo University, Saitama, Japan
| | - Daisuke Matsunaga
- Department of Health-Promotion and Sports Science, Osaka Electro-Communication University, Osaka, Japan
| | - Hikaru Nakagawa
- College of Sport and Wellness, Rikkyo University, Saitama, Japan
| | - Fumiharu Togo
- Department of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Mikinobu Yasumatsu
- Graduate School of Community and Human Services, Rikkyo University, Saitama, Japan
- College of Sport and Wellness, Rikkyo University, Saitama, Japan
| | - Takayuki Ishiwata
- Graduate School of Community and Human Services, Rikkyo University, Saitama, Japan
- College of Sport and Wellness, Rikkyo University, Saitama, Japan
| |
Collapse
|
8
|
Xiao X, Ni W, Yang Y, Chen Q, Zhang Y, Sun Y, Liu Q, Zhang GJ, Yao Q, Chen S. Platinum nanowires/MXene nanosheets/porous carbon ternary nanocomposites for in situ monitoring of dopamine released from neuronal cells. Talanta 2024; 278:126496. [PMID: 38996563 DOI: 10.1016/j.talanta.2024.126496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
Dopamine is an important neurotransmitter in the body and closely related to many neurodegenerative diseases. Therefore, the detection of dopamine is of great significance for the diagnosis and treatment of diseases, screening of drugs and unraveling of relevant pathogenic mechanisms. However, the low concentration of dopamine in the body and the complexity of the matrix make the accurate detection of dopamine challenging. Herein, an electrochemical sensor is constructed based on ternary nanocomposites consisting of one-dimensional Pt nanowires, two-dimensional MXene nanosheets, and three-dimensional porous carbon. The Pt nanowires exhibit excellent catalytic activity due to the abundant grain boundaries and highly undercoordinated atoms; MXene nanosheets not only facilitate the growth of Pt nanowires, but also enhance the electrical conductivity and hydrophilicity; and the porous carbon helps induce significant adsorption of dopamine on the electrode surface. In electrochemical tests, the ternary nanocomposite-based sensor achieves an ultra-sensitive detection of dopamine (S/N = 3) with a low limit of detection (LOD) of 28 nM, satisfactory selectivity and excellent stability. Furthermore, the sensor can be used for the detection of dopamine in serum and in situ monitoring of dopamine release from PC12 cells. Such a highly sensitive nanocomposite sensor can be exploited for in situ monitoring of important neurotransmitters at the cellular level, which is of great significance for related drug screening and mechanistic studies.
Collapse
Affiliation(s)
- Xueqian Xiao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Wei Ni
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Yang Yang
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518101, China
| | - Qinhua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518101, China
| | - Yulin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China; Hubei Shizhen Laboratory, Wuhan, Hubei, 430065, China
| | - Yujie Sun
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Qiming Liu
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95060, USA
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China; Hubei Shizhen Laboratory, Wuhan, Hubei, 430065, China.
| | - Qunfeng Yao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95060, USA.
| |
Collapse
|
9
|
Fesenko Z, Ptukha M, da Silva MM, de Carvalho RSM, Tsytsarev V, Gainetdinov RR, Faber J, Volnova AB. Electrophysiological and Behavioral Markers of Hyperdopaminergia in DAT-KO Rats. Biomedicines 2024; 12:2114. [PMID: 39335627 PMCID: PMC11428849 DOI: 10.3390/biomedicines12092114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Dopamine dysfunction (DA) is a hallmark of many neurological disorders. In this case, the mechanism of changes in dopamine transmission on behavior remains unclear. This study is a look into the intricate link between disrupted DA signaling, neuronal activity patterns, and behavioral abnormalities in a hyperdopaminergic animal model. Methods: To study the relationship between altered DA levels, neuronal activity, and behavioral deficits, local field potentials (LFPs) were recorded during four different behaviors in dopamine transporter knockout rats (DAT-KO). At the same time, local field potentials were recorded in the striatum and prefrontal cortex. Correlates of LFP and accompanying behavioral patterns in genetically modified (DAT-KO) and control animals were studied. Results: DAT-KO rats exhibited desynchronization between LFPs of the striatum and prefrontal cortex, particularly during exploratory behavior. A suppressive effect of high dopamine levels on the striatum was also observed. Wild-type rats showed greater variability in LFP patterns across certain behaviors, while DAT-KO rats showed more uniform patterns. Conclusions: The decisive role of the synchrony of STR and PFC neurons in the organization of motor acts has been revealed. The greater variability of control animals in certain forms of behavior probably suggests greater adaptability. More uniform patterns in DAT-KO rats, indicating a loss of striatal flexibility when adapting to specific motor tasks. It is likely that hyperdopaminergy in the DAT-KO rat reduces the efficiency of information processing due to less synchronized activity during active behavior.
