1
|
Zhang H, Shan AD, Huang YY, Gao MX, Wan CH, Ye SY, Gan CT, Sun HM, Cao XY, Yuan YS, Zhang KZ. Transcutaneous auricular vagus nerve stimulation improves cortical functional topological properties and intracortical facilitation in patients with Parkinson's disease. NPJ Parkinsons Dis 2025; 11:38. [PMID: 40025047 PMCID: PMC11873277 DOI: 10.1038/s41531-025-00889-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/14/2025] [Indexed: 03/04/2025] Open
Abstract
Our study aimed to investigate the neural mechanisms of taVNS in the motor symptoms of PD, focusing on the topological properties of cortical functional networks and cortical excitability. Thirty-two PD patients underwent functional near-infrared spectroscopy and transcranial magnetic stimulation evaluation prior to and after two-week taVNS, which were controlled by 20 healthy controls (HCs). PD patients exhibited decreased nodal efficiency (Ne) in the right M1 and increased Ne in the left pre-motor and supplementary motor area compared with HCs. The decreased Ne in the right M1 was negatively associated with UPDRS-III scores. Interestingly, taVNS treatment improved PD motor symptoms by increasing Ne in the right M1 and enhancing intracortical facilitation (ICF, ISI 10, and 15 ms). The increased Ne and ICF (ISI 15 ms) were negatively correlated with the decreased UPDRS-III scores. taVNS could improve nodal information processing efficiency in the M1 and enhance cortical facilitation to improve PD motor disorders.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ai-di Shan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ya-Yi Huang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meng-Xi Gao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen-Hui Wan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shi-Yi Ye
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cai-Ting Gan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui-Min Sun
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xing-Yue Cao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong-Sheng Yuan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Ke-Zhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Shan J, Li Z, Ji M, Zhang M, Zhang C, Zhu Y, Feng Z. Transcutaneous vagus nerve stimulation for Parkinson's disease: a systematic review and meta-analysis. Front Aging Neurosci 2025; 16:1498176. [PMID: 39877075 PMCID: PMC11772336 DOI: 10.3389/fnagi.2024.1498176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Background Transcutaneous vagus nerve stimulation (tVNS) has emerged as a novel noninvasive adjunct therapy for advanced Parkinson's disease (PD), yet no quantitative analysis had been conducted to assess its therapeutic effect. Objectives This review aimed to investigate the efficacy of tVNS on motor function, other potential clinical targets and its safety in various treatment conditions. Methods We searched six databases for randomized controlled trials (RCTs) that involved treating PD patients with tVNS. Primary outcome was motor functions, including severity of motor signs, functional mobility and balance, and gait parameters. Secondary outcomes were cognition, emotion, sleep related impairments, patient reported non-motor outcomes, and any adverse events. All outcomes were classified and analyzed according to the treatment duration and medication condition of an included study. Risk of bias was evaluated by referencing Cochrane risk of bias tool 1.0. Data was analyzed by Revman 5.4. Results 6 RCTs with 176 PD patient were included. Several motor functions and non-motor functions measured during on-medication condition (severity of motor signs -0.48 [95% CI -0.93, -0.04], gait -0.48 [95% CI -0.85, -0.1], patients reported non-motor outcomes -0.4 [95% CI -0.78, -0.03]), improved significantly. However, verbal fluency, sleep-related impairment, and fatigue were negatively impacted by tVNS during on-medication condition. No distinct adverse events were reported. Conclusion tVNS is a relatively safe adjunct treatment for PD. It has small to moderate therapeutic effects on motor functions and may negatively impact on a few other outcomes. Quality level of the evidence is low and further research is warranted. Systematic review registration https://www.crd.york.ac.uk/prospero/#recordDetails, identifier CRD42024503322 (PROSPERO).
