1
|
Buciu IC, Ţieranu EN, Pîrcălabu AŞ, Zlatian OM, Donoiu I, Cioboată R, Militaru C, Militaru S, Botezat MM, Militaru C. Lipoprotein (a) in the context of atherosclerosis: pathological implications and therapeutic perspectives in myocardial infarction. A narrative review. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:609-616. [PMID: 39957022 PMCID: PMC11924922 DOI: 10.47162/rjme.65.4.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Lipoprotein (a) [Lp(a)] is a recognized independent cardiovascular (CV) risk factor with significant implications in the morphopathology of atherosclerotic plaques, particularly in the context of myocardial infarction (MI). Structurally, Lp(a) consists of a low-density lipoprotein (LDL) particle covalently bound to apolipoprotein A (ApoA), and its resemblance to plasminogen (PLG) underpins its dual proatherogenic and prothrombotic effects. Elevated Lp(a) levels disrupt endothelial repair mechanisms, enhance the deposition of oxidized LDL, and promote foam cell formation, which are critical for the initiation and progression of atherosclerosis. Pathologically, atherosclerotic plaques associated with Lp(a) display hallmark features of instability, including thin fibrous caps, increased macrophage infiltration, calcification, and fragile neovascularization. These features contribute to plaque ruptures and thrombotic complications. Additionally, the structural similarity of Lp(a) to PLG interferes with fibrinolysis, creating a prothrombotic environment that exacerbates the risk of acute ischemic events. Genetic and non-genetic factors influence plasma Lp(a) concentrations, with significant inter-individual and ethnic variability contributing to varying CV risk profiles. Despite advancements in the understanding of the pathophysiological role of Lp(a), effective therapeutic options remain limited. Current management focuses on mitigating traditional CV risk factors, while emerging therapies, such as antisense oligonucleotides and short interfering ribonucleic acid (siRNA) targeting hepatic ApoA production, offer promising avenues for reducing Lp(a) levels. Further clinical validation of these therapies is warranted. This review underscores the importance of incorporating Lp(a) measurement into routine CV risk assessment and emphasizes the need for continued research on its morphopathological impacts and therapeutic modulation, with the aim of reducing the burden of atherosclerosis and MI.
Collapse
Affiliation(s)
- Ionuţ Cezar Buciu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, Romania;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Karp A, Jacobs M, Barris B, Labkowsky A, Frishman WH. Lipoprotein(a): A Review of Risk Factors, Measurements, and Novel Treatment Modalities. Cardiol Rev 2024:00045415-990000000-00218. [PMID: 38415744 DOI: 10.1097/crd.0000000000000667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The study of lipoprotein(a) [Lp(a)] has long been a source of interest as a possible independent risk factor for atherosclerotic cardiovascular disease (ASCVD). The results of large sample observational studies, genome-wide association studies, and Mendelian randomization studies have been strong indicators supporting the link between ASCVD and Lp(a) despite early studies, with less sensitive assays, failing to show a connection. The recommendations for the indications and frequency of testing Lp(a) levels vary between US, Canadian, and European organizations due to the uncertain role of Lp(a) in ASCVD. The innovation of recent therapies, such as antisense oligonucleotides and small interfering RNA, designed to specifically target and reduce Lp(a) levels by targeting mRNA translation have once more thrust LP(a) into the spotlight of inquiry. These emerging modalities serve the dual purpose of definitively elucidating the connection between elevated Lp(a) levels and atherosclerotic cardiovascular risk, as well as the possibility of providing clinicians with the tools necessary to manage elevated Lp(a) levels in vulnerable populations. This review seeks to examine the mechanisms of atherogenicity of Lp(a) and explore the most current pharmacologic therapies currently in development.
Collapse
Affiliation(s)
- Avrohom Karp
- From the Department of Medicine, New York Medical College/Westchester Medical Center, Valhalla, NY
| | - Menachem Jacobs
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY
| | - Ben Barris
- From the Department of Medicine, New York Medical College/Westchester Medical Center, Valhalla, NY
| | - Alexander Labkowsky
- From the Department of Medicine, New York Medical College/Westchester Medical Center, Valhalla, NY
| | - William H Frishman
- From the Department of Medicine, New York Medical College/Westchester Medical Center, Valhalla, NY
| |
Collapse
|
3
|
Sosnowska B, Stepinska J, Mitkowski P, Bielecka-Dabrowa A, Bobrowska B, Budzianowski J, Burchardt P, Chlebus K, Dobrowolski P, Gasior M, Jankowski P, Kubica J, Mickiewicz A, Mysliwiec M, Osadnik T, Prejbisz A, Rajtar-Salwa R, Wita K, Witkowski A, Gil R, Banach M. Recommendations of the Experts of the Polish Cardiac Society (PCS) and the Polish Lipid Association (PoLA) on the diagnosis and management of elevated lipoprotein(a) levels. Arch Med Sci 2024; 20:8-27. [PMID: 38414479 PMCID: PMC10895977 DOI: 10.5114/aoms/183522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/29/2024] Open
Abstract
Lipoprotein(a) [Lp(a)] is made up of a low-density lipoprotein (LDL) particle and a specific apolipoprotein(a). The blood concentration of Lp(a) is approximately 90% genetically determined, and the main genetic factor determining Lp(a) levels is the size of the apo(a) isoform, which is determined by the number of KIV2 domain repeats. The size of the apo(a) isoform is inversely proportional to the blood concentration of Lp(a). Lp(a) is a strong and independent cardiovascular risk factor. Elevated Lp(a) levels ≥ 50 mg/dl (≥ 125 nmol/l) are estimated to occur in more than 1.5 billion people worldwide. However, determination of Lp(a) levels is performed far too rarely, including Poland, where, in fact, it is only since the 2021 guidelines of the Polish Lipid Association (PoLA) and five other scientific societies that Lp(a) measurements have begun to be performed. Determination of Lp(a) concentrations is not easy due to, among other things, the different sizes of the apo(a) isoforms; however, the currently available certified tests make it possible to distinguish between people with low and high cardiovascular risk with a high degree of precision. In 2022, the first guidelines for the management of patients with elevated lipoprotein(a) levels were published by the European Atherosclerosis Society (EAS) and the American Heart Association (AHA). The first Polish guidelines are the result of the work of experts from the two scientific societies and their aim is to provide clear, practical recommendations for the determination and management of elevated Lp(a) levels.