Collapse
Affiliation(s)
- Zoia Fesenko
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Maria Ptukha
- Centre for Youth Mental Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Victoria 3010, Australia;
| | - Marcelo M. da Silva
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil
| | - Raquel S. Marques de Carvalho
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil
| | - Vassiliy Tsytsarev
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Saint Petersburg University Hospital, Saint Petersburg 190121, Russia
| | - Jean Faber
- Department of Neurology and Neurosurgery, Division of Neuroscience, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-900, Brazil
| | - Anna B. Volnova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Biological Faculty, Saint Petersburg State University, Saint Petersburg 199034, Russia
| |
Collapse
|
10
|
Huang Y, Qing R, Yang Y, Li M, Gao J. Sex and Age Differences in Ontogeny of Alloparenting: A Relation to Forebrain DRD1, DRD2, and HTR2A mRNA Expression? Dev Psychobiol 2024; 66:e22524. [PMID: 38973227 DOI: 10.1002/dev.22524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/08/2024] [Accepted: 06/15/2024] [Indexed: 07/09/2024]
Abstract
Alloparenting refers to the practice of caring for the young by individuals other than their biological parents. The relationship between the dynamic changes in psychological functions underlying alloparenting and the development of specific neuroreceptors remains unclear. Using a classic 10-day pup sensitization procedure, together with a pup preference and pup retrieval test on the EPM (elevated plus maze), we showed that both male and female adolescent rats (24 days old) had significantly shorter latency than adult rats (65 days old) to be alloparental, and their motivation levels for pups and objects were also significantly higher. In contrast, adult rats retrieved more pups than adolescent rats even though they appeared to be more anxious on the EPM. Analysis of mRNA expression using real-time-PCR revealed a higher dopamine D2 receptor (DRD2) receptor expression in adult hippocampus, amygdala, and ventral striatum, along with higher dopamine D1 receptor (DRD1) receptor expression in ventral striatum compared to adolescent rats. Adult rats also showed significantly higher levels of 5-hydroxytryptamine receptor 2A (HTR2A) receptor expression in the medial prefrontal cortex, amygdala, ventral striatum, and hypothalamus. These results suggest that the faster onset of alloparenting in adolescent rats compared to adult rats, along with the psychological functions involved, may be mediated by varying levels of dopamine DRD1, DRD2, and HTR2A in different forebrain regions.
Collapse
MESH Headings
- Animals
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D2/genetics
- Male
- Rats
- Female
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D1/genetics
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2A/genetics
- Prosencephalon/metabolism
- Empathy/physiology
- Age Factors
- Sex Characteristics
- Rats, Sprague-Dawley
- Behavior, Animal/physiology
- Amygdala/metabolism
Collapse
Affiliation(s)
- Yujie Huang
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China
| | - Ruoting Qing
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China
| | - Yu Yang
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China
| | - Ming Li
- Department of Psychology, Nanjing University, Nanjing, China
| | - Jun Gao
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China
| |
Collapse
|
11
|
Chujan S, Cholpraipimolrat W, Satayavivad J. Integrated Transcriptomics and Network Analysis Identified Altered Neural Mechanisms in Frontal Aging Brain-Associated Alzheimer's Disease. Biochem Genet 2024; 62:2382-2398. [PMID: 37934339 DOI: 10.1007/s10528-023-10549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. The late stage of AD typically develops after 60 years of age and AD pathogenesis can be detected predominately in the frontal lobe, which is responsible for memory. Multiple alterations in cellular mechanisms have been associated with AD, but there is no clear information on AD pathogenesis during brain aging. This study aimed to explore the differentially expressed genes (DEGs) in the frontal lobe of aging brains and to identify shared crucial mechanisms in the aging brain linked to AD pathogenesis. Three datasets were downloaded from the Gene Expression Omnibus (GEO). Biological function analysis was performed by DAVID and KEGG databases. An AD patient's cohort (GSE150696) was collected for verification of the enriched pathway. The results demonstrated that multiple neurochemical synapsis and regulation of the cytoskeleton are linked to AD pathogenesis during aging. Taken together, this study contributes to our further understanding of neural alterations during aging in AD that could be used to develop therapeutics for early intervention to prevent or slow progression.
Collapse
Affiliation(s)
- Suthipong Chujan
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand
| | | | - Jutamaad Satayavivad
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand.
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand.
| |
Collapse
|
12
|
Minj A, Sahu S, Singh Tanwar LK, Ghosh KK. Au@Ag nanoparticles: an analytical tool to study the effect of tyrosine on dopamine levels. RSC Adv 2024; 14:19271-19283. [PMID: 38887644 PMCID: PMC11181135 DOI: 10.1039/d4ra01872a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
The neurotransmitter dopamine (DA) plays important roles in the human body, including regulatory functions, movement, memory and motivational control. The direct intake of DA is impossible as it cannot cross the blood-brain barrier (BBB) efficiently. Notably, l-tyrosine works as a precursor of DA in the human brain. Herein, we report an analytical method that strongly supports the hypothesis that the intake of tyrosine (Tyr)-rich food enhances DA levels. For this analysis, citrate-coated gold-core silver-shell nanoparticles (Au@Ag NPs) were synthesized. The interaction of DA with the Au@Ag NPs was investigated using multiple spectroscopic techniques, and different thermodynamic parameters were evaluated to assign the binding mechanism. Real sample analysis with Tyr-rich food was also conducted to study the effect of Tyr on DA levels. Analytical studies were performed to verify the outcomes of the present work. The limit of detection of the Au@Ag NPs-DA system for Tyr was found to be 1.64 mM. This study can contribute to development in the fields of medicine and pharmaceuticals, particularly in regard to neuromedicine. One of the major advantages of this investigation is that it will fuel research interest in the supplementation of neurotransmitters and help categorize Tyr as a dietary precursor of dopamine.