Collapse
Affiliation(s)
- Jiatong Shan
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore, Singapore
- New York University Shanghai, Shanghai, China
| | - Zehong Li
- Nanchang University Queen Mary School, Nanchang, Jiangxi, China
| | - Minxiu Ji
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Miao Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caidi Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yikang Zhu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Feng
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Liu FJ, Wu J, Gong LJ, Yang HS, Chen H. Non-invasive vagus nerve stimulation in anti-inflammatory therapy: mechanistic insights and future perspectives. Front Neurosci 2024; 18:1490300. [PMID: 39605787 PMCID: PMC11599236 DOI: 10.3389/fnins.2024.1490300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Non-invasive vagus nerve stimulation (VNS) represents a transformative approach for managing a broad spectrum of inflammatory and autoimmune conditions, including rheumatoid arthritis and inflammatory bowel disease. This comprehensive review delineates the mechanisms underlying VNS, emphasizing the cholinergic anti-inflammatory pathway, and explores interactions within the neuro-immune and vagus-gut axes based on both clinical outcomes and pre-clinical models. Clinical applications have confirmed the efficacy of VNS in managing specific autoimmune diseases, such as rheumatoid arthritis, and chronic inflammatory conditions like inflammatory bowel disease, showcasing the variability in stimulation parameters and patient responses. Concurrently, pre-clinical studies have provided insights into the potential of VNS in modulating cardiovascular and broader inflammatory responses, paving the way for its translational application in clinical settings. Innovations in non-invasive VNS technology and precision neuromodulation are enhancing its therapeutic potential, making it a viable option for patients who are unresponsive to conventional treatments. Nonetheless, the widespread adoption of this promising therapy is impeded by regulatory challenges, patient compliance issues, and the need for extensive studies on long-term efficacy and safety. Future research directions will focus on refining VNS technology, optimizing treatment parameters, and exploring synergistic effects with other therapeutic modalities, which could revolutionize the management of chronic inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Fu-Jun Liu
- Neurology Medical Center II, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Jing Wu
- Department of Medical Imaging, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Li-Jun Gong
- Center of Surgical Anesthesia, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong-Shuai Yang
- Central Operating Room, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Huan Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Cheng W, Fang K, Ouyang X, Jin L, Song Y, Yu B. Vagus nerve stimulation with a small total charge transfer improves motor behavior and reduces neuroinflammation in a mouse model of Parkinson's disease. Neurochem Int 2024; 180:105871. [PMID: 39362497 DOI: 10.1016/j.neuint.2024.105871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/21/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by the loss of dopaminergic (DA) neurons in the substantia nigra (SN). Conventional treatments are ineffective in reversing disease progression. Recently, the therapeutic and rehabilitation potential of vagus nerve stimulation (VNS) in PD has been explored. However, the underlying mechanisms remain largely unknown. In this study, we investigated the neuroprotective effects of VNS in a lateral lesioned mice model of PD. Excluding controls, experimental mice received cuff electrode implantation on the left vagus nerve and 6-hydroxydopamine administration into the bilateral striatum. After ten days, electrical stimulation was delivered for 11 consecutive days onto PD animals. Behavioral tests were performed after stimulation. The expression of TH, Iba-1, GFAP, adrenergic receptors and cytokines in the SN and striatum was detected by immunofluorescence or western blotting. The activity of noradrenergic neurons in the locus coeruleus (LC) was also measured. Our results suggest that VNS improved behavioral performance in rod rotation, open field tests and pole-climbing tests in PD mice, accompanied by a decrease in the loss of dopaminergic neurons in the SN and increased TH expression in the striatum. Neuroinflammation-related factors, such as GFAP, Iba-1, TNF-α and IL-1β were also suppressed in PD mice after VNS compared to those without treatment. Furthermore, the proportion of c-Fos-positive noradrenergic neurons in the LC increased when animals received VNS. Additionally, the expression of the adrenergic receptor of α1BR was also upregulated after VNS compared to PD mice. In conclusion, VNS has potential as a novel PD therapy for neuroprotective effects, and indicate that activation of norepinephric neurons in LC may plays an important role in VNS treatment for PD.
Collapse
Affiliation(s)
- Wen Cheng
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China; Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Kexin Fang
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Xiaorong Ouyang
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Lingjing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Yunping Song
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China.
| | - Bin Yu
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
5
|
Evancho A, Do M, Fortenberry D, Billings R, Sartayev A, Tyler WJ. Vagus nerve stimulation in Parkinson's disease: a scoping review of animal studies and human subjects research. NPJ Parkinsons Dis 2024; 10:199. [PMID: 39448636 PMCID: PMC11502766 DOI: 10.1038/s41531-024-00803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Parkinson's Disease (PD) is a prevalent, progressive neurodegenerative disease with motor and non-motor symptoms. Vagus Nerve Stimulation (VNS) has emerged as a potential therapeutic approach for PD, but published research on this topic varies widely. This scoping review maps existing literature on VNS for PD, highlighting stimulation methods, operational parameters, safety profiles, neurophysiological mechanisms, and clinical outcomes in human and animal models. Online databases were used to identify 788 papers published between 2013 and 2023, from which 17 publications on invasive and non-invasive VNS in PD were selected. Studies showed high variability in VNS parameters and study design. Evidence in animal models and human subjects suggests potential neurophysiological effects on PD-related pathology and motor function improvements. However, significant gaps in the literature remain. Future research should include rigorous reporting of study design, standardization of stimulation parameters, and larger sample sizes to ultimately facilitate translation of VNS into clinical practice.
