1
|
Li H, Cao Y, Zhao G, Wang G, Huang G, Wang L, Ding Z, Tang PMK, Li C. ORAI2 is Important for the Development of Early-Stage Postirradiation Fibrosis in Salivary Glands. Int J Radiat Oncol Biol Phys 2025; 121:798-810. [PMID: 39384103 DOI: 10.1016/j.ijrobp.2024.09.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 10/11/2024]
Abstract
PURPOSE Although postirradiation hyposalivation significantly impairs patient quality of life, the underlying mechanisms driving radiation-induced salivary gland fibrosis and hyposalivation remain poorly understood. This study aims to explore the role of calcium-mediated signaling pathways in radiation-induced salivary gland fibrosis. METHODS AND MATERIALS Primary human submandibular gland (SG) cells and C57BL/6J female mouse SGs were exposed to irradiation to model fibrosis development. Following 15 Gy irradiation exposure, RNA sequencing and bioinformatic analysis were conducted on mouse SGs. The effects of store-operated calcium entry (SOCE) inhibition using SKF96365 and YM58483 on fibrosis markers were assessed in vitro and in vivo. Additionally, the involvement of ORAI2 protein and the newly identified JNK/NFAT1/transforming growth factor β1 (TGF-β1) signaling axis in SG fibrosis was explored. RESULTS We identified that the calcium release-activated calcium modulator ORAI2 was important in promoting early-stage postirradiation fibrosis in SGs. Calcium channel signaling was activated in both human patients and irradiated C57BL/6J female mice SGs. Inhibition of SOCE signaling effectively blocked fibrosis in an ORAI2-dependent manner 30 days after irradiation. Our mechanistic studies revealed a novel ORAI2/JNK/NFAT1 axis within the SOCE pathway critical in driving TGF-β1-mediated fibrogenesis. Encouragingly, pharmacologic inhibition of NFAT1 significantly mitigated radiation-induced SG fibrosis and restored saliva flow to 84.61% of normal levels in treated mice 30 days after irradiation, without detectable side effects. CONCLUSIONS Our findings highlight the significance of the ORAI2-mediated calcium signaling pathway, specifically via the ORAI2/JNK/NFAT1 axis, in promoting TGF-β1 expression and contributing to the development of early-stage salivary gland fibrosis following irradiation exposure. Targeting the ORAI2/JNK/NFAT1 axis emerges as a promising therapeutic strategy to alleviate radiation-induced hyposalivation and fibrosis, potentially improving the quality of life for patients undergoing radiation therapy.
Collapse
Affiliation(s)
- Honglin Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Guile Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guanru Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guangzhao Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Wang
- Department of Dentistry, The Second People's Hospital of Tibet Autonomous Region, Lhasa, China
| | - Zhangfan Ding
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong; Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong.
| | - Chunjie Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Gwanyanya A, Mubagwa K. Emerging role of transient receptor potential (TRP) ion channels in cardiac fibroblast pathophysiology. Front Physiol 2022; 13:968393. [PMID: 36277180 PMCID: PMC9583832 DOI: 10.3389/fphys.2022.968393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac fibroblasts make up a major proportion of non-excitable cells in the heart and contribute to the cardiac structural integrity and maintenance of the extracellular matrix. During myocardial injury, fibroblasts can be activated to trans-differentiate into myofibroblasts, which secrete extracellular matrix components as part of healing, but may also induce cardiac fibrosis and pathological cardiac structural and electrical remodeling. The mechanisms regulating such cellular processes still require clarification, but the identification of transient receptor potential (TRP) channels in cardiac fibroblasts could provide further insights into the fibroblast-related pathophysiology. TRP proteins belong to a diverse superfamily, with subgroups such as the canonical (TRPC), vanilloid (TRPV), melastatin (TRPM), ankyrin (TRPA), polycystin (TRPP), and mucolipin (TRPML). Several TRP proteins form non-selective channels that are permeable to cations like Na+ and Ca2+ and are activated by various chemical and physical stimuli. This review highlights the role of TRP channels in cardiac fibroblasts and the possible underlying signaling mechanisms. Changes in the expression or activity of TRPs such as TRPCs, TRPVs, TRPMs, and TRPA channels modulate cardiac fibroblasts and myofibroblasts, especially under pathological conditions. Such TRPs contribute to cardiac fibroblast proliferation and differentiation as well as to disease conditions such as cardiac fibrosis, atrial fibrillation, and fibroblast metal toxicity. Thus, TRP channels in fibroblasts represent potential drug targets in cardiac disease.