Collapse
Affiliation(s)
- Angel Minj
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 Chhattisgarh India +91-94252 16204
| | - Sushama Sahu
- Govt. Narayanrao Meghawale Girls College Dhamtari Chhattisgarh India
| | - Lavkesh Kumar Singh Tanwar
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 Chhattisgarh India +91-94252 16204
| | - Kallol K Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 Chhattisgarh India +91-94252 16204
| |
Collapse
|
13
|
Meng Z, Sun S, Pu X, Wang J, Liao X, Huang Z, Deng Y, Yin G. Ratiometric fluorescence detection of dopamine based on copper nanoclusters and carbon dots. NANOTECHNOLOGY 2024; 35:235502. [PMID: 38417161 DOI: 10.1088/1361-6528/ad2e49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/28/2024] [Indexed: 03/01/2024]
Abstract
Nanoclusters for fluorescence detection are generally comprised of rare and expensive noble metals, and the nanoclusters based on more affordable transition metal have attracted increasing attention. This study designed a ratiometric fluorescent probe to detect dopamine (DA), an important neurotransmitter. With carbon dots encapsulated within silica (CDs@SiO2) as the reference, the emitted reference signal was almost unchanged due to the protection of inert silicon shell. Meanwhile, copper nanoclusters modified with 3-aminophenyl boronic acid (APBA-GSH-CuNCs) provided the sensing signal, in which the phenylboric acid could specifically recognize the cis-diol structure of DA, and caused the fluorescence quenching by photoinduced electron transfer. This dual emission ratiometric fluorescent probe exhibited high sensitivity and anti-interference, and was able to selectively responded to DA with a linear range of 0-1.4 mM, the detection limit of 5.6 nM, and the sensitivity of 815 mM-1. Furthermore, the probe successfully detected DA in human serum samples, yielding recoveries ranging from 92.5% to 102.7%. Overall, this study highlights the promising potential of this ratiometric probe for detecting DA.
Collapse
Affiliation(s)
- Zhihan Meng
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Shupei Sun
- College of Optoelectronics Engineering, Chengdu University of Information Technology, Chengdu 610225, Sichuan, People's Republic of China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Juang Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Yi Deng
- College of Chemical Engineering, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| |
Collapse
|
14
|
Heo C, Kwak HJ, Ngo LH, Woo RS, Lee SJ. Implementation of the neuro-glia-vascular unit through co-culture of adult neural stem cells and vascular cells and transcriptomic analysis of diverse Aβ assembly types. J Neurosci Methods 2024; 402:110029. [PMID: 38042304 DOI: 10.1016/j.jneumeth.2023.110029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/05/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND The blood-brain barrier (BBB) is a specialized layer between blood vessels and tissue in the brain, which is comprised of a neuro-glia-vascular (NGV) unit, thus play a vital role in various brain diseases. NEW METHOD We developed the in vitro NGV units by co-culturing brain microvascular endothelial cells (BMECs; bEnd.3) and primary neural stem cells extracted from subventricular zone of adult mice. This approach was designed to mimic the RNA profile conditions found in the microvessels of a mouse brain and confirmed through various comparative transcriptome analyses. RESULTS Optimal NGV unit development was achieved by adjusting cell density-dependent co-culture ratios. Specifically, the morphogenic development and neuronal association of astrocyte endfeet were well observed in the contact region with BMECs in the NGV unit. Through transcriptome analysis, we compared co-cultured bEnd.3/NSCs with monocultured bEnd.3 or NSCs and additionally compared them with previously reported mouse brain vascular tissue to show that this NGV unit model is a suitable in vitro model for neurological disease such as Alzheimer's disease (AD). COMPARISON WITH EXISTING METHOD(S) This in vitro NGV unit was formed from neural stem cells and vascular cells in the brain of adult mice, not embryos. It is very useful for studying brain disease mechanisms by identifying proteins and genes associated with diseases progress. CONCLUSIONS We suggest that this simple in vitro NGV model is appropriate to investigate the relationship between BBB changes and pathological factors in the fields of neurovascular biology and cerebrovascular diseases including AD.
Collapse
Affiliation(s)
- Chaejeong Heo
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, South Korea; Institute for Quantum Biophysics (IQB), Department of Biophysics, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hee-Jin Kwak
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, South Korea
| | - Long Hoang Ngo
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, South Korea
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 34824, South Korea.
| | - Sook-Jeong Lee
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, South Korea.
| |
Collapse
|
15
|
Burkert N, Roy S, Häusler M, Wuttke D, Müller S, Wiemer J, Hollmann H, Oldrati M, Ramirez-Franco J, Benkert J, Fauler M, Duda J, Goaillard JM, Pötschke C, Münchmeyer M, Parlato R, Liss B. Deep learning-based image analysis identifies a DAT-negative subpopulation of dopaminergic neurons in the lateral Substantia nigra. Commun Biol 2023; 6:1146. [PMID: 37950046 PMCID: PMC10638391 DOI: 10.1038/s42003-023-05441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
Here we present a deep learning-based image analysis platform (DLAP), tailored to autonomously quantify cell numbers, and fluorescence signals within cellular compartments, derived from RNAscope or immunohistochemistry. We utilised DLAP to analyse subtypes of tyrosine hydroxylase (TH)-positive dopaminergic midbrain neurons in mouse and human brain-sections. These neurons modulate complex behaviour, and are differentially affected in Parkinson's and other diseases. DLAP allows the analysis of large cell numbers, and facilitates the identification of small cellular subpopulations. Using DLAP, we identified a small subpopulation of TH-positive neurons (~5%), mainly located in the very lateral Substantia nigra (SN), that was immunofluorescence-negative for the plasmalemmal dopamine transporter (DAT), with ~40% smaller cell bodies. These neurons were negative for aldehyde dehydrogenase 1A1, with a lower co-expression rate for dopamine-D2-autoreceptors, but a ~7-fold higher likelihood of calbindin-d28k co-expression (~70%). These results have important implications, as DAT is crucial for dopamine signalling, and is commonly used as a marker for dopaminergic SN neurons.
