1
|
Guo D, Yan J, Yang Z, Chen M, Zhong W, Yuan X, Yu S. The immune regulatory role of exosomal miRNAs and their clinical application potential in heart failure. Front Immunol 2024; 15:1476865. [PMID: 39687609 PMCID: PMC11647038 DOI: 10.3389/fimmu.2024.1476865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Heart failure (HF) is a complex and debilitating condition characterized by the heart's inability to pump blood effectively, leading to significant morbidity and mortality. The abnormality of immune response is a key factor in the progression of HF, contributing to adverse cardiac remodeling and dysfunction. Exosomal microRNAs (miRNAs) play a pivotal role in regulating gene expression and cellular function, which are integral to the crosstalk between cardiac and immune cells, influencing immune cell functions, such as macrophage polarization, T cell activity, and cytokine production, thereby modulating various pathological processes of HF, such as inflammation, fibrosis, and cardiac dysfunction. This review emphasizes the immune-regulatory role of exosomal miRNAs in HF and highlights their clinical potential as diagnostic biomarkers and therapeutic agents.
Collapse
Affiliation(s)
- Dandan Guo
- Department of Cardiology, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Junchen Yan
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhenyu Yang
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mengzhu Chen
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weibo Zhong
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xingxing Yuan
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Siming Yu
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Nephrology II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Wu H, Qian X, Liang G. The Role of Small Extracellular Vesicles Derived from Mesenchymal Stromal Cells on Myocardial Protection: a Review of Current Advances and Future Perspectives. Cardiovasc Drugs Ther 2024; 38:1111-1122. [PMID: 37227567 PMCID: PMC10209575 DOI: 10.1007/s10557-023-07472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
Small extracellular vesicles (SEVs) secreted by mesenchymal stromal cells (MSCs) are considered one of the most promising biological therapies in recent years. The protective effect of MSCs-derived SEVs on myocardium is mainly related to their ability to deliver cargo, anti-inflammatory properties, promotion of angiogenesis, immunoregulation, and other factors. Herein, this review focuses on the biological properties, isolation methods, and functions of SEVs. Then, the roles and potential mechanisms of SEVs and engineered SEVs in myocardial protection are summarized. Finally, the current situation of clinical research on SEVs, the difficulties encountered, and the future fore-ground of SEVs are discussed. In conclusion, although there are some technical difficulties and conceptual contradictions in the research of SEVs, the unique biological functions of SEVs provide a new direction for the development of regenerative medicine. Further exploration is warranted to establish a solid experimental and theoretical basis for future clinical application of SEVs.
Collapse
Affiliation(s)
- Hongkun Wu
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou China
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou China
- Department of Cardiac Surgery, Guizhou Provincial People’s Hospital, Guiyang, Guizhou China
| | - Xingkai Qian
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou China
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou China
| | - Guiyou Liang
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou China
| |
Collapse
|
3
|
Trentini M, D’Amora U, Ronca A, Lovatti L, Calvo-Guirado JL, Licastro D, Monego SD, Delogu LG, Wieckowski MR, Barak S, Dolkart O, Zavan B. Bone Regeneration Revolution: Pulsed Electromagnetic Field Modulates Macrophage-Derived Exosomes to Attenuate Osteoclastogenesis. Int J Nanomedicine 2024; 19:8695-8707. [PMID: 39205866 PMCID: PMC11352519 DOI: 10.2147/ijn.s470901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction In the process of bone regeneration, a prominent role is played by macrophages involved in both the initial inflammation and the regeneration/vascularization phases, due to their M2 anti-inflammatory phenotype. Together with osteoclasts, they participate in the degradation of the bone matrix if the inflammatory process does not end. In this complex scenario, recently, much attention has been paid to extracellular communication mediated by nanometer-sized vesicles, with high information content, called exosomes (EVs). Considering these considerations, the purpose of the present work is to demonstrate how the presence of a pulsed electromagnetic field (PEMF) can positively affect communication through EVs. Methods To this aim, macrophages and osteoclasts were treated in vitro with PEMF and analyzed through molecular biology analysis and by electron microscopy. Moreover, EVs produced by macrophages were characterized and used to verify their activity onto osteoclasts. Results The results confirmed that PEMF not only reduces the inflammatory activity of macrophages and the degradative activity of osteoclasts but that the EVS produced by macrophages, obtained from PEMF treatment, positively affect osteoclasts by reducing their activity. Discussion The co-treatment of PEMF with M2 macrophage-derived EVs (M2-EVs) decreased osteoclastogenesis to a greater degree than separate treatments.
Collapse
Affiliation(s)
- Martina Trentini
- Translational Medicine Department, University of Ferrara, Ferrara, 44121, Italy
| | - Ugo D’Amora
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, 80125, Italy
| | - Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, 80125, Italy
| | - Luca Lovatti
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, 80125, Italy
| | - José Luis Calvo-Guirado
- Faculty of Health Sciences, Universidad Autonoma de Chile, Santiago de Chile, 7500912, Chile
| | | | | | | | - Mariusz R Wieckowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Barbara Zavan
- Translational Medicine Department, University of Ferrara, Ferrara, 44121, Italy
| |
Collapse
|
4
|
Yan L, Wang J, Cai X, Liou Y, Shen H, Hao J, Huang C, Luo G, He W. Macrophage plasticity: signaling pathways, tissue repair, and regeneration. MedComm (Beijing) 2024; 5:e658. [PMID: 39092292 PMCID: PMC11292402 DOI: 10.1002/mco2.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Macrophages are versatile immune cells with remarkable plasticity, enabling them to adapt to diverse tissue microenvironments and perform various functions. Traditionally categorized into classically activated (M1) and alternatively activated (M2) phenotypes, recent advances have revealed a spectrum of macrophage activation states that extend beyond this dichotomy. The complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications orchestrates macrophage polarization, allowing them to respond to various stimuli dynamically. Here, we provide a comprehensive overview of the signaling cascades governing macrophage plasticity, focusing on the roles of Toll-like receptors, signal transducer and activator of transcription proteins, nuclear receptors, and microRNAs. We also discuss the emerging concepts of macrophage metabolic reprogramming and trained immunity, contributing to their functional adaptability. Macrophage plasticity plays a pivotal role in tissue repair and regeneration, with macrophages coordinating inflammation, angiogenesis, and matrix remodeling to restore tissue homeostasis. By harnessing the potential of macrophage plasticity, novel therapeutic strategies targeting macrophage polarization could be developed for various diseases, including chronic wounds, fibrotic disorders, and inflammatory conditions. Ultimately, a deeper understanding of the molecular mechanisms underpinning macrophage plasticity will pave the way for innovative regenerative medicine and tissue engineering approaches.