Collapse
Affiliation(s)
- Alexandra Evancho
- University of Alabama at Birmingham School of Health Professions, Birmingham, AL, USA.
| | - Melissa Do
- University of Alabama at Birmingham School of Engineering, Birmingham, AL, USA
| | | | - Rebecca Billings
- University of Alabama at Birmingham Libraries, Birmingham, AL, USA
| | - Alibek Sartayev
- University of Alabama at Birmingham Graduate Biomedical Sciences, Birmingham, AL, USA
| | - William J Tyler
- University of Alabama at Birmingham School of Health Professions, Birmingham, AL, USA
- University of Alabama at Birmingham School of Engineering, Birmingham, AL, USA
- University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| |
Collapse
|
6
|
Fu C, Hou X, Zheng C, Zhang Y, Gao Z, Yan Z, Ye Y, Liu B. Immediate modulatory effects of transcutaneous vagus nerve stimulation on patients with Parkinson's disease: a crossover self-controlled fMRI study. Front Aging Neurosci 2024; 16:1444703. [PMID: 39507202 PMCID: PMC11537911 DOI: 10.3389/fnagi.2024.1444703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Background Previous studies have evaluated the safety and efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) for the treatment of Parkinson's disease (PD). However, the mechanism underlying the effect of taVNS on PD remains to be elucidated. This study aimed to investigate the immediate effects of taVNS in PD patients. Methods This crossover self-controlled study included 50 PD patients. Each patient underwent three sessions of resting-state functional magnetic resonance imaging (rs-fMRI) under three conditions: real taVNS, sham taVNS, and no taVNS intervention. We analyzed whole-brain amplitude of low-frequency fluctuations (ALFF) from preprocessed fMRI data across different intervention conditions. ALFF values in altered brain regions were correlated with clinical symptoms in PD patients. Results Forty-seven participants completed the study and were included in the final analysis. Real taVNS was associated with a widespread decrease in ALFF in the right hemisphere, including the superior parietal lobule, precentral gyrus, postcentral gyrus, middle occipital gyrus, and cuneus (voxel p < 0.001, GRF corrected). The ALFF value in the right superior parietal lobule during real taVNS was negatively correlated with the Unified Parkinson's Disease Rating Scale Part III (r = -0.417, p = 0.004, Bonferroni corrected). Conclusion TaVNS could immediately modulate the functional activity of brain regions involved in superior parietal lobule, precentral gyrus, postcentral gyrus, middle occipital gyrus, and cuneus. These findings offer preliminary insights into the mechanism of taVNS in treating PD and bolster confidence in its long-term therapeutic potential. TaVNS appears to reduce ALFF values in specific brain regions, suggesting a potential modulation mechanism for treating PD.
Collapse
Affiliation(s)
- Chengwei Fu
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Acupuncture, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Hou
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunye Zheng
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhijie Gao
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhaoxian Yan
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongsong Ye
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Zhang Y, Zheng Z, Sun J, Xu S, Wei Y, Ding X, Ding G. The application of mesenchymal stem cells in the treatment of traumatic brain injury: Mechanisms, results, and problems. Histol Histopathol 2024; 39:1109-1131. [PMID: 38353136 DOI: 10.14670/hh-18-716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells that can be derived from a wide variety of human tissues and organs. They can differentiate into a variety of cell types, including osteoblasts, adipocytes, and chondrocytes, and thus show great potential in regenerative medicine. Traumatic brain injury (TBI) is an organic injury to brain tissue with a high rate of disability and death caused by an external impact or concussive force acting directly or indirectly on the head. The current treatment of TBI mainly includes symptomatic, pharmacological, and rehabilitation treatment. Although some efficacy has been achieved, the definitive recovery effect on neural tissue is still limited. Recent studies have shown that MSC therapies are more effective than traditional treatment strategies due to their strong multi-directional differentiation potential, self-renewal capacity, and low immunogenicity and homing properties, thus MSCs are considered to play an important role and are an ideal cell for the treatment of injurious diseases, including TBI. In this paper, we systematically reviewed the role and mechanisms of MSCs and MSC-derived exosomes in the treatment of TBI, thereby providing new insights into the clinical applications of MSCs and MSC-derived exosomes in the treatment of central nervous system disorders.
Collapse
Affiliation(s)
- Ying Zhang
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Zejun Zheng
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Jinmeng Sun
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Shuangshuang Xu
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yanan Wei
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Xiaoling Ding
- Clinical Competency Training Center, Shandong Second Medical University, Weifang, Shandong Province, China.
| | - Gang Ding
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, China.
| |
Collapse
|
8
|
Okazaki Y, Sasaki T, Hosomoto K, Tanimoto S, Kawai K, Nagase T, Sugahara C, Yabuno S, Kin K, Sasada S, Yasuhara T, Tanaka S, Date I. Cervical spinal cord stimulation exerts anti-epileptic effects in a rat model of epileptic seizure through the suppression of CCL2-mediated cascades. Sci Rep 2024; 14:14543. [PMID: 38914629 PMCID: PMC11196670 DOI: 10.1038/s41598-024-64972-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024] Open
Abstract
Epidural spinal cord stimulation (SCS) is indicated for the treatment of intractable pain and is widely used in clinical practice. In previous basic research, the therapeutic effects of SCS have been demonstrated for epileptic seizure. However, the mechanism has not yet been elucidated. In this study, we investigated the therapeutic effect of SCS and the influence of epileptic seizure. First, SCS in the cervical spine was performed. The rats were divided into four groups: control group and treatment groups with SCS conducted at 2, 50, and 300 Hz frequency. Two days later, convulsions were induced by the intraperitoneal administration of kainic acid, followed by video monitoring to assess seizures. We also evaluated glial cells in the hippocampus by fluorescent immunostaining, electroencephalogram measurements, and inflammatory cytokines such as C-C motif chemokine ligand 2 (CCL2) by quantitative real-time polymerase chain reaction. Seizure frequency and the number of glial cells were significantly lower in the 300 Hz group than in the control group. SCS at 300 Hz decreased gene expression level of CCL2, which induces monocyte migration. SCS has anti-seizure effects by inhibiting CCL2-mediated cascades. The suppression of CCL2 and glial cells may be associated with the suppression of epileptic seizure.