Collapse
Affiliation(s)
- Nicole Burkert
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Shoumik Roy
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany.
| | - Max Häusler
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | | | - Sonja Müller
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Johanna Wiemer
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Helene Hollmann
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Marvin Oldrati
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Jorge Ramirez-Franco
- UMR_S 1072, Aix Marseille Université, INSERM, Faculté de Médecine Secteur Nord, Marseille, France
- INT, Aix Marseille Université, CNRS, Campus Santé Timone, Marseille, France
| | - Julia Benkert
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Michael Fauler
- Institute of General Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Johanna Duda
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Jean-Marc Goaillard
- UMR_S 1072, Aix Marseille Université, INSERM, Faculté de Médecine Secteur Nord, Marseille, France
- INT, Aix Marseille Université, CNRS, Campus Santé Timone, Marseille, France
| | - Christina Pötschke
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Moritz Münchmeyer
- Wolution GmbH & Co. KG, 82152, Munich, Germany
- Department of Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Rosanna Parlato
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 68167, Mannheim, Germany
| | - Birgit Liss
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany.
- Linacre College & New College, Oxford University, OX1 2JD, Oxford, UK.
| |
Collapse
|
16
|
Chen APF, Chen L, Shi KW, Cheng E, Ge S, Xiong Q. Nigrostriatal dopamine modulates the striatal-amygdala pathway in auditory fear conditioning. Nat Commun 2023; 14:7231. [PMID: 37945595 PMCID: PMC10636191 DOI: 10.1038/s41467-023-43066-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
The auditory striatum, a sensory portion of the dorsal striatum, plays an essential role in learning and memory. In contrast to its roles and underlying mechanisms in operant conditioning, however, little is known about its contribution to classical auditory fear conditioning. Here, we reveal the function of the auditory striatum in auditory-conditioned fear memory. We find that optogenetically inhibiting auditory striatal neurons impairs fear memory formation, which is mediated through the striatal-amygdala pathway. Using calcium imaging in behaving mice, we find that auditory striatal neuronal responses to conditioned tones potentiate across memory acquisition and expression. Furthermore, nigrostriatal dopaminergic projections plays an important role in modulating conditioning-induced striatal potentiation. Together, these findings demonstrate the existence of a nigro-striatal-amygdala circuit for conditioned fear memory formation and expression.
Collapse
Affiliation(s)
- Allen P F Chen
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
- Medical Scientist Training Program, Renaissance School of Medicine at SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Lu Chen
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Kaiyo W Shi
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Eileen Cheng
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
- Department of Physiology and Biophysics, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA.
| |
Collapse
|
17
|
Lawther AJ, Zieba J, Fang Z, Furlong TM, Conn I, Govindaraju H, Choong LLY, Turner N, Siddiqui KS, Bridge W, Merlin S, Hyams TC, Killingsworth M, Eapen V, Clarke RA, Walker AK. Antioxidant Behavioural Phenotype in the Immp2l Gene Knock-Out Mouse. Genes (Basel) 2023; 14:1717. [PMID: 37761857 PMCID: PMC10531238 DOI: 10.3390/genes14091717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondrial dysfunction is strongly associated with autism spectrum disorder (ASD) and the Inner mitochondrial membrane protein 2-like (IMMP2L) gene is linked to autism inheritance. However, the biological basis of this linkage is unknown notwithstanding independent reports of oxidative stress in association with both IMMP2L and ASD. To better understand IMMP2L's association with behaviour, we developed the Immp2lKD knockout (KO) mouse model which is devoid of Immp2l peptidase activity. Immp2lKD -/- KO mice do not display any of the core behavioural symptoms of ASD, albeit homozygous Immp2lKD -/- KO mice do display increased auditory stimulus-driven instrumental behaviour and increased amphetamine-induced locomotion. Due to reports of increased ROS and oxidative stress phenotypes in an earlier truncated Immp2l mouse model resulting from an intragenic deletion within Immp2l, we tested whether high doses of the synthetic mitochondrial targeted antioxidant (MitoQ) could reverse or moderate the behavioural changes in Immp2lKD -/- KO mice. To our surprise, we observed that ROS levels were not increased but significantly lowered in our new Immp2lKD -/- KO mice and that these mice had no oxidative stress-associated phenotypes and were fully fertile with no age-related ataxia or neurodegeneration as ascertained using electron microscopy. Furthermore, the antioxidant MitoQ had no effect on the increased amphetamine-induced locomotion of these mice. Together, these findings indicate that the behavioural changes in Immp2lKD -/- KO mice are associated with an antioxidant-like phenotype with lowered and not increased levels of ROS and no oxidative stress-related phenotypes. This suggested that treatments with antioxidants are unlikely to be effective in treating behaviours directly resulting from the loss of Immp2l/IMMP2L activity, while any behavioural deficits that maybe associated with IMMP2L intragenic deletion-associated truncations have yet to be determined.
Collapse
Affiliation(s)
- Adam J. Lawther
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Jerzy Zieba
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Department of Psychology, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Zhiming Fang
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
| | - Teri M. Furlong
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Illya Conn
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Hemna Govindaraju
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Laura L. Y. Choong
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Nigel Turner
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Khawar Sohail Siddiqui
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wallace Bridge
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sam Merlin
- Medical Science, School of Science, Western Sydney University, Campbelltown, Sydney, NSW 2751, Australia
| | - Tzipi Cohen Hyams
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
| | - Murray Killingsworth
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
- NSW Health Pathology, Liverpool Hospital Campus, 1 Campbell Street, Liverpool, NSW 2107, Australia
| | - Valsamma Eapen
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
- Academic Unit of Infant Child and Adolescent Services (AUCS), South Western Sydney Local Health District, Liverpool, NSW 2170, Australia
| | - Raymond A. Clarke
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
- Academic Unit of Infant Child and Adolescent Services (AUCS), South Western Sydney Local Health District, Liverpool, NSW 2170, Australia
| | - Adam K. Walker
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
18
|
Uchimura H, Kanai K, Arai M, Inoue M, Hishimoto A, Masukawa D, Goshima Y. Involvement of the L-DOPA receptor GPR143 in acute and chronic actions of methylphenidate. J Pharmacol Sci 2023; 152:178-181. [PMID: 37257945 DOI: 10.1016/j.jphs.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 06/02/2023] Open
Abstract
Methylphenidate (MPH) and methamphetamine (METH) are the current treatments of choice for attention deficit/hyperactivity disorder. We previously reported that METH induces the release of dopamine (DA) and of the neurotransmitter candidate L-3,4-dihydroxyphenylalanine (L-DOPA). In contrast, we here found that MPH increased the DA release while it did not affect the L-DOPA release from the dorsolateral striatum. Nevertheless, MPH-induced hyperlocomotion was reduced in Gpr143 (L-DOPA receptor) gene-deficient (Gpr143-/y) mice. The rewarding effect and increased c-fos expression induced by MPH were also attenuated in Gpr143-/y mice. Together, these findings suggest that GPR143 is involved in the acute and chronic actions of MPH.