Collapse
Affiliation(s)
- Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Jue Wang
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Xin Cai
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Han‐Ming Shen
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospitaland West China School of Basic Medical Sciences and Forensic MedicineSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| |
Collapse
|
5
|
Li H, Zhang J, Tan M, Yin Y, Song Y, Zhao Y, Yan L, Li N, Zhang X, Bai J, Jiang T, Li H. Exosomes based strategies for cardiovascular diseases: Opportunities and challenges. Biomaterials 2024; 308:122544. [PMID: 38579591 DOI: 10.1016/j.biomaterials.2024.122544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
Exosomes, as nanoscale extracellular vesicles (EVs), are secreted by all types of cells to facilitate intercellular communication in living organisms. After being taken up by neighboring or distant cells, exosomes can alter the expression levels of target genes in recipient cells and thereby affect their pathophysiological outcomes depending on payloads encapsulated therein. The functions and mechanisms of exosomes in cardiovascular diseases have attracted much attention in recent years and are thought to have cardioprotective and regenerative potential. This review summarizes the biogenesis and molecular contents of exosomes and details the roles played by exosomes released from various cells in the progression and recovery of cardiovascular disease. The review also discusses the current status of traditional exosomes in cardiovascular tissue engineering and regenerative medicine, pointing out several limitations in their application. It emphasizes that some of the existing emerging industrial or bioengineering technologies are promising to compensate for these shortcomings, and the combined application of exosomes and biomaterials provides an opportunity for mutual enhancement of their performance. The integration of exosome-based cell-free diagnostic and therapeutic options will contribute to the further development of cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Hang Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Mingyue Tan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China; Department of Geriatrics, Cardiovascular Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Yunfei Yin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Yiyi Song
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215000, PR China
| | - Yongjian Zhao
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Lin Yan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Ning Li
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China
| | - Xianzuo Zhang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China
| | - Jiaxiang Bai
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, PR China.
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China.
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China.
| |
Collapse
|
6
|
Wang H, Guo Y, Jiang Y, Ge Y, Wang H, Shi D, Zhang G, Zhao J, Kang Y, Wang L. Exosome-loaded biomaterials for tendon/ligament repair. BIOMATERIALS TRANSLATIONAL 2024; 5:129-143. [PMID: 39351162 PMCID: PMC11438604 DOI: 10.12336/biomatertransl.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Accepted: 06/18/2024] [Indexed: 10/04/2024]
Abstract
Exosomes, a specialised type of extracellular vesicle, have attracted significant attention in the realm of tendon/ligament repair as a potential biologic therapeutic tool. While the competence of key substances responsible for the delivery function was gradually elucidated, series of shortcomings exemplified by the limited stability still need to be improved. Therefore, how to take maximum advantage of the biological characteristics of exosomes is of great importance. Recently, the comprehensive exploration and application of biomedical engineering has improved the availability of exosomes and revealed the future direction of exosomes combined with biomaterials. This review delves into the present application of biomaterials such as nanomaterials, hydrogels, and electrospun scaffolds, serving as the carriers of exosomes in tendon/ligament repair. By pinpointing and exploring their strengths and limitations, it offers valuable insights, paving the way the future direction of biomaterials in the application of exosomes in tendon/ligament repair in this field.
Collapse
Affiliation(s)
- Haohan Wang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yonglin Guo
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Jiang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Yingyu Ge
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanyi Wang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dingyi Shi
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyang Zhang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinzhong Zhao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhao Kang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liren Wang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Raj R, Agrawal P, Bhutani U, Bhowmick T, Chandru A. Spinning with exosomes: electrospun nanofibers for efficient targeting of stem cell-derived exosomes in tissue regeneration. Biomed Mater 2024; 19:032004. [PMID: 38593835 DOI: 10.1088/1748-605x/ad3cab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Electrospinning technique converts polymeric solutions into nanoscale fibers using an electric field and can be used for various biomedical and clinical applications. Extracellular vesicles (EVs) are cell-derived small lipid vesicles enriched with biological cargo (proteins and nucleic acids) potential therapeutic applications. In this review, we discuss extending the scope of electrospinning by incorporating stem cell-derived EVs, particularly exosomes, into nanofibers for their effective delivery to target tissues. The parameters used during the electrospinning of biopolymers limit the stability and functional properties of cellular products. However, with careful consideration of process requirements, these can significantly improve stability, leading to longevity, effectiveness, and sustained and localized release. Electrospun nanofibers are known to encapsulate or surface-adsorb biological payloads such as therapeutic EVs, proteins, enzymes, and nucleic acids. Small EVs, specifically exosomes, have recently attracted the attention of researchers working on regeneration and tissue engineering because of their broad distribution and enormous potential as therapeutic agents. This review focuses on current developments in nanofibers for delivering therapeutic cargo molecules, with a special emphasis on exosomes. It also suggests prospective approaches that can be adapted to safely combine these two nanoscale systems and exponentially enhance their benefits in tissue engineering, medical device coating, and drug delivery applications.