Collapse
Affiliation(s)
- Bożena Sosnowska
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
| | | | - Przemyslaw Mitkowski
- 1 Department of Cardiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Agata Bielecka-Dabrowa
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
- Department of Cardiology and Adult Congenital Defects, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Beata Bobrowska
- Department of Clinical Cardiology and Cardiovascular Interventions, University Hospital in Krakow, Krakow, Poland
| | - Jan Budzianowski
- Department of Interventional Cardiology and Cardiac Surgery, University of Zielona Gora, Collegium Medicum, Zielona Gora, Poland
- Multidisciplinary Hospital, Nowa Sol, Poland
| | - Pawel Burchardt
- Department of Cardiology, J. Strus Hospital, Poznan, Poland
- Department of Hypertension, Angiology and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Krzysztof Chlebus
- National Center for Familial Hypercholesterolemia, 1 Chair and Department of Cardiology, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Dobrowolski
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, National Institute of Cardiology, Warsaw, Poland
| | - Mariusz Gasior
- 3 Department of Cardiology, Silesian Centre for Heart Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Zabrze, Poland
| | - Piotr Jankowski
- Department of Internal Medicine and Geriatric Cardiology, Medical Centre for Postgraduate Education, Warsaw, Poland
| | - Jacek Kubica
- Department of Cardiology and Internal Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Agnieszka Mickiewicz
- Lipoprotein Apheresis Laboratory, 1 Department of Cardiology, Medical University of Gdansk, Gdansk, Poland
| | - Malgorzata Mysliwiec
- Department of Paediatrics, Diabetology and Endocrinology, Medical University of Gdansk, Gdansk, Poland
| | - Tadeusz Osadnik
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Aleksander Prejbisz
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, National Institute of Cardiology, Warsaw, Poland
| | - Renata Rajtar-Salwa
- Department of Clinical Cardiology and Cardiovascular Interventions, University Hospital in Krakow, Krakow, Poland
| | - Kristian Wita
- 1 Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Adam Witkowski
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Robert Gil
- Department of Cardiology, National Medical Institute of the Ministry of Internal Affairs and Administration, Warsaw, Poland
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
- Department of Cardiology and Adult Congenital Defects, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Pasławska A, Tomasik PJ. Lipoprotein(a)-60 Years Later-What Do We Know? Cells 2023; 12:2472. [PMID: 37887316 PMCID: PMC10605347 DOI: 10.3390/cells12202472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/17/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Lipoprotein(a) (Lp(a)) molecule includes two protein components: apolipoprotein(a) and apoB100. The molecule is the main transporter of oxidized phospholipids (OxPL) in plasma. The concentration of this strongly atherogenic lipoprotein is predominantly regulated by the LPA gene expression. Lp(a) is regarded as a risk factor for several cardiovascular diseases. Numerous epidemiological, clinical and in vitro studies showed a strong association between increased Lp(a) and atherosclerotic cardiovascular disease (ASCVD), calcific aortic valve disease/aortic stenosis (CAVD/AS), stroke, heart failure or peripheral arterial disease (PAD). Although there are acknowledged contributions of Lp(a) to the mentioned diseases, clinicians struggle with many inconveniences such as a lack of well-established treatment lowering Lp(a), and common guidelines for diagnosing or assessing cardiovascular risk among both adult and pediatric patients. Lp(a) levels are different with regard to a particular race or ethnicity and might fluctuate during childhood. Furthermore, the lack of standardization of assays is an additional impediment. The review presents the recent knowledge on Lp(a) based on clinical and scientific research, but also highlights relevant aspects of future study directions that would approach more suitable and effective managing risk associated with increased Lp(a), as well as control the Lp(a) levels.