Collapse
Affiliation(s)
- Asfree Gwanyanya
- Department of Human Biology, University of Cape Town, Cape Town, South Africa
- *Correspondence: Asfree Gwanyanya,
| | - Kanigula Mubagwa
- Department of Cardiovascular Sciences, K U Leuven, Leuven, Belgium
- Department of Basic Sciences, Faculty of Medicine, Université Catholique de Bukavu, Bukavu, Democratic Republic of Congo
| |
Collapse
|
3
|
Chen PH, Chung CC, Liu SH, Kao YH, Chen YJ. Lithium Treatment Improves Cardiac Dysfunction in Rats Deprived of Rapid Eye Movement Sleep. Int J Mol Sci 2022; 23:ijms231911226. [PMID: 36232526 PMCID: PMC9570242 DOI: 10.3390/ijms231911226] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022] Open
Abstract
Rapid eye movement (REM) sleep deprivation triggers mania and induces cardiac fibrosis. Beyond neuroprotection, lithium has cardioprotective potential and antifibrotic activity. This study investigated whether lithium improved REM sleep deprivation-induced cardiac dysfunction and evaluated the potential mechanisms. Transthoracic echocardiography, histopathological analysis, and Western blot analysis were performed in control and REM sleep-deprived rats with or without lithium treatment (LiCl of 1 mmol/kg/day administered by oral gavage for 4 weeks) in vivo and in isolated ventricular preparations. The results revealed that REM sleep-deprived rats exhibited impaired contractility and greater fibrosis than control and lithium-treated REM sleep-deprived rats. Western blot analysis showed that REM sleep-deprived hearts had higher expression levels of transforming growth factor beta (TGF-β), phosphorylated Smad 2/3, and alpha-smooth muscle actin than lithium-treated REM sleep-deprived and control hearts. Moreover, lithium-treated REM sleep-deprived hearts had lower expression of angiotensin II type 1 receptor, phosphorylated nuclear factor kappa B p65, calcium release-activated calcium channel protein 1, transient receptor potential canonical (TRPC) 1, and TRPC3 than REM sleep-deprived hearts. The findings suggest that lithium attenuates REM sleep deprivation-induced cardiac fibrogenesis and dysfunction possibly through the downregulation of TGF-β, angiotensin II, and Ca2+ signaling.
Collapse
Affiliation(s)
- Pao-Huan Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Psychiatry, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Cheng-Chih Chung
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Shuen-Hsin Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Correspondence: (Y.-H.K.); (Y.-J.C.)
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (Y.-H.K.); (Y.-J.C.)
| |
Collapse
|
4
|
Vichaikul S, Gurrea-Rubio M, Amin MA, Campbell PL, Wu Q, Mattichak MN, Brodie WD, Palisoc PJ, Ali M, Muraoka S, Ruth JH, Model EN, Rohraff DM, Hervoso JL, Mao-Draayer Y, Fox DA, Khanna D, Sawalha AH, Tsou PS. Inhibition of histone readers bromodomain extra-terminal proteins alleviates skin fibrosis in experimental models of scleroderma. JCI Insight 2022; 7:150871. [PMID: 35349485 PMCID: PMC9090238 DOI: 10.1172/jci.insight.150871] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
Binding of the bromodomain and extraterminal domain proteins (BETs) to acetylated histone residues is critical for gene transcription. We sought to determine the antifibrotic efficacy and potential mechanisms of BET inhibition in systemic sclerosis (SSc). Blockade of BETs was done using a pan-BET inhibitor, JQ1; BRD2 inhibitor, BIC1; or BRD4 inhibitors AZD5153 or ARV825. BET inhibition, specifically BRD4 blockade, showed antifibrotic effects in an animal model of SSc and in patient-derived diffuse cutaneous SSc (dcSSc) fibroblasts. Transcriptome analysis of JQ1-treated dcSSc fibroblasts revealed differentially expressed genes related to extracellular matrix, cell cycle, and calcium (Ca2+) signaling. The antifibrotic effect of BRD4 inhibition was mediated at least in part by downregulation of Ca2+/calmodulin–dependent protein kinase II α and reduction of intracellular Ca2+ concentrations. On the basis of these results, we propose targeting Ca2+ pathways or BRD4 as potentially novel therapeutic approaches for progressive tissue fibrosis.