Collapse
Affiliation(s)
- Ritu Raj
- Pandorum Technologies Pvt. Ltd., Bangalore 560100, Karnataka, India
| | - Parinita Agrawal
- Pandorum Technologies Pvt. Ltd., Bangalore 560100, Karnataka, India
| | - Utkarsh Bhutani
- Pandorum Technologies Pvt. Ltd., Bangalore 560100, Karnataka, India
| | - Tuhin Bhowmick
- Pandorum Technologies Pvt. Ltd., Bangalore 560100, Karnataka, India
| | - Arun Chandru
- Pandorum Technologies Pvt. Ltd., Bangalore 560100, Karnataka, India
| |
Collapse
|
8
|
Gao S, Dong Y, Yan C, Yu T, Cao H. The role of exosomes and exosomal microRNA in diabetic cardiomyopathy. Front Endocrinol (Lausanne) 2024; 14:1327495. [PMID: 38283742 PMCID: PMC10811149 DOI: 10.3389/fendo.2023.1327495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Diabetic cardiomyopathy, a formidable cardiovascular complication linked to diabetes, is witnessing a relentless surge in its incidence. Despite extensive research efforts, the primary pathogenic mechanisms underlying this condition remain elusive. Consequently, a critical research imperative lies in identifying a sensitive and dependable marker for early diagnosis and treatment, thereby mitigating the onset and progression of diabetic cardiomyopathy (DCM). Exosomes (EXOs), minute vesicles enclosed within bilayer lipid membranes, have emerged as a fascinating frontier in this quest, capable of transporting a diverse cargo that mirrors the physiological and pathological states of their parent cells. These exosomes play an active role in the intercellular communication network of the cardiovascular system. Within the realm of exosomes, MicroRNA (miRNA) stands as a pivotal molecular player, revealing its profound influence on the progression of DCM. This comprehensive review aims to offer an introductory exploration of exosome structure and function, followed by a detailed examination of the intricate role played by exosome-associated miRNA in diabetic cardiomyopathy. Our ultimate objective is to bolster our comprehension of DCM diagnosis and treatment strategies, thereby facilitating timely intervention and improved outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Hongbo Cao
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
9
|
Iezzi G, Zavan B, Petrini M, Ferroni L, Pierfelice TV, D'Amora U, Ronca A, D'Amico E, Mangano C. 3D printed dental implants with a porous structure: The in vitro response of osteoblasts, fibroblasts, mesenchymal stem cells, and monocytes. J Dent 2024; 140:104778. [PMID: 37951493 DOI: 10.1016/j.jdent.2023.104778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023] Open
Abstract
AIMS The first aim of this study was to characterize the surface topography of a novel 3D-printed dental implant at the micro- and macro-level. Its second aim was to evaluate the osteogenic, angiogenic, and immunogenic responses of human oral osteoblasts (hOBs), gingival fibroblasts (hGFs), mesenchymal stem cells (hAD-MSCs), and monocytes to this novel implant surface. METHODS A 3D-printed Ti-6Al-4 V implant was produced by selective laser melting and subjected to organic acid etching (TEST). It was then compared to a machined surface (CTRL). Its biological properties were evaluated via cell proliferation assays, morphological observations, gene expression analyses, mineralization assessments, and collagen quantifications. RESULTS Scanning electron microscopy analysis showed that the TEST group was characterized by a highly interconnected porous architecture and a roughed surface. The morphological observations showed good adhesion of cells cultured on the TEST surface, with a significant increase in hOB growth. Similarly, the gene expression analysis showed significantly higher levels of osseointegration biomarkers. Picrosirius staining showed a slight increase in collagen production in the TEST group compared to the CTRL group. hAD-MSCs showed an increase in endothelial and osteogenic commitment-related markers. Monocytes showed increased mRNA synthesis related to the M2 (anti-inflammatory) macrophagic phenotype. CONCLUSIONS Considering the higher interaction with hOBs, hGFs, hAD-MSCs, and monocytes, the prepared 3D-printed implant could be used for future clinical applications. CLINICAL RELEVANCE This study demonstrated the excellent biological response of various cells to the porous surface of the novel 3D-printed implant.
Collapse
Affiliation(s)
- Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti 66100, Italy
| | - Barbara Zavan
- Translational Medicine Department, University of Ferrara, Ferrara 44121, Italy
| | - Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti 66100, Italy
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Ravenna 48033, Italy
| | - Tania Vanessa Pierfelice
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti 66100, Italy
| | - Ugo D'Amora
- Institute of Polymers, Composites and Biomaterials National Research Council (IPCB-CNR), Naples 80125, Italy
| | - Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials National Research Council (IPCB-CNR), Naples 80125, Italy
| | - Emira D'Amico
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti 66100, Italy.
| | | |
Collapse
|
10
|
Xu W, Yang Y, Li N, Hua J. Interaction between Mesenchymal Stem Cells and Immune Cells during Bone Injury Repair. Int J Mol Sci 2023; 24:14484. [PMID: 37833933 PMCID: PMC10572976 DOI: 10.3390/ijms241914484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Fractures are the most common large organ trauma in humans. The initial inflammatory response promotes bone healing during the initial post-fracture phase, but chronic and persistent inflammation due to infection or other factors does not contribute to the healing process. The precise mechanisms by which immune cells and their cytokines are regulated in bone healing remain unclear. The use of mesenchymal stem cells (MSCs) for cellular therapy of bone injuries is a novel clinical treatment approach. Bone progenitor MSCs not only differentiate into bone, but also interact with the immune system to promote the healing process. We review in vitro and in vivo studies on the role of the immune system and bone marrow MSCs in bone healing and their interactions. A deeper understanding of this paradigm may provide clues to potential therapeutic targets in the healing process, thereby improving the reliability and safety of clinical applications of MSCs to promote bone healing.