Collapse
Affiliation(s)
- Anna Pasławska
- Tuchow Health Center, Medical Hospital Laboratory, Szpitalna St. 1, 33-170 Tuchow, Poland;
| | - Przemysław J. Tomasik
- Department of Clinical Biochemistry, Pediatric Institute, College of Medicine, Jagiellonian University, Wielicka St. 265, 30-663 Cracow, Poland
| |
Collapse
|
5
|
Abu-Awwad SA, Craina M, Boscu L, Bernad E, Ciordas PD, Marian C, Iurciuc M, Abu-Awwad A, Iurciuc S, Bernad B, Popov DMA, Maghiari AL. Hypertensive Disorders of Pregnancy: Assessing the Significance of Lp(a) and ApoB Concentrations in a Romanian Cohort. J Pers Med 2023; 13:1416. [PMID: 37763183 PMCID: PMC10532696 DOI: 10.3390/jpm13091416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Background: This research delves into the association between altered lipid profiles and hypertensive disorders of pregnancy (HDP), shedding light on cardiovascular implications in maternal health. Methods: A cohort of 83 pregnant women was studied, with 48.19% diagnosed with HDP. This investigation primarily focused on Apolipoprotein B (ApoB) and Lipoprotein(a) (Lp(a)) as indicators of cardiovascular health. A comparative examination was conducted to determine discrepancies in the ApoB and Lp(a) levels between standard pregnancies and those presenting with HDP. Results: Significant elevations in ApoB (p value = 0.0486) and Lp(a) (p value < 0.0001) levels were observed in pregnant women with HDP compared to their counterparts with typical pregnancies. The pronounced link between heightened ApoB and Lp(a) concentrations and HDP persisted, even considering pregnancy's distinct physiological conditions. Conclusions: Our research accentuates the crucial role of early detection and specialized handling of cardiovascular risks in expectant mothers, especially those predisposed to HDP. The study indicates ApoB and Lp(a)'s potential as reliable markers for gauging cardiovascular threats during gestation. Furthermore, our findings suggest an integrative care approach and guidance for pregnant women, aspiring to enhance cardiovascular health in the postpartum phase.
Collapse
Affiliation(s)
- Simona-Alina Abu-Awwad
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (S.-A.A.-A.); (L.B.); (B.B.)
- I Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania;
| | - Marius Craina
- I Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania;
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Center for Laparoscopy, Laparoscopic Surgery and In Vitro Fertilization, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Lioara Boscu
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (S.-A.A.-A.); (L.B.); (B.B.)
| | - Elena Bernad
- I Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania;
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Center for Laparoscopy, Laparoscopic Surgery and In Vitro Fertilization, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Center for Neuropsychology and Behavioral Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Paula Diana Ciordas
- Department IV—Discipline of Biochemistry, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (P.D.C.); (C.M.)
| | - Catalin Marian
- Department IV—Discipline of Biochemistry, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (P.D.C.); (C.M.)
| | - Mircea Iurciuc
- Department VI—Discipline of Outpatient Internal Medicine, Cardiovascular Prevention and Recovery, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.I.); (S.I.)
| | - Ahmed Abu-Awwad
- Department XV—Discipline of Orthopedics—Traumatology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Research Center University Professor Doctor Teodor Șora, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Stela Iurciuc
- Department VI—Discipline of Outpatient Internal Medicine, Cardiovascular Prevention and Recovery, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.I.); (S.I.)
| | - Brenda Bernad
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (S.-A.A.-A.); (L.B.); (B.B.)
- Center for Neuropsychology and Behavioral Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | | | - Anca Laura Maghiari
- Department I—Discipline of Anatomy and Embryology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| |
Collapse
|
6
|
Vinci P, Di Girolamo FG, Panizon E, Tosoni LM, Cerrato C, Pellicori F, Altamura N, Pirulli A, Zaccari M, Biasinutto C, Roni C, Fiotti N, Schincariol P, Mangogna A, Biolo G. Lipoprotein(a) as a Risk Factor for Cardiovascular Diseases: Pathophysiology and Treatment Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6721. [PMID: 37754581 PMCID: PMC10531345 DOI: 10.3390/ijerph20186721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 09/28/2023]
Abstract
Cardiovascular disease (CVD) is still a leading cause of morbidity and mortality, despite all the progress achieved as regards to both prevention and treatment. Having high levels of lipoprotein(a) [Lp(a)] is a risk factor for cardiovascular disease that operates independently. It can increase the risk of developing cardiovascular disease even when LDL cholesterol (LDL-C) levels are within the recommended range, which is referred to as residual cardiovascular risk. Lp(a) is an LDL-like particle present in human plasma, in which a large plasminogen-like glycoprotein, apolipoprotein(a) [Apo(a)], is covalently bound to Apo B100 via one disulfide bridge. Apo(a) contains one plasminogen-like kringle V structure, a variable number of plasminogen-like kringle IV structures (types 1-10), and one inactive protease region. There is a large inter-individual variation of plasma concentrations of Lp(a), mainly ascribable to genetic variants in the Lp(a) gene: in the general po-pulation, Lp(a) levels can range from <1 mg/dL to >1000 mg/dL. Concentrations also vary between different ethnicities. Lp(a) has been established as one of the risk factors that play an important role in the development of atherosclerotic plaque. Indeed, high concentrations of Lp(a) have been related to a greater risk of ischemic CVD, aortic valve stenosis, and heart failure. The threshold value has been set at 50 mg/dL, but the risk may increase already at levels above 30 mg/dL. Although there is a well-established and strong link between high Lp(a) levels and coronary as well as cerebrovascular disease, the evidence regarding incident peripheral arterial disease and carotid atherosclerosis is not as conclusive. Because lifestyle changes and standard lipid-lowering treatments, such as statins, niacin, and cholesteryl ester transfer protein inhibitors, are not highly effective in reducing Lp(a) levels, there is increased interest in developing new drugs that can address this issue. PCSK9 inhibitors seem to be capable of reducing Lp(a) levels by 25-30%. Mipomersen decreases Lp(a) levels by 25-40%, but its use is burdened with important side effects. At the current time, the most effective and tolerated treatment for patients with a high Lp(a) plasma level is apheresis, while antisense oligonucleotides, small interfering RNAs, and microRNAs, which reduce Lp(a) levels by targeting RNA molecules and regulating gene expression as well as protein production levels, are the most widely explored and promising perspectives. The aim of this review is to provide an update on the current state of the art with regard to Lp(a) pathophysiological mechanisms, focusing on the most effective strategies for lowering Lp(a), including new emerging alternative therapies. The purpose of this manuscript is to improve the management of hyperlipoproteinemia(a) in order to achieve better control of the residual cardiovascular risk, which remains unacceptably high.