Collapse
Grants
- 22K16659 Japan Ministry of Education, Culture, Sports, Science, and Technology
- 22K16688 Japan Ministry of Education, Culture, Sports, Science, and Technology
- 22K09207 Japan Ministry of Education, Culture, Sports, Science, and Technology
Collapse
Affiliation(s)
- Yosuke Okazaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Kakeru Hosomoto
- Department of Neurosurgery, Kure Kyosai Hospital, Kure, Japan
| | - Shun Tanimoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Koji Kawai
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Takayuki Nagase
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Chiaki Sugahara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Satoru Yabuno
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kyohei Kin
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Susumu Sasada
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shota Tanaka
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Isao Date
- Department of Neurosurgery, Okayama Rosai Hospital, Okayama, Japan
| |
Collapse
|
9
|
Duan WX, Wang F, Liu JY, Liu CF. Relationship Between Short-chain Fatty Acids and Parkinson's Disease: A Review from Pathology to Clinic. Neurosci Bull 2024; 40:500-516. [PMID: 37755674 PMCID: PMC11003953 DOI: 10.1007/s12264-023-01123-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/15/2023] [Indexed: 09/28/2023] Open
Abstract
Parkinson's disease (PD) is a complicated neurodegenerative disease, characterized by the accumulation of α-synuclein (α-syn) in Lewy bodies and neurites, and massive loss of midbrain dopamine neurons. Increasing evidence suggests that gut microbiota and microbial metabolites are involved in the development of PD. Among these, short-chain fatty acids (SCFAs), the most abundant microbial metabolites, have been proven to play a key role in brain-gut communication. In this review, we analyze the role of SCFAs in the pathology of PD from multiple dimensions and summarize the alterations of SCFAs in PD patients as well as their correlation with motor and non-motor symptoms. Future research should focus on further elucidating the role of SCFAs in neuroinflammation, as well as developing novel strategies employing SCFAs and their derivatives to treat PD.
Collapse
Affiliation(s)
- Wen-Xiang Duan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Jun-Yi Liu
- Department of Neurology, Dushu Lake Hospital affiliated to Soochow University, Suzhou, 215125, China.
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
10
|
Bonaz B. The gut-brain axis in Parkinson's disease. Rev Neurol (Paris) 2024; 180:65-78. [PMID: 38129277 DOI: 10.1016/j.neurol.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
There is a bi-directional communication between the gut, including the microbiota, and the brain through the autonomic nervous system. Accumulating evidence has suggested a bidirectional link between gastrointestinal inflammation and neurodegeneration, in accordance with the concept of the gut-rain axis. An abnormal microbiota-gut-brain interaction contributes to the pathogeny of Parkinson's disease. This supports the hypothesis that Parkinson's disease originates in the gut to spread to the central nervous system, in particular through the vagus nerve. Targeting the gut-to-brain axis with vagus nerve stimulation, fecal microbiota transplantation, gut-selective antibiotics, as well as drugs targeting the leaky gut might be of interest in the management of Parkinson's disease.
Collapse
Affiliation(s)
- B Bonaz
- Service d'hépato-gastroentérologie, Grenoble institut neurosciences, université Grenoble-Alpes, Grenoble, France.
| |
Collapse
|
11
|
Kameda M, Kajimoto Y, Wanibuchi M. New therapeutic hypothesis for infantile extrinsic hydrocephalus. Front Neurol 2023; 14:1215560. [PMID: 37794877 PMCID: PMC10546040 DOI: 10.3389/fneur.2023.1215560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023] Open
Affiliation(s)
- Masahiro Kameda
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | | | | |
Collapse
|
12
|
Evancho A, Tyler WJ, McGregor K. A review of combined neuromodulation and physical therapy interventions for enhanced neurorehabilitation. Front Hum Neurosci 2023; 17:1151218. [PMID: 37545593 PMCID: PMC10400781 DOI: 10.3389/fnhum.2023.1151218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
Rehabilitation approaches for individuals with neurologic conditions have increasingly shifted toward promoting neuroplasticity for enhanced recovery and restoration of function. This review focuses on exercise strategies and non-invasive neuromodulation techniques that target neuroplasticity, including transcranial magnetic stimulation (TMS), vagus nerve stimulation (VNS), and peripheral nerve stimulation (PNS). We have chosen to focus on non-invasive neuromodulation techniques due to their greater potential for integration into routine clinical practice. We explore and discuss the application of these interventional strategies in four neurological conditions that are frequently encountered in rehabilitation settings: Parkinson's Disease (PD), Traumatic Brain Injury (TBI), stroke, and Spinal Cord Injury (SCI). Additionally, we discuss the potential benefits of combining non-invasive neuromodulation with rehabilitation, which has shown promise in accelerating recovery. Our review identifies studies that demonstrate enhanced recovery through combined exercise and non-invasive neuromodulation in the selected patient populations. We primarily focus on the motor aspects of rehabilitation, but also briefly address non-motor impacts of these conditions. Additionally, we identify the gaps in current literature and barriers to implementation of combined approaches into clinical practice. We highlight areas needing further research and suggest avenues for future investigation, aiming to enhance the personalization of the unique neuroplastic responses associated with each condition. This review serves as a resource for rehabilitation professionals and researchers seeking a comprehensive understanding of neuroplastic exercise interventions and non-invasive neuromodulation techniques tailored for specific diseases and diagnoses.