Collapse
Affiliation(s)
| | | | - Na Li
- Shaanxi Centre of Stem Cells Engineering & Technology, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (W.X.); (Y.Y.)
| | - Jinlian Hua
- Shaanxi Centre of Stem Cells Engineering & Technology, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (W.X.); (Y.Y.)
| |
Collapse
|
11
|
Liu Y, Wang M, Yu Y, Li C, Zhang C. Advances in the study of exosomes derived from mesenchymal stem cells and cardiac cells for the treatment of myocardial infarction. Cell Commun Signal 2023; 21:202. [PMID: 37580705 PMCID: PMC10424417 DOI: 10.1186/s12964-023-01227-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/12/2023] [Indexed: 08/16/2023] Open
Abstract
Acute myocardial infarction has long been the leading cause of death in coronary heart disease, which is characterized by irreversible cardiomyocyte death and restricted blood supply. Conventional reperfusion therapy can further aggravate myocardial injury. Stem cell therapy, especially with mesenchymal stem cells (MSCs), has emerged as a promising approach to promote cardiac repair and improve cardiac function. MSCs may induce these effects by secreting exosomes containing therapeutically active RNA, proteins and lipids. Notably, normal cardiac function depends on intracardiac paracrine signaling via exosomes, and exosomes secreted by cardiac cells can partially reflect changes in the heart during disease, so analyzing these vesicles may provide valuable insights into the pathology of myocardial infarction as well as guide the development of new treatments. The present review examines how exosomes produced by MSCs and cardiac cells may influence injury after myocardial infarction and serve as therapies against such injury. Video Abstract.
Collapse
Affiliation(s)
- Yuchang Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Minrui Wang
- School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yang Yu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Chunxiang Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- The Key Laboratory of Medical Electrophysiology of the Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Laboratory of Nucleic Acids in Medicine for National High-Level Talents, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
12
|
Wang H, Ye X, Spanos M, Wang H, Yang Z, Li G, Xiao J, Zhou L. Exosomal Non-Coding RNA Mediates Macrophage Polarization: Roles in Cardiovascular Diseases. BIOLOGY 2023; 12:745. [PMID: 37237557 PMCID: PMC10215119 DOI: 10.3390/biology12050745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
Extracellular vesicles (EVs) or exosomes are nanosized extracellular particles that contain proteins, DNA, non-coding RNA (ncRNA) and other molecules, which are widely present in biofluids throughout the body. As a key mediator of intercellular communication, EVs transfer their cargoes to target cells and activate signaling transduction. Increasing evidence shows that ncRNA is involved in a variety of pathological and physiological processes through various pathways, particularly the inflammatory response. Macrophage, one of the body's "gatekeepers", plays a crucial role in inflammatory reactions. Generally, macrophages can be classified as pro-inflammatory type (M1) or anti-inflammatory type (M2) upon their phenotypes, a phenomenon termed macrophage polarization. Increasing evidence indicates that the polarization of macrophages plays important roles in the progression of cardiovascular diseases (CVD). However, the role of exosomal ncRNA in regulating macrophage polarization and the role of polarized macrophages as an important source of EV in CVD remains to be elucidated. In this review, we summarize the role and molecular mechanisms of exosomal-ncRNA in regulating macrophage polarization during CVD development, focusing on their cellular origins, functional cargo, and their detailed effects on macrophage polarization. We also discuss the role of polarized macrophages and their derived EV in CVD as well as the therapeutic prospects of exosomal ncRNA in the treatment of CVD.
Collapse
Affiliation(s)
- Hongyun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai 200444, China
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
| | - Xuan Ye
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai 200444, China
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Michail Spanos
- Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Huanxin Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai 200444, China
| | - Zijiang Yang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai 200444, China
| | - Guoping Li
- Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai 200444, China
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
| | - Lei Zhou
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210008, China
| |
Collapse
|
13
|
Zanotti F, Zanolla I, Trentini M, Tiengo E, Pusceddu T, Licastro D, Degasperi M, Leo S, Tremoli E, Ferroni L, Zavan B. Mitochondrial Metabolism and EV Cargo of Endothelial Cells Is Affected in Presence of EVs Derived from MSCs on Which HIF Is Activated. Int J Mol Sci 2023; 24:ijms24066002. [PMID: 36983075 PMCID: PMC10055915 DOI: 10.3390/ijms24066002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Small extracellular vesicles (sEVs) derived from mesenchymal stem cells (MSCs) have attracted growing interest as a possible novel therapeutic agent for the management of different cardiovascular diseases (CVDs). Hypoxia significantly enhances the secretion of angiogenic mediators from MSCs as well as sEVs. The iron-chelating deferoxamine mesylate (DFO) is a stabilizer of hypoxia-inducible factor 1 and consequently used as a substitute for environmental hypoxia. The improved regenerative potential of DFO-treated MSCs has been attributed to the increased release of angiogenic factors, but whether this effect is also mediated by the secreted sEVs has not yet been investigated. In this study, we treated adipose-derived stem cells (ASCs) with a nontoxic dose of DFO to harvest sEVs (DFO-sEVs). Human umbilical vein endothelial cells (HUVECs) treated with DFO-sEVs underwent mRNA sequencing and miRNA profiling of sEV cargo (HUVEC-sEVs). The transcriptomes revealed the upregulation of mitochondrial genes linked to oxidative phosphorylation. Functional enrichment analysis on miRNAs of HUVEC-sEVs showed a connection with the signaling pathways of cell proliferation and angiogenesis. In conclusion, mesenchymal cells treated with DFO release sEVs that induce in the recipient endothelial cells molecular pathways and biological processes strongly linked to proliferation and angiogenesis.