Collapse
Affiliation(s)
- Pierandrea Vinci
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Filippo Giorgio Di Girolamo
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Integrata di Trieste, 34149 Trieste, Italy; (C.B.); (C.R.); (P.S.)
| | - Emiliano Panizon
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Letizia Maria Tosoni
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Carla Cerrato
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Federica Pellicori
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Nicola Altamura
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Alessia Pirulli
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Michele Zaccari
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Chiara Biasinutto
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Integrata di Trieste, 34149 Trieste, Italy; (C.B.); (C.R.); (P.S.)
| | - Chiara Roni
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Integrata di Trieste, 34149 Trieste, Italy; (C.B.); (C.R.); (P.S.)
| | - Nicola Fiotti
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Paolo Schincariol
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Integrata di Trieste, 34149 Trieste, Italy; (C.B.); (C.R.); (P.S.)
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, I.R.C.C.S “Burlo Garofolo”, 34137 Trieste, Italy;
| | - Gianni Biolo
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| |
Collapse
|
7
|
Brosolo G, Da Porto A, Marcante S, Picci A, Capilupi F, Capilupi P, Bulfone L, Vacca A, Bertin N, Vivarelli C, Comand J, Catena C, Sechi LA. Lipoprotein(a): Just an Innocent Bystander in Arterial Hypertension? Int J Mol Sci 2023; 24:13363. [PMID: 37686169 PMCID: PMC10487946 DOI: 10.3390/ijms241713363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Elevated plasma lipoprotein(a) [Lp(a)] is a relatively common and highly heritable trait conferring individuals time-dependent risk of developing atherosclerotic cardiovascular disease (CVD). Following its first description, Lp(a) triggered enormous scientific interest in the late 1980s, subsequently dampened in the mid-1990s by controversial findings of some prospective studies. It was only in the last decade that a large body of evidence has provided strong arguments for a causal and independent association between elevated Lp(a) levels and CVD, causing renewed interest in this lipoprotein as an emerging risk factor with a likely contribution to cardiovascular residual risk. Accordingly, the 2022 consensus statement of the European Atherosclerosis Society has suggested inclusion of Lp(a) measurement in global risk estimation. The development of highly effective Lp(a)-lowering drugs (e.g., antisense oligonucleotides and small interfering RNA, both blocking LPA gene expression) which are still under assessment in phase 3 trials, will provide a unique opportunity to reduce "residual cardiovascular risk" in high-risk populations, including patients with arterial hypertension. The current evidence in support of a specific role of Lp(a) in hypertension is somehow controversial and this narrative review aims to overview the general mechanisms relating Lp(a) to blood pressure regulation and hypertension-related cardiovascular and renal damage.
Collapse
Affiliation(s)
- Gabriele Brosolo
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Andrea Da Porto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- Diabetes and Metabolism Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Stefano Marcante
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Alessandro Picci
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Filippo Capilupi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Patrizio Capilupi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Luca Bulfone
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Antonio Vacca
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Nicole Bertin
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- Thrombosis and Hemostasis Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Cinzia Vivarelli
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
| | - Jacopo Comand
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Cristiana Catena
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Leonardo A. Sechi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
- Diabetes and Metabolism Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
- Thrombosis and Hemostasis Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
| |
Collapse
|
8
|
Shah SM, Shah J, Lakey SM, Garg P, Ripley DP. Pathophysiology, emerging techniques for the assessment and novel treatment of aortic stenosis. Open Heart 2023; 10:e002244. [PMID: 36963766 PMCID: PMC10040005 DOI: 10.1136/openhrt-2022-002244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/09/2023] [Indexed: 03/26/2023] Open
Abstract
Our perspectives on aortic stenosis (AS) are changing. Evolving from the traditional thought of a passive degenerative disease, developing a greater understanding of the condition's mechanistic underpinning has shifted the paradigm to an active disease process. This advancement from the 'wear and tear' model is a result of the growing economic and health burden of AS, particularly within industrialised countries, prompting further research. The pathophysiology of calcific AS (CAS) is complex, yet can be characterised similarly to that of atherosclerosis. Progressive remodelling involves lipid-protein complexes, with lipoprotein(a) being of particular interest for diagnostics and potential future treatment options.There is an unmet clinical need for asymptomatic patient management; no pharmacotherapies are proven to slow progression and intervention timing varies. Novel approaches are developing to address this through: (1) screening with circulating biomarkers; (2) development of drugs to slow disease progression and (3) early valve intervention guided by medical imaging. Existing biomarkers (troponin and brain natriuretic peptide) are non-specific, but cost-effective predictors of ventricular dysfunction. In addition, their integration with cardiovascular MRI can provide accurate risk stratification, aiding aortic valve replacement decision making. Currently, invasive intervention is the only treatment for AS. In comparison, the development of lipoprotein(a) lowering therapies could provide an alternative; slowing progression of CAS, preventing left ventricular dysfunction and reducing reliance on surgical intervention.The landscape of AS management is rapidly evolving. This review outlines current understanding of the pathophysiology of AS, its management and future perspectives for the condition's assessment and treatment.