Collapse
Affiliation(s)
- Hiraku Uchimura
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan; Department of Psychiatry, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kaori Kanai
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Masami Arai
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Miyu Inoue
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Daiki Masukawa
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Yoshio Goshima
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
19
|
He CB, Jin Y, Li Y, Zhang Q, Yang B, Xu M, Yang J, Yi XN, Dong YL, Wang J, Li YQ. Collateral projections from the ventral tegmental area/substantia nigra pars compacta to the nucleus accumbens and insular cortex in the rat. Anat Sci Int 2023:10.1007/s12565-023-00728-4. [PMID: 37160827 DOI: 10.1007/s12565-023-00728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/28/2023] [Indexed: 05/11/2023]
Abstract
Midbrain dopaminergic (DAergic) regions including ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) are involved in diverse brain functions. Previous studies demonstrated that the VTA/SNc to nucleus accumbens (NAc) pathway is critical in reward and motivation. Moreover, DAergic innervations within the insular cortex (IC) are reported to play important roles in pain regulation. To investigate whether VTA/SNc sends collateral projections to NAc and IC, we injected retrograde tracer Fluoro-Gold (FG) into the NAc and Fluorescent retrograde tracer beads (RetroBeads) into the ipsilateral IC in rats. Then, to detect whether collateral projection neurons participate in neuropathic pain, parts of the rats received the spare nerve injury (SNI) surgery. The immunofluorescence staining results showed that FG, RetroBeads, and FG/RetroBeads double-labeled neurons were distributed in the VTA/SNc bilaterally with an ipsilateral predominance. The proportion of FG/RetroBeads double-labeled neurons to the total number of FG and RetroBeads-labeled neurons was 16.7% and 30.3%, respectively. About 90.3% of FG/RetroBeads double-labeled neurons showed DAergic neuron marker tyrosine hydroxylase (TH)-immunoreactive (IR), whereas, only 7.5% exhibited a subset of GABAergic inhibitory projection neuron marker parvalbumin (PV)-IR. One week after SNI, about 53.1% and 33.6% of FG- and RetroBeads-labeled neurons were FG/Fos- and RetroBeads/Fos-IR neurons, respectively. Finally, about 35.9% of the FG/RetroBeads double-labeled neurons showed Fos-IR. The present study indicates that parts of DAergic and PV-IR GABAergic neurons in the VTA/SNc send collateral projections to both NAc and IC, which are activated under SNI-induced neuropathic pain, and probably contribute to the regulation of nociception.
Collapse
Affiliation(s)
- Cheng-Bo He
- Department of Human Anatomy, Basic Medical College, Zunyi Medical University, Zunyi, 563006, China
- Department of Anatomy & K. K. Leung Brain Research Centre, Air Force Military Medical University, Xi'an, 710032, China
| | - Yuan Jin
- Department of Human Anatomy, Basic Medical College, Zunyi Medical University, Zunyi, 563006, China
| | - Yan Li
- Department of Human Anatomy, Basic Medical College, Zunyi Medical University, Zunyi, 563006, China
| | - Qian Zhang
- Department of Human Anatomy, Basic Medical College, Zunyi Medical University, Zunyi, 563006, China
| | - Bai Yang
- Department of Anatomy & K. K. Leung Brain Research Centre, Air Force Military Medical University, Xi'an, 710032, China
| | - Mang Xu
- Department of Anatomy, Basic Medical College, Dali University, Dali, 671000, China
| | - Juan Yang
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Haikou, 571199, China
| | - Xi-Nan Yi
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Haikou, 571199, China
| | - Yu-Lin Dong
- Department of Anatomy & K. K. Leung Brain Research Centre, Air Force Military Medical University, Xi'an, 710032, China
| | - Jian Wang
- Department of Cardiothoracic Surgery, General Hospital of Western Theater Command, Chengdu, 610083, China.
| | - Yun-Qing Li
- Department of Anatomy & K. K. Leung Brain Research Centre, Air Force Military Medical University, Xi'an, 710032, China.
- Department of Anatomy, Basic Medical College, Dali University, Dali, 671000, China.