Collapse
Affiliation(s)
- Federica Zanotti
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy
| | - Ilaria Zanolla
- Biomedicine Department, University of Ferrara, 44123 Ferrara, Italy
| | - Martina Trentini
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy
| | - Elena Tiengo
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy
| | - Tommaso Pusceddu
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy
| | | | | | - Sara Leo
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy
| | - Elena Tremoli
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy
| | - Letizia Ferroni
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy
| | - Barbara Zavan
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
14
|
Playing with Biophysics: How a Symphony of Different Electromagnetic Fields Acts to Reduce the Inflammation in Diabetic Derived Cells. Int J Mol Sci 2023; 24:ijms24021754. [PMID: 36675268 PMCID: PMC9861282 DOI: 10.3390/ijms24021754] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/02/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Several factors, such as ischemia, infection and skin injury impair the wound healing process. One common pathway in all these processes is related to the reactive oxygen species (ROS), whose production plays a vital role in wound healing. In this view, several strategies have been developed to stimulate the activation of the antioxidative system, thereby reducing the damage related to oxidative stress and improving wound healing. For this purpose, complex magnetic fields (CMFs) are used in this work on fibroblast and monocyte cultures derived from diabetic patients in order to evaluate their influence on the ROS production and related wound healing properties. Biocompatibility, cytotoxicity, mitochondrial ROS production and gene expression have been evaluated. The results confirm the complete biocompatibility of the treatment and the lack of side effects on cell physiology following the ISO standard indication. Moreover, the results confirm that the CMF treatment induced a reduction in the ROS production, an increase in the macrophage M2 anti-inflammatory phenotype through the activation of miRNA 5591, a reduction in inflammatory cytokines, such as interleukin-1 (IL-1) and IL-6, an increase in anti-inflammatory ones, such as IL-10 and IL-12 and an increase in the markers related to improved wound healing such as collagen type I and integrins. In conclusion, our findings encourage the use of CMFs for the treatment of diabetic foot.
Collapse
|
15
|
Zhao H, Li Z, Wang Y, Zhou K, Li H, Bi S, Wang Y, Wu W, Huang Y, Peng B, Tang J, Pan B, Wang B, Chen Z, Zhang Z. Bioengineered MSC-derived exosomes in skin wound repair and regeneration. Front Cell Dev Biol 2023; 11:1029671. [PMID: 36923255 PMCID: PMC10009159 DOI: 10.3389/fcell.2023.1029671] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 02/16/2023] [Indexed: 03/02/2023] Open
Abstract
Refractory skin defects such as pressure ulcers, diabetic ulcers, and vascular ulcers represent a challenge for clinicians and researchers in many aspects. The treatment strategies for wound healing have high cost and limited efficacy. To ease the financial and psychological burden on patients, a more effective therapeutic approach is needed to address the chronic wound. MSC-derived exosomes (MSC-exosomes), the main bioactive extracellular vesicles of the paracrine effect of MSCs, have been proposed as a new potential cell-free approach for wound healing and skin regeneration. The benefits of MSC-exosomes include their ability to promote angiogenesis and cell proliferation, increase collagen production, regulate inflammation, and finally improve tissue regenerative capacity. However, poor targeting and easy removability of MSC-exosomes from the wound are major obstacles to their use in clinical therapy. Thus, the concept of bioengineering technology has been introduced to modify exosomes, enabling higher concentrations and construction of particles of greater stability with specific therapeutic capability. The use of biomaterials to load MSC-exosomes may be a promising strategy to concentrate dose, create the desired therapeutic efficacy, and maintain a sustained release effect. The beneficial role of MSC-exosomes in wound healing is been widely accepted; however, the potential of bioengineering-modified MSC-exosomes remains unclear. In this review, we attempt to summarize the therapeutic applications of modified MSC-exosomes in wound healing and skin regeneration. The challenges and prospects of bioengineered MSC-exosomes are also discussed.
Collapse
Affiliation(s)
- Hanxing Zhao
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China.,Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhengyong Li
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China.,Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Yixi Wang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Zhou
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Hairui Li
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Siwei Bi
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yudong Wang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqing Wu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yeqian Huang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Peng
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China.,Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Jun Tang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China.,Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Bo Pan
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baoyun Wang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China.,Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhixing Chen
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China.,Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhenyu Zhang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China.,Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Mu L, Dong R, Guo B. Biomaterials-Based Cell Therapy for Myocardial Tissue Regeneration. Adv Healthc Mater 2022; 12:e2202699. [PMID: 36572412 DOI: 10.1002/adhm.202202699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/11/2022] [Indexed: 12/28/2022]
Abstract
Cardiovascular diseases (CVDs) have been the leading cause of death worldwide during the past several decades. Cell loss is the main problem that results in cardiac dysfunction and further mortality. Cell therapy aiming to replenish the lost cells is proposed to treat CVDs especially ischemic heart diseases which lead to a big portion of cell loss. Due to the direct injection's low cell retention and survival ratio, cell therapy using biomaterials as cell carriers has attracted more and more attention because of their promotion of cell delivery and maintenance at the aiming sites. In this review, the three main factors involved in cell therapy for myocardial tissue regeneration: cell sources (somatic cells, stem cells, and engineered cells), chemical components of cell carriers (natural materials, synthetic materials, and electroactive materials), and categories of cell delivery materials (patches, microspheres, injectable hydrogels, nanofiber and microneedles, etc.) are systematically summarized. An introduction of the methods including magnetic resonance/radionuclide/photoacoustic and fluorescence imaging for tracking the behavior of transplanted cells in vivo is also included. Current challenges of biomaterials-based cell therapy and their future directions are provided to give both beginners and professionals a clear view of the development and future trends in this area.