Collapse
Affiliation(s)
- Alexandra Evancho
- Department of Physical Therapy, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, United States
| | - William J. Tyler
- Department of Biomedical Engineering, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Physical Medicine and Rehabilitation, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Keith McGregor
- Department of Clinical and Diagnostic Studies, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
13
|
Hosomoto K, Sasaki T, Yasuhara T, Kameda M, Sasada S, Kin I, Kuwahara K, Kawauchi S, Okazaki Y, Yabuno S, Sugahara C, Kawai K, Nagase T, Tanimoto S, Borlongan CV, Date I. Continuous vagus nerve stimulation exerts beneficial effects on rats with experimentally induced Parkinson's disease: Evidence suggesting involvement of a vagal afferent pathway. Brain Stimul 2023; 16:594-603. [PMID: 36914065 DOI: 10.1016/j.brs.2023.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Vagus nerve stimulation (VNS) exerts neuroprotective and anti-inflammatory effects in preclinical models of central nervous system disorders, including Parkinson's disease (PD). VNS setting applied for experimental models is limited into single-time or intermittent short-duration stimulation. We developed a VNS device which could deliver continuous stimulation for rats. To date, the effects of vagal afferent- or efferent-selective stimulation on PD using continuous electrical stimulation remains to be determined. OBJECTIVE To investigate the effects of continuous and selective stimulation of vagal afferent or efferent fiber on Parkinsonian rats. METHODS Rats were divided into 5 group: intact VNS, afferent VNS (left VNS in the presence of left caudal vagotomy), efferent VNS (left VNS in the presence of left rostral vagotomy), sham, vagotomy. Rats underwent the implantation of cuff-electrode on left vagus nerve and 6-hydroxydopamine administration into the left striatum simultaneously. Electrical stimulation was delivered just after 6-OHDA administration and continued for 14 days. In afferent VNS and efferent VNS group, the vagus nerve was dissected at distal or proximal portion of cuff-electrode to imitate the selective stimulation of afferent or efferent vagal fiber respectively. RESULTS Intact VNS and afferent VNS reduced the behavioral impairments in cylinder test and methamphetamine-induced rotation test, which were accompanied by reduced inflammatory glial cells in substantia nigra with the increased density of the rate limiting enzyme in locus coeruleus. In contrast, efferent VNS did not exert any therapeutic effects. CONCLUSION Continuous VNS promoted neuroprotective and anti-inflammatory effect in experimental PD, highlighting the crucial role of the afferent vagal pathway in mediating these therapeutic outcomes.
Collapse
Affiliation(s)
- Kakeru Hosomoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan.