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Haikou, 571199, China.
| |
Collapse
|
20
|
Vavilis T, Stamoula E, Sachinidis A, Lamprinou M, Dardalas I, Papazisis G. Biopharmaceuticals against substance use disorders - Present and future. Eur J Pharmacol 2023; 944:175587. [PMID: 36775113 DOI: 10.1016/j.ejphar.2023.175587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Pharmacological treatments available for substance use disorder (SUD) focus on pharmacodynamics, agonizing or antagonizing the drug of abuse (DOA) on receptor level. Drawbacks of this approach include the reliance on long-term patient compliance, on-target off-site effects, perpetuation of addiction and unavailability for many DOAs. Newer, pharmacokinetic approaches are needed that restrict DOA's access to the brain or disrupt DOA-instated brain changes maintaining addiction. Biotechnology might be able to provide the right biopharmaceutical tools to deliver a fine-tuned solution with less side effects compared to currently available treatments. METHODS This review examines the available literature on biopharmaceuticals developed to treat SUD. RESULTS Active and passive immunization, metabolic enhancers that augment DOA metabolism and clearance, as well as genetic/epigenetic modulation are promising next generation SUD treatments. Active immunization relies on production of antidrug antibodies by means of vaccination, while passive immunization constitutes of exogenous administration of such antibodies. Metabolic enhancers include drug-specific metabolizing enzymes that can be administered or secreted by modified skin grafts, as well as catalytic antibodies that hasten DOA metabolism. Nanotechnological advances can also allow for brain delivery of siRNAs, mRNAs or DNA in order to modulate central, common in all addictions, genetic or epigenetic targets attenuating drug seeking behavior and reversing drug-induced brain changes. CONCLUSIONS and Scientific Significance: Biopharmaceuticals can in the future complement or even replace traditional pharmacodynamics approaches in SUD treatment. While passive and active immunization biopharmaceuticals have entered human clinical trials, metabolic enhancers and genetic approaches are at the preclinical level.
Collapse
Affiliation(s)
- Theofanis Vavilis
- Laboratory of Biology and Genetics, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; Department of Dentistry, European University Cyprus, Nicosia, 2404, Cyprus.
| | - Eleni Stamoula
- Department of Biotechnology, Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece; Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Sachinidis
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Malamatenia Lamprinou
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Dardalas
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Papazisis
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece; Clinical Research Unit, Special Unit for Biomedical Research and Education (SUBRE), School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
21
|
Jung DH, Lee HJ, Choi YW, Shin HK, Choi BT. Sex-specific responses to juvenile stress on the dopaminergic system in an animal model of attention-deficit hyperactivity disorder. Biomed Pharmacother 2023; 160:114352. [PMID: 36738506 DOI: 10.1016/j.biopha.2023.114352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The etiology of attention-deficit hyperactivity disorder (ADHD) strongly suggests a genetic component as the main cause; however, environmental factors such as early adverse experiences in childhood may play an interactive role with the genetic susceptibility. Spontaneously hypertensive rats (SHRs), a genetic ADHD model, and control Wistar Kyoto rats (WKYs) were subjected to chronic unpredictable mild stress during the juvenile period. The behavioral characteristics were monitored, and dopamine-related factors in the core regions of dopaminergic pathways were measured. Higher ADHD symptom-related behaviors were observed in response to juvenile stress in male SHRs than control WKYs. For the SHRs subjected to juvenile stress, hyperactivity in males, recognition in females, and depressant potential in both sexes were markedly observed. In the expression of 17 dopamine-related genes and proteins, greater changes were detected in male SHRs subjected to juvenile stress, especially in dopamine metabolic factors. Dopamine clearance factors involved in dopamine degradation and transport, especially catechol-O-methyltransferase (COMT) and dopamine transporter (DAT), showed sex-specific differences induced by juvenile stress in dopamine metabolite assays. Moreover, stressed male SHRs treated with methylphenidate showed better improvement in behavior than the females, resulting in different levels of COMT and DAT amelioration. These results suggest that juvenile stress potentially increased the incidence of ADHD in a genetic rat model, which showed sex-specific differences based on the expression of COMT and DAT. Therefore, our results could help develop gender-specific diagnostics and healthcare options for juvenile stress in patients with ADHD.
Collapse
Affiliation(s)
- Da Hee Jung
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hong Ju Lee
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea
| | - Young Whan Choi
- Department of Horticultural Bioscience, College of Natural Resource and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea.
| | - Byung Tae Choi
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea.
| |
Collapse
|
22
|
Palomba NP, Fortunato G, Pepe G, Modugno N, Pietracupa S, Damiano I, Mascio G, Carrillo F, Di Giovannantonio LG, Ianiro L, Martinello K, Volpato V, Desiato V, Acri R, Storto M, Nicoletti F, Webber C, Simeone A, Fucile S, Maglione V, Esposito T. Common and Rare Variants in TMEM175 Gene Concur to the Pathogenesis of Parkinson's Disease in Italian Patients. Mol Neurobiol 2023; 60:2150-2173. [PMID: 36609826 PMCID: PMC9984355 DOI: 10.1007/s12035-022-03203-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023]
Abstract
Parkinson's disease (PD) represents the most common neurodegenerative movement disorder. We recently identified 16 novel genes associated with PD. In this study, we focused the attention on the common and rare variants identified in the lysosomal K+ channel TMEM175. The study includes a detailed clinical and genetic analysis of 400 cases and 300 controls. Molecular studies were performed on patient-derived fibroblasts. The functional properties of the mutant channels were assessed by patch-clamp technique and co-immunoprecipitation. We have found that TMEM175 was highly expressed in dopaminergic neurons of the substantia nigra pars compacta and in microglia of the cerebral cortex of the human brain. Four common variants were associated with PD, including two novel variants rs2290402 (c.-10C > T) and rs80114247 (c.T1022C, p.M341T), located in the Kozak consensus sequence and TM3II domain, respectively. We also disclosed 13 novel highly penetrant detrimental mutations in the TMEM175 gene associated with PD. At least nine of these mutations (p.R35C, p. R183X, p.A270T, p.P308L, p.S348L, p. L405V, p.R414W, p.P427fs, p.R481W) may be sufficient to cause the disease, and the presence of mutations of other genes correlated with an earlier disease onset. In vitro functional analysis of the ion channel encoded by the mutated TMEM175 gene revealed a loss of the K+ conductance and a reduced channel affinity for Akt. Moreover, we observed an impaired autophagic/lysosomal proteolytic flux and an increase expression of unfolded protein response markers in patient-derived fibroblasts. These data suggest that mutations in TMEM175 gene may contribute to the pathophysiology of PD.