Collapse
Affiliation(s)
- Lei Mu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ruonan Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China.,State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
17
|
Trentini M, Zanolla I, Zanotti F, Tiengo E, Licastro D, Dal Monego S, Lovatti L, Zavan B. Apple Derived Exosomes Improve Collagen Type I Production and Decrease MMPs during Aging of the Skin through Downregulation of the NF-κB Pathway as Mode of Action. Cells 2022; 11:3950. [PMID: 36552714 PMCID: PMC9776931 DOI: 10.3390/cells11243950] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Skin ageing is strictly related to chronic inflammation of the derma and the decay of structural proteins of the extracellular matrix. Indeed, it has become common practice to refer to this phenomenon as inflammageing. Biotech innovation is always in search of new active principles that induce a youthful appearance. In this paper, apple-derived nanovesicles (ADNVs) were investigated as novel anti-inflammatory compounds, which are able to alter the extracellular matrix production of dermal fibroblasts. Total RNA sequencing analysis revealed that ADNVs negatively influence the activity of Toll-like Receptor 4 (TLR4), and, thus, downregulate the NF-κB pro-inflammatory pathway. ADNVs also reduce extracellular matrix degradation by increasing collagen synthesis (COL3A1, COL1A2, COL8A1 and COL6A1) and downregulating metalloproteinase production (MMP1, MMP8 and MMP9). Topical applications for skin regeneration were evaluated by the association of ADNVs with hyaluronic-acid-based hydrogel and patches.
Collapse
Affiliation(s)
- Martina Trentini
- Department Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Ilaria Zanolla
- Department Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Federica Zanotti
- Department Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Elena Tiengo
- Department Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | | | | | - Luca Lovatti
- Department Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Barbara Zavan
- Department Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
18
|
Dentin Particulate for Bone Regeneration: An In Vitro Study. Int J Mol Sci 2022; 23:ijms23169283. [PMID: 36012558 PMCID: PMC9408967 DOI: 10.3390/ijms23169283] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
The aim of this in vitro study was to investigate the commitment and behavior of dental pulp stem cells (DPSCs) seeded onto two different grafting materials, human dentin particulate (DP) and deproteinized bovine bone matrix (BG), with those cultured in the absence of supplements. Gene expression analyses along with epigenetic and morphological tests were carried out to examine odontogenic and osteogenic differentiation and cell proliferation. Compressive testing of the grafting materials seeded with DPSCs was performed as well. DPSC differentiation into odontoblast-like cells was identified from the upregulation of odontogenic markers (DSPP and MSX) and osteogenic markers (RUNX2, alkaline phosphatase, osteonectin, osteocalcin, collagen type I, bmp2, smad5/8). Epigenetic tests confirmed the presence of miRNAs involved in odontogenic or osteogenic commitment of DPSCs cultured for up to 21 days on DP. Compressive strength values obtained from extracellular matrix (ECM) synthesized by DPSCs showed a trend of being higher when seeded onto DP than onto BG. High expression of VEGF factor, which is related to angiogenesis, and of dentin sialoprotein was observed only in the presence of DP. Morphological analyses confirmed the typical phenotype of adult odontoblasts. In conclusion, the odontogenic and osteogenic commitment of DPSCs and their respective functions can be achieved on DP, which enables exceptional dentin and bone regeneration.
Collapse
|
19
|
Ferroni L, Gardin C, D'Amora U, Calzà L, Ronca A, Tremoli E, Ambrosio L, Zavan B. Exosomes of mesenchymal stem cells delivered from methacrylated hyaluronic acid patch improve the regenerative properties of endothelial and dermal cells. BIOMATERIALS ADVANCES 2022; 139:213000. [PMID: 35891601 DOI: 10.1016/j.bioadv.2022.213000] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 12/19/2022]
Abstract
Wound care management urgently needs the development of innovative smart wound dressings. The complexity of the wound often requires the use of personalized medication and the advent of three-dimensional (3D) bioprinting fits strongly with this need. In this view, in the present work a methacrylated hyaluronic acid (MeHA) bioink was tested for the fabrication of advanced smart patches as a delivery system of exosomes derived from human mesenchymal stem cells (hMSC-EXOs) suitable for wound healing purposes. MeHA patches were realized by 3D bioprinting technique and they were loaded with hMSC-EXOs. The 3D printed MeHA patches revealed improved mechanical performance, appropriate swelling ratio, extended degradation time, and suitable biocompatibility. Furthermore, MeHA patches loaded with hMSC-EXOs improved the proliferation, migration, angiogenic ability, and expression of specific markers related to wound healing process in human fibroblasts and human endothelial cells.