Collapse
Affiliation(s)
- Syed Muneeb Shah
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - Jay Shah
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - Samuel Mark Lakey
- Department of Cardiology, Northumbria Healthcare NHS Foundation Trust, North Shields, UK
| | - Pankaj Garg
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
- Department of Cardiology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, Norfolk, UK
| | - David Paul Ripley
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
- Department of Cardiology, Northumbria Healthcare NHS Foundation Trust, North Shields, UK
| |
Collapse
|
9
|
Krauss RM, Lu JT, Higgins JJ, Clary CM, Tabibiazar R. VLDL receptor gene therapy for reducing atherogenic lipoproteins. Mol Metab 2023; 69:101685. [PMID: 36739970 PMCID: PMC9950951 DOI: 10.1016/j.molmet.2023.101685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Over the past 40 years, there has been considerable research into the management and treatment of atherogenic lipid disorders. Although the majority of treatments and management strategies for cardiovascular disease (CVD) center around targeting low-density lipoprotein cholesterol (LDL-C), there is mounting evidence for the residual CVD risk attributed to high triglyceride (TG) and lipoprotein(a) (Lp(a)) levels despite the presence of lowered LDL-C levels. Among the biological mechanisms for clearing TG-rich lipoproteins, the VLDL receptor (VLDLR) plays a key role in the trafficking and metabolism of lipoprotein particles in multiple tissues, but it is not ordinarily expressed in the liver. Since VLDLR is capable of binding and internalizing apoE-containing TG-rich lipoproteins as well as Lp(a), hepatic VLDLR expression has the potential for promoting clearance of these atherogenic particles from the circulation and managing the residual CVD risk not addressed by current lipid lowering therapies. This review provides an overview of VLDLR function and the potential for developing a genetic medicine based on liver-targeted VLDLR gene expression.
Collapse
Affiliation(s)
- Ronald M. Krauss
- University of California, San Francisco, 5700 Martin Luther King, Jr. Way, Oakland CA 94609, USA,Corresponding author.
| | | | | | | | | |
Collapse
|
10
|
Maloberti A, Fabbri S, Colombo V, Gualini E, Monticelli M, Daus F, Busti A, Galasso M, De Censi L, Algeri M, Merlini PA, Giannattasio C. Lipoprotein(a): Cardiovascular Disease, Aortic Stenosis and New Therapeutic Option. Int J Mol Sci 2022; 24:ijms24010170. [PMID: 36613613 PMCID: PMC9820656 DOI: 10.3390/ijms24010170] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is a chronic and progressive inflammatory process beginning early in life with late clinical manifestation. This slow pathological trend underlines the importance to early identify high-risk patients and to treat intensively risk factors to prevent the onset and/or the progression of atherosclerotic lesions. In addition to the common Cardiovascular (CV) risk factors, new markers able to increase the risk of CV disease have been identified. Among them, high levels of Lipoprotein(a)-Lp(a)-lead to very high risk of future CV diseases; this relationship has been well demonstrated in epidemiological, mendelian randomization and genome-wide association studies as well as in meta-analyses. Recently, new aspects have been identified, such as its association with aortic stenosis. Although till recent years it has been considered an unmodifiable risk factor, specific drugs have been developed with a strong efficacy in reducing the circulating levels of Lp(a) and their capacity to reduce subsequent CV events is under testing in ongoing trials. In this paper we will review all these aspects: from the synthesis, clearance and measurement of Lp(a), through the findings that examine its association with CV diseases and aortic stenosis to the new therapeutic options that will be available in the next years.