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Masahiro Kameda
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan; Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Susumu Sasada
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Ittetsu Kin
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Ken Kuwahara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Satoshi Kawauchi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Yosuke Okazaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Satoru Yabuno
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Chiaki Sugahara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Koji Kawai
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Takayuki Nagase
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Shun Tanimoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Cesario V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL, 33611, USA
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| |
Collapse
|
14
|
Wang C, Su T, Xiao L, Wang Y, Huo X, Li W, Ding J, Sun T. Right vagus nerve stimulation improves motor behavior by exerting neuroprotective effects in Parkinson's disease rats. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1314. [PMID: 36660708 PMCID: PMC9843310 DOI: 10.21037/atm-22-5366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Background Parkinson's disease (PD) is a common movement disorder disease. Left vagus nerve stimulation (LVNS) is a potential treatment option for PD. Compared with the left vagus nerve, the right vagus nerve is more closely connected with the midbrain dopaminergic neurons, which are the lesion locations of PD. However, whether right vagus nerve stimulation (RVNS) has a therapeutic effect on PD has not yet been studied. Therefore, in this study, we studied the therapeutic effect and underlying mechanism of RVNS using a PD rat model. Methods To establish the PD rat model, 8-week-old male Sprague-Dawley rats were intraperitoneally injected with rotenone for 21 days. The cuff electrodes were implanted into the right cervical vagal carotid sheaths of the rats. The right vagus nerve was continuously stimulated for 14 days using a radio stimulation system. Behavioral tests were performed before and after stimulation. Finally, tyrosine hydroxylase (TH), vesicular monoamine transporter 2 (VMAT2), and α-synuclein in the midbrain, including the substantia nigra (SN) and ventral tegmental area (VTA), were detected by immunofluorescence. Results A markedly lower distance traveled and rearing number was observed in the rotenone, rotenone + sham, and rotenone + RVNS groups compared to the vehicle group. After the stimulation days, the distance traveled and rearing number were both higher in the rotenone + RVNS group compared to the rotenone and rotenone + sham groups (P<0.01, P<0.0001). A remarkable increase in distance traveled and rearing number was observed in the rotenone + RVNS group after stimulation. TH expression in the vehicle group was significantly up-regulated than the other groups. RVNS markedly up-regulated TH expression level. A significantly higher expression of α-synuclein was observed in the rotenone, rotenone + sham, and rotenone + RVNS groups compared to the vehicle group. The expression of α-synuclein was lower in the rotenone + RVNS group compared to the rotenone and rotenone + sham groups. A markedly higher VMAT2 expression was observed in the vehicle group compared to other groups. RVNS significantly up-regulated VMAT2 expression. Conclusions The improved motor behavior and neuroprotective effects on the midbrain dopaminergic neurons in the PD rat model suggest that RVNS could be used as a potential treatment for PD.
Collapse
Affiliation(s)
- Chaofan Wang
- Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, China
| | - Tong Su
- Department of Radiology, Ningxia Hui Autonomous Region Hospital and Research Institute of traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Lifei Xiao
- Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, China
| | - Yangyang Wang
- Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, China
| | - Xianhao Huo
- Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, China
| | - Wenchao Li
- Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, China
| | - Jiangwei Ding
- Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, China
| | - Tao Sun
- Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
15
|
Upadhye AR, Kolluru C, Druschel L, Al Lababidi L, Ahmad SS, Menendez DM, Buyukcelik ON, Settell ML, Blanz SL, Jenkins MW, Wilson DL, Zhang J, Tatsuoka C, Grill WM, Pelot NA, Ludwig KA, Gustafson KJ, Shoffstall AJ. Fascicles split or merge every ∼560 microns within the human cervical vagus nerve. J Neural Eng 2022; 19:054001. [PMID: 36174538 PMCID: PMC10353574 DOI: 10.1088/1741-2552/ac9643] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022]
Abstract
Objective.Vagus nerve stimulation (VNS) is Food and Drug Administration-approved for epilepsy, depression, and obesity, and stroke rehabilitation; however, the morphological anatomy of the vagus nerve targeted by stimulatation is poorly understood. Here, we used microCT to quantify the fascicular structure and neuroanatomy of human cervical vagus nerves (cVNs).Approach.We collected eight mid-cVN specimens from five fixed cadavers (three left nerves, five right nerves). Analysis focused on the 'surgical window': 5 cm of length, centered around the VNS implant location. Tissue was stained with osmium tetroxide, embedded in paraffin, and imaged on a microCT scanner. We visualized and quantified the merging and splitting of fascicles, and report a morphometric analysis of fascicles: count, diameter, and area.Main results.In our sample of human cVNs, a fascicle split or merge event was observed every ∼560µm (17.8 ± 6.1 events cm-1). Mean morphological outcomes included: fascicle count (6.6 ± 2.8 fascicles; range 1-15), fascicle diameter (514 ± 142µm; range 147-1360µm), and total cross-sectional fascicular area (1.32 ± 0.41 mm2; range 0.58-2.27 mm).Significance.The high degree of fascicular splitting and merging, along with wide range in key fascicular morphological parameters across humans may help to explain the clinical heterogeneity in patient responses to VNS. These data will enable modeling and experimental efforts to determine the clinical effect size of such variation. These data will also enable efforts to design improved VNS electrodes.