Collapse
Affiliation(s)
- Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy
| | - Chiara Gardin
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy
| | - Ugo D'Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| | - Laura Calzà
- IRET Foundation, Ozzano Emilia, 40064 Bologna, Italy
| | - Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy.
| | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
20
|
Camponogara F, Zanotti F, Trentini M, Tiengo E, Zanolla I, Pishavar E, Soliani E, Scatto M, Gargiulo P, Zambito Y, De Luca S, Ferroni L, Zavan B. Biomaterials for Regenerative Medicine in Italy: Brief State of the Art of the Principal Research Centers. Int J Mol Sci 2022; 23:8245. [PMID: 35897825 PMCID: PMC9368060 DOI: 10.3390/ijms23158245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Regenerative medicine is the branch of medicine that effectively uses stem cell therapy and tissue engineering strategies to guide the healing or replacement of damaged tissues or organs. A crucial element is undoubtedly the biomaterial that guides biological events to restore tissue continuity. The polymers, natural or synthetic, find wide application thanks to their great adaptability. In fact, they can be used as principal components, coatings or vehicles to functionalize several biomaterials. There are many leading centers for the research and development of biomaterials in Italy. The aim of this review is to provide an overview of the current state of the art on polymer research for regenerative medicine purposes. The last five years of scientific production of the main Italian research centers has been screened to analyze the current advancement in tissue engineering in order to highlight inputs for the development of novel biomaterials and strategies.
Collapse
Affiliation(s)
- Francesca Camponogara
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| | - Federica Zanotti
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| | - Martina Trentini
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| | - Elena Tiengo
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| | - Ilaria Zanolla
- Medical Sciences Department, University of Ferrara, 44121 Ferrara, Italy;
| | - Elham Pishavar
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| | - Elisa Soliani
- Bioengineering Department, Imperial College London, London SW7 2BX, UK;
| | - Marco Scatto
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venezia, Italy;
| | - Paolo Gargiulo
- Institute for Biomedical and Neural Engineering, Reykjavík University, 101 Reykjavík, Iceland;
- Department of Science, Landspítali, 101 Reykjavík, Iceland
| | - Ylenia Zambito
- Chemical Department, University of Pisa, 56124 Pisa, Italy;
| | - Stefano De Luca
- Unit of Naples, Institute of Applied Sciences and Intelligent Systems, National Research Council, Via P. Castellino 111, 80131 Napoli, Italy;
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy;
| | - Barbara Zavan
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| |
Collapse
|
21
|
Brunello G, Zanotti F, Trentini M, Zanolla I, Pishavar E, Favero V, Favero R, Favero L, Bressan E, Bonora M, Sivolella S, Zavan B. Exosomes Derived from Dental Pulp Stem Cells Show Different Angiogenic and Osteogenic Properties in Relation to the Age of the Donor. Pharmaceutics 2022; 14:pharmaceutics14050908. [PMID: 35631496 PMCID: PMC9146046 DOI: 10.3390/pharmaceutics14050908] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Craniofacial tissue reconstruction still represents a challenge in regenerative medicine. Mesenchymal stem cell (MSC)-based tissue engineering strategies have been introduced to enhance bone tissue repair. However, the risk of related complications is limiting their usage. To overcome these drawbacks, exosomes (EXOs) derived from MSCs have been recently proposed as a cell-free alternative to MSCs to direct tissue regeneration. It was hypothesized that there is a correlation between the biological properties of exosomes derived from the dental pulp and the age of the donor. The aim of the study was to investigate the effect of EXOs derived from dental pulp stem cells of permanent teeth (old donor group) or exfoliated deciduous teeth (young donor group) on MSCs cultured in vitro. Proliferation potential was evaluated by doubling time, and commitment ability by gene expression and biochemical quantification for tissue-specific factors. Results showed a well-defined proliferative influence for the younger donor aged group. Similarly, a higher commitment ability was detected in the young group. In conclusion, EXOs could be employed to promote bone regeneration, likely playing an important role in neo-angiogenesis in early healing phases.
Collapse
Affiliation(s)
- Giulia Brunello
- Department of Neurosciences, School of Dentistry, University of Padua, 35128 Padua, Italy; (G.B.); (R.F.); (L.F.); (E.B.); (S.S.)
- Department of Oral Surgery, University Hospital of Düsseldorf, 40225 Dusseldorf, Germany
| | - Federica Zanotti
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (M.T.); (I.Z.); (E.P.)
| | - Martina Trentini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (M.T.); (I.Z.); (E.P.)
| | - Ilaria Zanolla
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (M.T.); (I.Z.); (E.P.)
| | - Elham Pishavar
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (M.T.); (I.Z.); (E.P.)
| | - Vittorio Favero
- Unit of Maxillofacial Surgery and Dentistry, University of Verona, 37129 Verona, Italy;
| | - Riccardo Favero
- Department of Neurosciences, School of Dentistry, University of Padua, 35128 Padua, Italy; (G.B.); (R.F.); (L.F.); (E.B.); (S.S.)
| | - Lorenzo Favero
- Department of Neurosciences, School of Dentistry, University of Padua, 35128 Padua, Italy; (G.B.); (R.F.); (L.F.); (E.B.); (S.S.)
| | - Eriberto Bressan
- Department of Neurosciences, School of Dentistry, University of Padua, 35128 Padua, Italy; (G.B.); (R.F.); (L.F.); (E.B.); (S.S.)
| | - Massimo Bonora
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Stefano Sivolella
- Department of Neurosciences, School of Dentistry, University of Padua, 35128 Padua, Italy; (G.B.); (R.F.); (L.F.); (E.B.); (S.S.)
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (M.T.); (I.Z.); (E.P.)