Collapse
Affiliation(s)
| | - Giorgio Fortunato
- Institute of Genetics and Biophysics, Adriano Buzzati-Traverso", National Research Council, Naples, Italy.,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania Luigi Vanvitelli, Caserta, Italy
| | | | | | | | - Immacolata Damiano
- Institute of Genetics and Biophysics, Adriano Buzzati-Traverso", National Research Council, Naples, Italy
| | | | - Federica Carrillo
- Institute of Genetics and Biophysics, Adriano Buzzati-Traverso", National Research Council, Naples, Italy
| | | | | | | | - Viola Volpato
- Dementia Research Institute, Cardiff University, Cardiff, UK
| | | | | | | | - Ferdinando Nicoletti
- IRCCS INM Neuromed, Pozzilli, IS, Italy.,Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Caleb Webber
- Dementia Research Institute, Cardiff University, Cardiff, UK.,Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy, Genetics, University of Oxford, Oxford, UK
| | - Antonio Simeone
- Institute of Genetics and Biophysics, Adriano Buzzati-Traverso", National Research Council, Naples, Italy
| | - Sergio Fucile
- IRCCS INM Neuromed, Pozzilli, IS, Italy.,Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | | | - Teresa Esposito
- IRCCS INM Neuromed, Pozzilli, IS, Italy. .,Institute of Genetics and Biophysics, Adriano Buzzati-Traverso", National Research Council, Naples, Italy.
| |
Collapse
|
23
|
Knezovic A, Piknjac M, Osmanovic Barilar J, Babic Perhoc A, Virag D, Homolak J, Salkovic-Petrisic M. Association of Cognitive Deficit with Glutamate and Insulin Signaling in a Rat Model of Parkinson's Disease. Biomedicines 2023; 11:683. [PMID: 36979662 PMCID: PMC10045263 DOI: 10.3390/biomedicines11030683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Cognitive deficit is a frequent non-motor symptom in Parkinson's disease (PD) with an unclear pathogenesis. Recent research indicates possible involvement of insulin resistance and glutamate excitotoxicity in PD development. We investigated cognitive performance and the brain glutamate and insulin signaling in a rat model of PD induced by bilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA). Cognitive functions were assessed with Passive Avoidance (PA) and Morris Water Maze (MWM) tests. The expression of tyrosine hydroxylase (TH) and proteins involved in insulin (insulin receptor - IR, phosphoinositide 3 kinase - pI3K, extracellular signal-regulated kinases-ERK) and glutamate receptor (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptos-AMPAR, N-methyl-D-aspartate receptor - NMDAR) signaling was assessed in the hippocampus (HPC), hypothalamus (HPT) and striatum (S) by immunofluorescence, Western blot and enzyme-linked immunosorbent assay (ELISA). Three months after 6-OHDA treatment, cognitive deficit was accompanied by decreased AMPAR activity and TH levels (HPC, S), while levels of the proteins involved in insulin signaling remained largely unchanged. Spearman's rank correlation revealed a strong positive correlation for pAMPAR-PA (S), pNMDAR-pI3K (HPC) and pNMDAR-IR (all regions). Additionally, a positive correlation was found for TH-ERK and TH-pI3K, and a negative one for TH-MWM/errors and pI3K-MWM/time (S). These results suggest a possible association between brain glutamate (but not insulin) signaling dysfunction and cognitive deficit in a rat PD model, detected three months after 6-OHDA treatment.
Collapse
Affiliation(s)
- Ana Knezovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marija Piknjac
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Davor Virag
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Jan Homolak
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Melita Salkovic-Petrisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
24
|
Pré D, Wooten AT, Biesmans S, Hinckley S, Zhou H, Sherman SP, Kakad P, Gearhart J, Bang AG. Development of a platform to investigate long-term potentiation in human iPSC-derived neuronal networks. Stem Cell Reports 2022; 17:2141-2155. [PMID: 35985330 PMCID: PMC9481914 DOI: 10.1016/j.stemcr.2022.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 01/25/2023] Open
Abstract
Impairment of long-term potentiation (LTP) is a common feature of many pre-clinical models of neurological disorders; however, studies in humans are limited by the inaccessibility of the brain. Human induced pluripotent stem cells (hiPSCs) provide a unique opportunity to study LTP in disease-specific genetic backgrounds. Here we describe a multi-electrode array (MEA)-based assay to investigate chemically induced LTP (cLTP) across entire networks of hiPSC-derived midbrain dopaminergic (DA) and cortical neuronal populations that lasts for days, allowing studies of the late phases of LTP and enabling detection of associated molecular changes. We show that cLTP on midbrain DA neuronal networks is largely independent of the N-methyl-D-aspartate receptor (NMDAR) and partially dependent on brain-derived neurotrophic factor (BDNF). Finally, we describe activity-regulated gene expression induced by cLTP. This cLTP-MEA assay platform will enable phenotype discovery and higher-throughput analyses of synaptic plasticity on hiPSC-derived neurons.