Collapse
Affiliation(s)
- Alessandro Maloberti
- Cardiology 4, Cardio Center A. De Gasperis, ASST GOM Niguarda, 20162 Milan, Italy
- School of Medicine and Surgery, Milano-Bicocca University, 20126 Milan, Italy
- Correspondence: ; Tel.: +39-02-644-478-55; Fax: +39-02-644-425-66
| | - Saverio Fabbri
- School of Medicine and Surgery, Milano-Bicocca University, 20126 Milan, Italy
| | - Valentina Colombo
- School of Medicine and Surgery, Milano-Bicocca University, 20126 Milan, Italy
| | - Elena Gualini
- School of Medicine and Surgery, Milano-Bicocca University, 20126 Milan, Italy
| | | | - Francesca Daus
- School of Medicine and Surgery, Milano-Bicocca University, 20126 Milan, Italy
| | - Andrea Busti
- School of Medicine and Surgery, Milano-Bicocca University, 20126 Milan, Italy
| | - Michele Galasso
- School of Medicine and Surgery, Milano-Bicocca University, 20126 Milan, Italy
| | - Lorenzo De Censi
- School of Medicine and Surgery, Milano-Bicocca University, 20126 Milan, Italy
| | - Michela Algeri
- Cardiology 4, Cardio Center A. De Gasperis, ASST GOM Niguarda, 20162 Milan, Italy
| | | | - Cristina Giannattasio
- Cardiology 4, Cardio Center A. De Gasperis, ASST GOM Niguarda, 20162 Milan, Italy
- School of Medicine and Surgery, Milano-Bicocca University, 20126 Milan, Italy
| |
Collapse
|
11
|
Wong Chong E, Joncas FH, Seidah NG, Calon F, Diorio C, Gangloff A. Circulating levels of PCSK9, ANGPTL3 and Lp(a) in stage III breast cancers. BMC Cancer 2022; 22:1049. [PMID: 36203122 PMCID: PMC9535963 DOI: 10.1186/s12885-022-10120-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND / SYNOPSIS Cholesterol and lipids play an important role in sustaining tumor growth and metastasis in a large variety of cancers. ANGPTL3 and PCSK9 modify circulating cholesterol levels, thus availability of lipids to peripheral cells. Little is known on the role, if any, of circulating lipid-related factors such as PCSK9, ANGPTL3 and lipoprotein (a) in cancers. OBJECTIVE/PURPOSE To compare circulating levels of PCSK9, ANGPTL3, and Lp(a) in women with stage III breast cancer versus women with premalignant or benign breast lesions. METHODS Twenty-three plasma samples from women diagnosed with a stage III breast cancer (ductal, lobular or mixed) were matched for age with twenty-three plasma samples from women bearing premalignant (stage 0, n = 9) or benign (n = 14) breast lesions. The lipid profile (Apo B, total cholesterol, HDL cholesterol and triglycerides levels) and Lp(a) were measured on a Roche Modular analytical platform, whereas LDL levels were calculated with the Friedewald formula. ANGPTL3 and PCSK9 plasma levels were quantitated by ELISA. All statistical analyses were performed using SAS software version 9.4. RESULTS PCSK9 levels were significantly higher in women with stage III breast cancer compared to age-matched counterparts presenting a benign lesion (95.9 ± 27.1 ng/mL vs. 78.5 ± 19.3 ng/mL, p < 0.05, n = 14). Moreover, PCSK9 levels positively correlated with breast disease severity (benign, stage 0, stage III) (Rho = 0.34, p < 0.05, n = 46). In contrast, ANGPTL3 and Lp(a) plasma levels did not display any association with breast disease status and lipids did not correlate with disease severity. CONCLUSION In this small cohort of 46 women, PCSK9 levels tended to increase with the severity of the breast disease. Given that PCSK9 plays an important role in maintaining cholesterolemia, and a potential role in tumor evasion, present results warrant further investigation into a possible association between PCSK9 levels and breast cancer severity in larger cohorts of women.
Collapse
Affiliation(s)
- Emilie Wong Chong
- Faculty of Medicine, Laval University, Quebec City, QC, Canada
- Oncology Research Axis, CHU de Québec-Laval University Research Center, Quebec City, QC, Canada
- Cancer Research Centre (CRC), Laval University, Quebec City, QC, Canada
| | - France-Hélène Joncas
- Oncology Research Axis, CHU de Québec-Laval University Research Center, Quebec City, QC, Canada
- Cancer Research Centre (CRC), Laval University, Quebec City, QC, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Frédéric Calon
- Faculty of Pharmacy, Laval University, Quebec City, QC, Canada
- Neuroscience Research Axis, CHU de Québec-Laval University Research Center, Quebec City, QC, Canada
| | - Caroline Diorio
- Faculty of Medicine, Laval University, Quebec City, QC, Canada
- Oncology Research Axis, CHU de Québec-Laval University Research Center, Quebec City, QC, Canada
- Cancer Research Centre (CRC), Laval University, Quebec City, QC, Canada
- Centre Des Maladies du Sein, Hôpital du Saint-Sacrement, Quebec City, QC, Canada
| | - Anne Gangloff
- Faculty of Medicine, Laval University, Quebec City, QC, Canada.
- Oncology Research Axis, CHU de Québec-Laval University Research Center, Quebec City, QC, Canada.
- Cancer Research Centre (CRC), Laval University, Quebec City, QC, Canada.
- Lipid Clinic, CHU de Québec, Quebec City, QC, Canada.
| |
Collapse
|
12
|
Parrella A, Iannuzzi A, Annunziata M, Covetti G, Cavallaro R, Aliberti E, Tortori E, Iannuzzo G. Haematological Drugs Affecting Lipid Metabolism and Vascular Health. Biomedicines 2022; 10:biomedicines10081935. [PMID: 36009482 PMCID: PMC9405726 DOI: 10.3390/biomedicines10081935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 01/19/2023] Open
Abstract
Many drugs affect lipid metabolism and have side effects which promote atherosclerosis. The prevalence of cancer-therapy-related cardiovascular (CV) disease is increasing due to development of new drugs and improved survival of patients: cardio-oncology is a new field of interest and research. Moreover, drugs used in transplanted patients frequently have metabolic implications. Increasingly, internists, lipidologists, and angiologists are being consulted by haematologists for side effects on metabolism (especially lipid metabolism) and arterial circulation caused by drugs used in haematology. The purpose of this article is to review the main drugs used in haematology with side effects on lipid metabolism and atherosclerosis, detailing their mechanisms of action and suggesting the most effective therapies.