- Correspondence:
| |
Collapse
|
22
|
Wang Y, Qi Z, Yan Z, Ji N, Yang X, Gao D, Hu L, Lv H, Zhang J, Li M. Mesenchymal Stem Cell Immunomodulation: A Novel Intervention Mechanism in Cardiovascular Disease. Front Cell Dev Biol 2022; 9:742088. [PMID: 35096808 PMCID: PMC8790228 DOI: 10.3389/fcell.2021.742088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are the member of multipotency stem cells, which possess the capacity for self-renewal and multi-directional differentiation, and have several characteristics, including multi-lineage differentiation potential and immune regulation, which make them a promising source for cell therapy in inflammation, immune diseases, and organ transplantation. In recent years, MSCs have been described as a novel therapeutic strategy for the treatment of cardiovascular diseases because they are potent modulators of immune system with the ability to modulating immune cell subsets, coordinating local and systemic innate and adaptive immune responses, thereby enabling the formation of a stable inflammatory microenvironment in damaged cardiac tissues. In this review, the immunoregulatory characteristics and potential mechanisms of MSCs are sorted out, the effect of these MSCs on immune cells is emphasized, and finally the application of this mechanism in the treatment of cardiovascular diseases is described to provide help for clinical application.
Collapse
Affiliation(s)
- Yueyao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhongwen Qi
- Institute of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhipeng Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nan Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoya Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dongjie Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Leilei Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
23
|
Mitrečić D, Hribljan V, Jagečić D, Isaković J, Lamberto F, Horánszky A, Zana M, Foldes G, Zavan B, Pivoriūnas A, Martinez S, Mazzini L, Radenovic L, Milasin J, Chachques JC, Buzanska L, Song MS, Dinnyés A. Regenerative Neurology and Regenerative Cardiology: Shared Hurdles and Achievements. Int J Mol Sci 2022; 23:855. [PMID: 35055039 PMCID: PMC8776151 DOI: 10.3390/ijms23020855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/24/2021] [Accepted: 01/09/2022] [Indexed: 02/05/2023] Open
Abstract
From the first success in cultivation of cells in vitro, it became clear that developing cell and/or tissue specific cultures would open a myriad of new opportunities for medical research. Expertise in various in vitro models has been developing over decades, so nowadays we benefit from highly specific in vitro systems imitating every organ of the human body. Moreover, obtaining sufficient number of standardized cells allows for cell transplantation approach with the goal of improving the regeneration of injured/disease affected tissue. However, different cell types bring different needs and place various types of hurdles on the path of regenerative neurology and regenerative cardiology. In this review, written by European experts gathered in Cost European action dedicated to neurology and cardiology-Bioneca, we present the experience acquired by working on two rather different organs: the brain and the heart. When taken into account that diseases of these two organs, mostly ischemic in their nature (stroke and heart infarction), bring by far the largest burden of the medical systems around Europe, it is not surprising that in vitro models of nervous and heart muscle tissue were in the focus of biomedical research in the last decades. In this review we describe and discuss hurdles which still impair further progress of regenerative neurology and cardiology and we detect those ones which are common to both fields and some, which are field-specific. With the goal to elucidate strategies which might be shared between regenerative neurology and cardiology we discuss methodological solutions which can help each of the fields to accelerate their development.
Collapse
Affiliation(s)
- Dinko Mitrečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Valentina Hribljan
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Denis Jagečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | | | - Federica Lamberto
- BioTalentum Ltd., Aulich Lajos Str. 26, 2100 Gordillo, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, 2100 Godollo, Hungary
| | - Alex Horánszky
- BioTalentum Ltd., Aulich Lajos Str. 26, 2100 Gordillo, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, 2100 Godollo, Hungary
| | - Melinda Zana
- BioTalentum Ltd., Aulich Lajos Str. 26, 2100 Gordillo, Hungary
| | - Gabor Foldes
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania
| | - Salvador Martinez
- Instituto de Neurociencias UMH-CSIC, 03550 San Juan de Alicante, Spain
| | - Letizia Mazzini
- ALS Center, Department of Neurology, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy
| | - Lidija Radenovic
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Milasin
- Laboratory for Stem Cell Research, School of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Juan Carlos Chachques
- Laboratory of Biosurgical Research, Pompidou Hospital, University of Paris, 75006 Paris, France
| | - Leonora Buzanska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Min Suk Song
- Omnion Research International Ltd., 10000 Zagreb, Croatia
| | - András Dinnyés
- BioTalentum Ltd., Aulich Lajos Str. 26, 2100 Gordillo, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, 2100 Godollo, Hungary
- HCEMM-USZ Stem Cell Research Group, Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
24
|
Biological Characterization of Human Autologous Pericardium Treated with the Ozaki Procedure for Aortic Valve Reconstruction. J Clin Med 2021; 10:jcm10173954. [PMID: 34501402 PMCID: PMC8432048 DOI: 10.3390/jcm10173954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022] Open
Abstract
Background: The Ozaki procedure is an innovative surgical technique aiming at reconstructing aortic valves with human autologous pericardium. Even if this procedure is widely used, a comprehensive biological characterization of the glutaraldehyde (GA)-fixed pericardial tissue is still missing. Methods: Morphological analysis was performed to assess the general organization of pericardium subjected to the Ozaki procedure (post-Ozaki) in comparison to native tissue (pre-Ozaki). The effect of GA treatment on cell viability and nuclear morphology was then investigated in whole biopsies and a cytotoxicity assay was executed to assess the biocompatibility of pericardium. Finally, human umbilical vein endothelial cells were seeded on post-Ozaki samples to evaluate the influence of GA in modulating the endothelialization ability in vitro and the production of pro-inflammatory mediators. Results: The Ozaki procedure alters the arrangement of collagen and elastic fibers in the extracellular matrix and results in a significant reduction in cell viability compared to native tissue. GA treatment, however, is not cytotoxic to murine fibroblasts as compared to a commercially available bovine pericardium membrane. In addition, in in vitro experiments of endothelial cell adhesion, no difference in the inflammatory mediators with respect to the commercial patch was found. Conclusions: The Ozaki procedure, despite alteration of ECM organization and cell devitalization, allows for the establishment of a noncytotoxic environment in which endothelial cell repopulation occurs.
Collapse
|