Collapse
Affiliation(s)
- Aniruddha R Upadhye
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- APT Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| | - Chaitanya Kolluru
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Lindsey Druschel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- APT Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| | - Luna Al Lababidi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Sami S Ahmad
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Dhariyat M Menendez
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- APT Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| | - Ozge N Buyukcelik
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Megan L Settell
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Stephan L Blanz
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute of Neuroengineering (WITNe), University of Wisconsin-Madison, Madison, WI, United States of America
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - David L Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Jing Zhang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America
| | - Curtis Tatsuoka
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America
- FES Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States of America
- Department of Neurobiology, Duke University, Durham, NC, United States of America
- Department of Neurosurgery, Duke University, Durham, NC, United States of America
| | - Nicole A Pelot
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - Kip A Ludwig
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute of Neuroengineering (WITNe), University of Wisconsin-Madison, Madison, WI, United States of America
| | - Kenneth J Gustafson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- FES Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- APT Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| |
Collapse
|
16
|
Malatt C, Tagliati M. The role of the locus coeruleus/norepinephrine system in the pathogenesis of neurodegenerative disorders: An update. Curr Opin Neurol 2022; 35:220-229. [PMID: 35175974 DOI: 10.1097/wco.0000000000001042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The aim of this review was to provide an update on current and emerging knowledge of the neuropathological processes affecting the locus coeruleus/norepinephrine (LC/NE) system, their effect on Alzheimer's disease and Parkinson's disease symptomatology, including efforts to translate these notions into therapeutic actions targeting the noradrenergic system. RECENT FINDINGS Over the past 2 years, work from multiple groups has contributed to support an early role of locus coeruleus degeneration and/or hyperactivation in the neurodegenerative process, including a trigger of neuroinflammation. Imaging advances are allowing the quantification of locus coeruleus structural features in vivo, which is critical in the early stages of disease. Nonmotor and noncognitive symptoms, often secondary to the involvement of the LC/NE system, are becoming more important in the definition of these diseases and their treatment. SUMMARY The diverse symptomatology of Parkinson's disease and Alzheimer's disease, which is not limited to cardinal motor and cognitive abnormalities, strongly suggests a multisystem neurodegenerative process. In this context, it is increasingly clear how the LC/NE system plays a key role in the initiation and maintenance of the neurodegenerative process.
Collapse
Affiliation(s)
- Camille Malatt
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | |
Collapse
|
17
|
Liu TT, Morais A, Takizawa T, Mulder I, Simon BJ, Chen SP, Wang SJ, Ayata C, Yen JC. Efficacy profile of noninvasive vagus nerve stimulation on cortical spreading depression susceptibility and the tissue response in a rat model. J Headache Pain 2022; 23:12. [PMID: 35062860 PMCID: PMC8903561 DOI: 10.1186/s10194-022-01384-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022] Open
Abstract
Background Noninvasive vagus nerve stimulation (nVNS) has recently emerged as a promising therapy for migraine. We previously demonstrated that vagus nerve stimulation inhibits cortical spreading depression (CSD), the electrophysiological event underlying migraine aura and triggering headache; however, the optimal nVNS paradigm has not been defined. Methods Various intensities and doses of nVNS were tested to improve efficacy on KCl-evoked CSD frequency and electrical threshold of CSD in a validated rat model. Chronic efficacy was evaluated by daily nVNS delivery for four weeks. We also examined the effects of nVNS on neuroinflammation and trigeminovascular activation by western blot and immunohistochemistry. Results nVNS suppressed susceptibility to CSD in an intensity-dependent manner. Two 2-minute nVNS 5 min apart afforded the highest efficacy on electrical CSD threshold and frequency of KCl-evoked CSD. Daily nVNS for four weeks did not further enhance efficacy over a single nVNS 20 min prior to CSD. The optimal nVNS also attenuated CSD-induced upregulation of cortical cyclooxygenase-2, calcitonin gene-related peptide in trigeminal ganglia, and c-Fos expression in trigeminal nucleus caudalis. Conclusions Our study provides insight on optimal nVNS parameters to suppress CSD and suggests its benefit on CSD-induced neuroinflammation and trigeminovascular activation in migraine treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01384-1.
Collapse
|
18
|
Ramos-Martínez IE, Rodríguez MC, Cerbón M, Ramos-Martínez JC, Ramos-Martínez EG. Role of the Cholinergic Anti-Inflammatory Reflex in Central Nervous System Diseases. Int J Mol Sci 2021; 22:ijms222413427. [PMID: 34948222 PMCID: PMC8705572 DOI: 10.3390/ijms222413427] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
In several central nervous system diseases, it has been reported that inflammation may be related to the etiologic process, therefore, therapeutic strategies are being implemented to control inflammation. As the nervous system and the immune system maintain close bidirectional communication in physiological and pathological conditions, the modulation of inflammation through the cholinergic anti-inflammatory reflex has been proposed. In this review, we summarized the evidence supporting chemical stimulation with cholinergic agonists and vagus nerve stimulation as therapeutic strategies in the treatment of various central nervous system pathologies, and their effect on inflammation.
Collapse
Affiliation(s)
- Ivan Emmanuel Ramos-Martínez
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Université Paris Est Créteil (UPEC), 94010 Créteil, France;
| | - María Carmen Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, SSA, Morelos 62100, Mexico;
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Correspondence: (M.C.); (E.G.R.-M.)
| | - Juan Carlos Ramos-Martínez
- Cardiology Department, Hospital General Regional Lic. Ignacio Garcia Tellez IMSS, Yucatán 97150, Mexico;
| | - Edgar Gustavo Ramos-Martínez
- Escuela de Ciencias, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico
- Instituto de Cómputo Aplicado en Ciencias, Oaxaca 68044, Mexico
- Correspondence: (M.C.); (E.G.R.-M.)