Collapse
Affiliation(s)
- Antonio Parrella
- Department of Medicine and Medical Specialties, A. Cardarelli Hospital, 80131 Naples, Italy
| | - Arcangelo Iannuzzi
- Department of Medicine and Medical Specialties, A. Cardarelli Hospital, 80131 Naples, Italy
| | | | - Giuseppe Covetti
- Department of Medicine and Medical Specialties, A. Cardarelli Hospital, 80131 Naples, Italy
| | - Raimondo Cavallaro
- Department of Medicine and Medical Specialties, A. Cardarelli Hospital, 80131 Naples, Italy
| | - Emilio Aliberti
- North Tees University Hospital, Stockton-on-Tees TS19 8PE, UK
| | - Elena Tortori
- Pharmacy Unit, Ospedale del Mare, 80147 Naples, Italy
| | - Gabriella Iannuzzo
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
13
|
Grinshtein YI, Shabalin VV, Ruf RR, Shalnova SA, Drapkina OM. Atherogenic index of plasma as an additional marker of adverse cardiovascular outcomes. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2022. [DOI: 10.15829/1728-8800-2022-3176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Aim. Using a representative sample of the Krasnoyarsk Krai population, to evaluate the distribution of the atherogenic index of plasma (AIP), logarithmically transformed ratio of molar concentrations of triglycerides to high-density lipoprotein-cholesterol, and to identify possible associations between AIP, various cardiovascular diseases, and metabolic parameters.Material and methods. The study included a random representative sample of 1603 residents of the Krasnoyarsk and Berezovsky rural district aged 25-64 years as part of the Epidemiology of Cardiovascular Diseases and their Risk Factors in Regions of Russian Federation (ESSE-RF) study. Statistical processing was performed using IBM SPSS v22 and Microsoft Excel 2021 programs. We assessed the prevalence of hypertension (HTN), coronary artery disease, myocardial infarction (MI), stroke and renal dysfunction in the whole sample and in groups with different risk depending on AIP. Differences between groups were tested by Yates’s chi-squared test and were considered significant at p≤0,05.Results. Depending on AIP value, 73,5% of participants were in the low-risk group (AIP <0,10), 10,4% — in moderate risk group (AIP, 0,100,24) and 16,1% — in high-risk group (AIP>0,24). The prevalence of prior MI or stroke in the moderate and high-risk group for AIP was significantly higher than in the low-risk group (p=0,024). A regular increase in HTN prevalence was registered from 42,6% in the lowrisk group to 71,4% in the high-risk group for AIP (p<0,001 for all). There was a significant increase in the proportion of patients with a combination of HTN + elevated low-density lipoprotein cholesterol levels as AIP risk increased — from 28,4% at low risk to 45,2% at high risk. There were no significant differences between AIP risk groups in the prevalence of coronary artery disease and renal dysfunction.Conclusion. AIP is a simple additional estimated parameter that characterizes the atherogenic properties of plasma. Based on a cohort of Krasnoyarsk Krai subjects, an elevated level of AIP is associated with an increased prevalence of MI and strokes. Determination of AIP may be especially useful in the case of normal baseline low-density lipoprotein cholesterol levels.
Collapse
Affiliation(s)
| | - V. V. Shabalin
- V.F. Voyno-Yasenetsky Krasnoyarsk State Medical University
| | - R. R. Ruf
- V.F. Voyno-Yasenetsky Krasnoyarsk State Medical University
| | - S. A. Shalnova
- National Medical Research Center for Therapy and Preventive Medicine
| | - O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| |
Collapse
|
14
|
Rehberger Likozar A, Blinc A, Trebušak Podkrajšek K, Šebeštjen M. LPA Genotypes and Haplotypes Are Associated with Lipoprotein(a) Levels but Not Arterial Wall Properties in Stable Post-Coronary Event Patients with Very High Lipoprotein(a) Levels. J Cardiovasc Dev Dis 2021; 8:jcdd8120181. [PMID: 34940537 PMCID: PMC8707421 DOI: 10.3390/jcdd8120181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 01/21/2023] Open
Abstract
Lipoprotein(a) [Lp(a)] levels are an independent risk factor for coronary artery disease (CAD). Two single-nucleotide polymorphisms (rs10455872, rs3798220) and number of KIV-2 repeats in the gene encoding Lp(a) (LPA) are associated with Lp(a) and CAD. Our aim was to investigate whether in patients with stable CAD and high Lp(a) levels these genetic variants are associated with increased Lp(a) and arterial wall properties. Blood samples underwent biochemical and genetic analyses. Ultrasound measurements for the functional and morphological properties of arterial wall were performed. Genotypes of rs10455872 and haplotypes AT and GT showed significant association with Lp(a) levels. Patients with GG showed significantly higher Lp(a) levels compared with those with AG genotype (2180 vs. 1391 mg/L, p = 0.045). Patients with no AT haplotype had significantly higher Lp(a) compared to carriers of one AT haplotype (2158 vs. 1478 mg/L, p = 0.023) or two AT haplotypes (2158 vs. 1487 mg/L, p = 0.044). There were no significant associations with the properties of the arterial wall. Lp(a) levels significantly correlated also with number of KIV-2 repeats (r = -0.601; p < 0.0001). In our patients, these two LPA polymorphisms and number of KIV-2 repeats are associated with Lp(a), but not arterial wall properties.