Collapse
Affiliation(s)
- Deborah Pré
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alexander T Wooten
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Steven Biesmans
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sandy Hinckley
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Haowen Zhou
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sean P Sherman
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Priyanka Kakad
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeffrey Gearhart
- Henry M. Jackson Foundation for the Advancement of Military Medicine on Contract to USAF School of Aerospace Medicine, Wright-Patterson AFB, Dayton, OH 45433, USA
| | - Anne G Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
25
|
Tanaka M, Szabó Á, Spekker E, Polyák H, Tóth F, Vécsei L. Mitochondrial Impairment: A Common Motif in Neuropsychiatric Presentation? The Link to the Tryptophan-Kynurenine Metabolic System. Cells 2022; 11:2607. [PMID: 36010683 PMCID: PMC9406499 DOI: 10.3390/cells11162607] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 02/07/2023] Open
Abstract
Nearly half a century has passed since the discovery of cytoplasmic inheritance of human chloramphenicol resistance. The inheritance was then revealed to take place maternally by mitochondrial DNA (mtDNA). Later, a number of mutations in mtDNA were identified as a cause of severe inheritable metabolic diseases with neurological manifestation, and the impairment of mitochondrial functions has been probed in the pathogenesis of a wide range of illnesses including neurodegenerative diseases. Recently, a growing number of preclinical studies have revealed that animal behaviors are influenced by the impairment of mitochondrial functions and possibly by the loss of mitochondrial stress resilience. Indeed, as high as 54% of patients with one of the most common primary mitochondrial diseases, mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome, present psychiatric symptoms including cognitive impairment, mood disorder, anxiety, and psychosis. Mitochondria are multifunctional organelles which produce cellular energy and play a major role in other cellular functions including homeostasis, cellular signaling, and gene expression, among others. Mitochondrial functions are observed to be compromised and to become less resilient under continuous stress. Meanwhile, stress and inflammation have been linked to the activation of the tryptophan (Trp)-kynurenine (KYN) metabolic system, which observably contributes to the development of pathological conditions including neurological and psychiatric disorders. This review discusses the functions of mitochondria and the Trp-KYN system, the interaction of the Trp-KYN system with mitochondria, and the current understanding of the involvement of mitochondria and the Trp-KYN system in preclinical and clinical studies of major neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Masaru Tanaka
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Eleonóra Spekker
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Helga Polyák
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Fanni Tóth
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - László Vécsei
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
26
|
Kosillo P, Ahmed KM, Aisenberg EE, Karalis V, Roberts BM, Cragg SJ, Bateup HS. Dopamine neuron morphology and output are differentially controlled by mTORC1 and mTORC2. eLife 2022; 11:e75398. [PMID: 35881440 PMCID: PMC9328766 DOI: 10.7554/elife.75398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/08/2022] [Indexed: 02/07/2023] Open
Abstract
The mTOR pathway is an essential regulator of cell growth and metabolism. Midbrain dopamine neurons are particularly sensitive to mTOR signaling status as activation or inhibition of mTOR alters their morphology and physiology. mTOR exists in two distinct multiprotein complexes termed mTORC1 and mTORC2. How each of these complexes affect dopamine neuron properties, and whether they have similar or distinct functions is unknown. Here, we investigated this in mice with dopamine neuron-specific deletion of Rptor or Rictor, which encode obligatory components of mTORC1 or mTORC2, respectively. We find that inhibition of mTORC1 strongly and broadly impacts dopamine neuron structure and function causing somatodendritic and axonal hypotrophy, increased intrinsic excitability, decreased dopamine production, and impaired dopamine release. In contrast, inhibition of mTORC2 has more subtle effects, with selective alterations to the output of ventral tegmental area dopamine neurons. Disruption of both mTOR complexes leads to pronounced deficits in dopamine release demonstrating the importance of balanced mTORC1 and mTORC2 signaling for dopaminergic function.
Collapse
Affiliation(s)
- Polina Kosillo
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Kamran M Ahmed
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Erin E Aisenberg
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Vasiliki Karalis
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Bradley M Roberts
- Department of Physiology, Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | - Stephanie J Cragg
- Department of Physiology, Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | - Helen S Bateup
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
- Chan Zuckerberg Biohub, San FranciscoSan FranciscoUnited States
| |
Collapse
|
27
|
Bono F, Mutti V, Tomasoni Z, Sbrini G, Missale C, Fiorentini C. Recent Advances in Dopamine D3 Receptor Heterodimers: Focus on Dopamine D3 and D1 Receptor-Receptor Interaction and Striatal Function. Curr Top Behav Neurosci 2022; 60:47-72. [PMID: 35505059 DOI: 10.1007/7854_2022_353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
G protein-coupled receptors (GPCR) heterodimers represent new entities with unique pharmacological, signalling, and trafficking properties, with specific distribution restricted to those cells where the two interacting receptors are co-expressed. Like other GPCR, dopamine D3 receptors (D3R) directly interact with various receptors to form heterodimers: data showing the D3R physical interaction with both GPCR and non-GPCR receptors have been provided including D3R interaction with other dopamine receptors. The aim of this chapter is to summarize current knowledge of the distinct roles of heterodimers involving D3R, focusing on the D3R interaction with the dopamine D1 receptor (D1R): the D1R-D3R heteromer, in fact, has been postulated in both ventral and motor striatum. Interestingly, since both D1R and D3R have been implicated in several pathological conditions, including schizophrenia, motor dysfunctions, and substance use disorders, the D1R-D3R heteromer may represent a potential drug target for the treatment of these diseases.
Collapse
Affiliation(s)
- Federica Bono
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Veronica Mutti
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Zaira Tomasoni
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giulia Sbrini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Missale
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Chiara Fiorentini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
28
|
Ekker M. Dopamine in Health and Disease. Biomedicines 2021; 9:biomedicines9111644. [PMID: 34829873 PMCID: PMC8615827 DOI: 10.3390/biomedicines9111644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
The neurotransmitter dopamine (DA) is generally associated with Parkinson's disease (PD) [...].
Collapse
Affiliation(s)
- Marc Ekker
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|