| |
Collapse
|
19
|
Qian Z, Yang H, Li H, Liu C, Yang L, Qu Z, Li X. The Cholinergic Anti-Inflammatory Pathway Attenuates the Development of Atherosclerosis in Apoe-/- Mice through Modulating Macrophage Functions. Biomedicines 2021; 9:biomedicines9091150. [PMID: 34572339 PMCID: PMC8464862 DOI: 10.3390/biomedicines9091150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
(1) Background: The cholinergic anti-inflammatory pathway (CAP) has been implicated in the regulation of various diseases, including chronic inflammatory cardiovascular disorders such as atherosclerosis (AS). This study aims to explore the underlying regulatory mechanisms of CAP activity in the progression of AS. (2) Methods: The Apoe-/- mice were subjected to sham, bilateral cervical vagotomy surgery (VGX), and VGX supplemented with Gainesville Tokushima scientists (GTS)-21 (4 mg/kg/d) and then fed with a high-fat diet for 10 weeks. Atherosclerotic lesion size and inflammation levels were investigated by histology and inflammatory cytokines analysis. The blood M1/M2 macrophages were analyzed by flow cytometry. Primary mouse bone marrow-derived macrophages (BMDM), peritoneal macrophages, and RAW264.7 cells were treated with CAP agonists acetylcholine (Ach) and GTS-21 to study their effects on macrophage functions. (3) Results: Compared with the sham group, inhibition of CAP by the VGX resulted in growing aortic lipid plaque area, deteriorated inflammatory levels, and aberrant quantity of M1/M2 macrophages in Apoe-/- mice. However, these detrimental effects of VGX were significantly ameliorated by the reactivation of CAP through GTS-21 treatment. The in vitro study using macrophages revealed that stimulation with CAP agonists suppressed M1, but promoted M2 macrophage polarization through the upregulation of TNFAIP3 and phosphorylation STAT3 levels, respectively. Moreover, the activation of CAP inhibited the formation of macrophage foam cells in the peritoneal cavity by regulating genes related to cholesterol metabolism. (4) Conclusions: This study provides novel evidence and mechanisms that the CAP plays an important role in the regulation of AS development by controlling macrophage functions, implying a potential use of CAP activation as a therapeutic strategy for AS treatment.
Collapse
Affiliation(s)
- Zhengjiang Qian
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.Y.); (H.L.); (C.L.); (L.Y.); (Z.Q.)
- Correspondence: (Z.Q.); (X.L.)
| | - Haiyang Yang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.Y.); (H.L.); (C.L.); (L.Y.); (Z.Q.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongchao Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.Y.); (H.L.); (C.L.); (L.Y.); (Z.Q.)
| | - Chunhua Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.Y.); (H.L.); (C.L.); (L.Y.); (Z.Q.)
| | - Liang Yang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.Y.); (H.L.); (C.L.); (L.Y.); (Z.Q.)
| | - Zehui Qu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.Y.); (H.L.); (C.L.); (L.Y.); (Z.Q.)
| | - Xiang Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.Y.); (H.L.); (C.L.); (L.Y.); (Z.Q.)
- Correspondence: (Z.Q.); (X.L.)
| |
Collapse
|
20
|
Sigurdsson HP, Raw R, Hunter H, Baker MR, Taylor JP, Rochester L, Yarnall AJ. Noninvasive vagus nerve stimulation in Parkinson's disease: current status and future prospects. Expert Rev Med Devices 2021; 18:971-984. [PMID: 34461787 DOI: 10.1080/17434440.2021.1969913] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Parkinson's disease (PD) is a common progressive neurodegenerative disorder with multifactorial etiology. While dopaminergic medication is the standard therapy in PD, it provides limited symptomatic treatment and non-pharmacological interventions are currently being trialed. AREAS COVERED Recent pathophysiological theories of Parkinson's suggest that aggregated α-synuclein form in the gut and spread to nuclei in the brainstem via autonomic connections. In this paper, we review the novel hypothesis that noninvasive vagus nerve stimulation (nVNS), targeting efferent and afferent vagal projections, is a promising therapeutic tool to improve gait and cognitive control and ameliorate non-motor symptoms in people with Parkinson's. We conducted an unstructured search of the literature for any studies employing nVNS in PD as well as for studies examining the efficacy of nVNS on improving cognitive function and where nVNS has been applied to co-occurring conditions in PD. EXPERT OPINION Evidence of nVNS as a novel therapeutic to improve gait in PD is preliminary, but early signs indicate the possibility that nVNS may be useful to target dopa-resistant gait characteristics in early PD. The evidence for nVNS as a therapeutic tool is, however, limited and further studies are needed in both brain health and disease.
Collapse
Affiliation(s)
- Hilmar P Sigurdsson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rachael Raw
- Department of General Internal Medicine, South Tees Hospitals NHS Foundation Trust, Middlesbrough, UK
| | - Heather Hunter
- Department of Research, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Mark R Baker
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Clinical Neurophysiology, Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Lynn Rochester
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Neurosciences, Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, UK
| | - Alison J Yarnall
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Older People's Medicine, Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|