Collapse
Affiliation(s)
- Sirapa Vichaikul
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
| | - Mikel Gurrea-Rubio
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
| | - M. Asif Amin
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
| | - Phillip L. Campbell
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
| | - Qi Wu
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Megan N. Mattichak
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
| | - William D. Brodie
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
| | - Pamela J. Palisoc
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
| | - Mustafa Ali
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
| | - Sei Muraoka
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
| | - Jeffrey H. Ruth
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
| | - Ellen N. Model
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
| | - Dallas M. Rohraff
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
| | - Jonatan L. Hervoso
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
| | - Yang Mao-Draayer
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - David A. Fox
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
| | - Dinesh Khanna
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
- University of Michigan Scleroderma Program, Ann Arbor, Michigan, USA
| | - Amr H. Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Rheumatology and Clinical Immunology; Department of Medicine
- Lupus Center of Excellence; and
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Pei-Suen Tsou
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
- University of Michigan Scleroderma Program, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Regional Diversities in Fibrogenesis Weighed as a Key Determinant for Atrial Arrhythmogenesis. Biomedicines 2021; 9:biomedicines9121900. [PMID: 34944715 PMCID: PMC8698388 DOI: 10.3390/biomedicines9121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 11/18/2022] Open
Abstract
Atrial fibrosis plays a key role in atrial myopathy, resulting in the genesis of atrial fibrillation (AF). The abnormal distribution of fibrotic tissue, electrical coupling, paracrine interactions, and biomechanical–electrical interactions have all been suggested as causes of fibrosis-related arrhythmogenesis. Moreover, the regional difference in fibrogenesis, specifically the left atrium (LA) exhibiting a higher arrhythmogenesis and level of fibrosis than the right atrium (RA) in AF, is a key contributor to atrial arrhythmogenesis. LA fibroblasts have greater profibrotic cellular activities than RA fibroblasts, but knowledge about the regional diversity of atrial regional fibrogenesis remains limited. This article provides a comprehensive review of research findings on the association between fibrogenesis and arrhythmogenesis from laboratory to clinical evidence and updates the current understanding of the potential mechanism underlying the difference in fibrogenesis between the LA and RA.
Collapse
|
6
|
Sánchez J, Trenor B, Saiz J, Dössel O, Loewe A. Fibrotic Remodeling during Persistent Atrial Fibrillation: In Silico Investigation of the Role of Calcium for Human Atrial Myofibroblast Electrophysiology. Cells 2021; 10:2852. [PMID: 34831076 PMCID: PMC8616446 DOI: 10.3390/cells10112852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
During atrial fibrillation, cardiac tissue undergoes different remodeling processes at different scales from the molecular level to the tissue level. One central player that contributes to both electrical and structural remodeling is the myofibroblast. Based on recent experimental evidence on myofibroblasts' ability to contract, we extended a biophysical myofibroblast model with Ca2+ handling components and studied the effect on cellular and tissue electrophysiology. Using genetic algorithms, we fitted the myofibroblast model parameters to the existing in vitro data. In silico experiments showed that Ca2+ currents can explain the experimentally observed variability regarding the myofibroblast resting membrane potential. The presence of an L-type Ca2+ current can trigger automaticity in the myofibroblast with a cycle length of 799.9 ms. Myocyte action potentials were prolonged when coupled to myofibroblasts with Ca2+ handling machinery. Different spatial myofibroblast distribution patterns increased the vulnerable window to induce arrhythmia from 12 ms in non-fibrotic tissue to 22 ± 2.5 ms and altered the reentry dynamics. Our findings suggest that Ca2+ handling can considerably affect myofibroblast electrophysiology and alter the electrical propagation in atrial tissue composed of myocytes coupled with myofibroblasts. These findings can inform experimental validation experiments to further elucidate the role of myofibroblast Ca2+ handling in atrial arrhythmogenesis.
Collapse
Affiliation(s)
- Jorge Sánchez
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (O.D.); (A.L.)
| | - Beatriz Trenor
- Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitàt Politècnica de València, 46022 Valencia, Spain; (B.T.); (J.S.)
| | - Javier Saiz
- Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitàt Politècnica de València, 46022 Valencia, Spain; (B.T.); (J.S.)
| | - Olaf Dössel
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (O.D.); (A.L.)
| | - Axel Loewe
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (O.D.); (A.L.)
| |
Collapse
|