Collapse
Affiliation(s)
- Andreja Rehberger Likozar
- Department of Vascular Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.R.L.); (A.B.)
| | - Aleš Blinc
- Department of Vascular Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.R.L.); (A.B.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Katarina Trebušak Podkrajšek
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
- University Children’s Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Miran Šebeštjen
- Department of Vascular Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.R.L.); (A.B.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
- Department of Cardiology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-5228541
| |
Collapse
|
15
|
Krittanawong C, Khawaja M, Rosenson RS, Amos CI, Nambi V, Lavie CJ, Virani SS. Association of PCSK9 Variants With the Risk of Atherosclerotic Cardiovascular Disease and Variable Responses to PCSK9 Inhibitor Therapy. Curr Probl Cardiol 2021; 47:101043. [PMID: 34780866 DOI: 10.1016/j.cpcardiol.2021.101043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022]
Abstract
Genetic polymorphisms or variations, randomly distributed in a population, may cause drug-gene response variations. Investigation into these polymorphisms may identify novel mechanisms contributing to a specific disease process. Such investigation necessitates the use of Mendelian randomization, an analytical method that uses genetic variants as instrumental variables for modifiable risk factors that affect population health.1 In the past decade, advances in our understanding of genetic polymorphisms have enabled the identification of genetic variants in candidate genes that impact low-density lipoprotein cholesterol (LDL-C) regulating pathways and cardiovascular disease (CVD) outcomes. A specific candidate gene of interest is that of the LDL receptor degrading protein, PCSK9. In fact, loss-of-function genetic variants for the PCSK9 gene are what first highlighted this pathway as a candidate for pharmacologic inhibition. PCSK9 inhibitors (PCSK9i) are a class of cholesterol-lowering medications that provide significant reductions in LDL by inhibiting the degradation of LDL receptors (LDLR). These inhibitors have also been found to reduce production and enhance clearance of lipoprotein A (Lp[a]), an LDL-like particle currently under study as a separate risk factor for atherosclerotic CVD. Here, we discuss the promise of personalized medicine in developing a more efficacious and individualized pharmacogenomics-based approach for the use of PCSK9i that considers genetic variation and targets different patient populations. This review explores the pharmacogenomics of PCSK9i in the context of PCSK9 allele variants related to drug-metabolizing enzymes and responses since more studies are demonstrating that some patients are hyporesponsive or non-responsive to PCSK9i.2 In summary, the pharmacogenomics of PCSK9 are a promising therapeutic target and genetic information from prospective randomized clinical trials is warranted to gain a full understanding of the efficacy and cost-effectiveness of such allele and/or gene-guided PCSK9i therapy.
Collapse
Affiliation(s)
- Chayakrit Krittanawong
- The Michael E. DeBakey VA Medical Center, Houston, TX; Section of Cardiology, Baylor College of Medicine, Houston, TX.
| | - Muzamil Khawaja
- The Michael E. DeBakey VA Medical Center, Houston, TX; Section of Cardiology, Baylor College of Medicine, Houston, TX
| | - Robert S Rosenson
- Director, Cardiometabolics Unit, Mount Sinai Hospital, Mount Sinai Heart, NY, NY
| | - Christopher I Amos
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, TX
| | - Vijay Nambi
- The Michael E. DeBakey VA Medical Center, Houston, TX; Section of Cardiology, Baylor College of Medicine, Houston, TX
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA
| | - Salim S Virani
- The Michael E. DeBakey VA Medical Center, Houston, TX; Section of Cardiology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
16
|
Brosolo G, Da Porto A, Bulfone L, Vacca A, Bertin N, Colussi G, Cavarape A, Sechi LA, Catena C. Plasma Lipoprotein(a) Levels as Determinants of Arterial Stiffening in Hypertension. Biomedicines 2021; 9:biomedicines9111510. [PMID: 34829739 PMCID: PMC8615029 DOI: 10.3390/biomedicines9111510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022] Open
Abstract
Previous studies have shown that plasma lipoprotein(a) (Lp(a)) plays an important role in the development of hypertensive organ damage. The aim of the present study was to investigate the relationship of Lp(a) with markers of arterial stiffening in hypertension. In 138 essential hypertensive patients free of diabetes, renal failure and cardiovascular complications, we measured plasma lipids and assessed vascular stiffness through the use of pulse wave analysis and calculation of the brachial augmentation index (AIx), and measured the pulse wave velocity (PWV). Plasma Lp(a) levels were significantly and directly related to both AIx (r = 0.490; p < 0.001) and PWV (r = 0.212; p = 0.013). Multiple regression analysis showed that AIx was independently correlated with age, C-reactive protein, and plasma Lp(a) (beta 0.326; p < 0.001), while PWV was independently and directly correlated with age, and inversely with HDL, but not with plasma Lp(a). Logistic regression indicated that plasma Lp(a) could predict an AIx value above the median for the distribution (p = 0.026). Thus, in a highly selective group of patients with hypertension, plasma Lp(a) levels were significantly and directly related to markers of vascular stiffening. Because of the relevance of vascular stiffening to cardiovascular risk, the reduction of Lp(a) levels might be beneficial for cardiovascular protection in patients with hypertension.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Cristiana Catena
- Correspondence: (L.A.S.); (C.C.); Tel.: +39-0432-559804 (L.A.S.)
| |
Collapse
|