1
|
Zhou M, Wang Z, Li M, Chen Q, Zhang S, Wang J. Passivated hydrogel interface: Armor against foreign body response and inflammation in small-diameter vascular grafts. Biomaterials 2025; 317:123010. [PMID: 39724767 DOI: 10.1016/j.biomaterials.2024.123010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/30/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
The development of small-diameter vascular grafts (SDVGs) still faces significant challenges, particularly in overcoming blockages within vessels. A key issue is the foreign-body response (FBR) triggered by the implants, which impairs the integration between grafts and native vessels. In this study, we applied an interfacial infiltration strategy to create a stable, hydrophilic, and passivated hydrogel coating on SDVGs. This coating effectively resisted FBR and improved integration between the grafts and host tissue. We also incorporated anthocyanins, an antioxidant, into the hydrogel network to mitigate oxidative stress and promote endothelialization. The hydrogel coating exhibited excellent stability, retaining its integrity during continuous flushing over 15 days. Anthocyanins were released in response to reactive oxygen species (ROS), reducing inflammation and enhancing vascularization in a mouse subcutaneous implantation model. In a rabbit carotid artery replacement model, the SDVGs exhibited rapid endothelialization, guided vascular remodeling, and inhibited calcification, showing strong potential for clinical application. This study presents a straightforward and effective approach to improve the patency rate, endothelialization, and anti-calcification properties of SDVGs by equipping them with a protective anti-FBR and anti-inflammation hydrogel layer.
Collapse
Affiliation(s)
- Mengxue Zhou
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zihao Wang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengyu Li
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qi Chen
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shengmin Zhang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianglin Wang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
2
|
Li DD, Lan N, Zhao P, Tang YY. Advances in Etiology and Prevention of Capsular Contracture After Breast Implantation. Aesthetic Plast Surg 2025; 49:1915-1926. [PMID: 39586860 DOI: 10.1007/s00266-024-04500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024]
Abstract
Capsular contracture (CC) is one of the most common complications of breast implant usage in breast augmentation or reconstruction. The CC approach can cause breast hardening, pain, and varying degrees of deformity, affecting the quality of life of patients. Considerably, it has become one of the most common reasons for frequent surgeries. Nonetheless, the etiology and pathogenesis of CC remain unclear. Moreover, there exist still a lot of uncertainties regarding prevention and treatment measures. In this article, we present discussions on the research status of the etiology, pathogenesis, prevention, and treatment measures of CC. In summary, this study provides a reference for further research on CC and clinical use.Level of Evidence V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Dan-Dan Li
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 of Kunzhou Street, Xishan District, Kunming, 650000, China
| | - Nan Lan
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 of Kunzhou Street, Xishan District, Kunming, 650000, China
| | - Ping Zhao
- The First Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Xishan District, No. 519 of Kunzhou Street, Kunming, 650000, China.
| | - Yi-Yin Tang
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 of Kunzhou Street, Xishan District, Kunming, 650000, China.
| |
Collapse
|
3
|
Rodriguez Ayala A, Christ G, Griffin D. Cell-scale porosity minimizes foreign body reaction and promotes innervated myofiber formation after volumetric muscle loss. NPJ Regen Med 2025; 10:12. [PMID: 40025057 PMCID: PMC11873130 DOI: 10.1038/s41536-025-00395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/29/2025] [Indexed: 03/04/2025] Open
Abstract
Volumetric muscle loss (VML) from severe traumatic injuries results in irreversible loss of contractile tissue and permanent functional deficits. These injuries resist endogenous healing and clinical treatment due to excessive inflammation, leading to fibrosis, muscle fiber denervation, and impaired regeneration. Using a rodent tibialis anterior VML model, this study demonstrates microporous annealed particle (MAP) hydrogel scaffolds as a biomaterial platform for improved muscle regeneration. Unlike bulk (nanoporous) hydrogel scaffolds, MAP scaffolds enhance integration by preventing a foreign body reaction, slowing implant degradation, and promoting regenerative macrophage polarization. Cell migration and angiogenesis occur throughout the implant before MAP scaffold degradation, with muscle fibers and neuromuscular junctions forming within the scaffolds. These structures continue developing as the implant degrades, suggesting MAP hydrogel scaffolds offer a promising therapeutic approach for VML injuries.
Collapse
Affiliation(s)
- Areli Rodriguez Ayala
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - George Christ
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA.
| | - Donald Griffin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Kwon TY, Lee GH, Lee H, Lee KB. In Vivo Study of Organ and Tissue Stability According to the Types of Bioresorbable Bone Screws. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5632. [PMID: 39597455 PMCID: PMC11595555 DOI: 10.3390/ma17225632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Biodegradable material, such as magnesium alloy or polylactic acid (PLA), is a promising candidate for orthopedic surgery. The alloying of metals and the addition of rare earths to increase mechanical strength are still questionable in terms of biosafety as absorbent materials. Therefore, the purpose of this study is to understand the effect of substances due to the degradation of various biodegradable substances on organs in the body or surrounding tissues. A total of eighty male Sprague-Dawley rats were selected for this study, and the animals were divided into four groups. Each of the three experimental groups was implanted with magnesium alloy, polymer, and titanium implants; the control group only drilled into the cortical bone. Serum assay, micro-CT, hematoxylin and eosin staining, immunoblotting, and real-time PCR were evaluated. There was no significant difference between the two groups of magnesium alloy and polymer in serum assay, but micro-CT analysis confirmed that magnesium alloy degrades faster than polymer, and histological examination showed a strong inflammatory response in the early stages, which was similarly observed in immunoblotting and real-time PCR. Our findings show that there was no toxicity due to the degradation of the biodegradable material, and the difference in each inflammatory response is thought to be determined by the rate of degradation in the body.
Collapse
Affiliation(s)
- Tae-Young Kwon
- Department of Orthopedics Surgery, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (T.-Y.K.); (H.L.)
- Research Institute of Clinical Medicine, Biomedical Research Institute, Jeonbuk National University, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea;
| | - Geum-Hwa Lee
- Research Institute of Clinical Medicine, Biomedical Research Institute, Jeonbuk National University, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea;
| | - Hyuk Lee
- Department of Orthopedics Surgery, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (T.-Y.K.); (H.L.)
| | - Kwang-Bok Lee
- Department of Orthopedics Surgery, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (T.-Y.K.); (H.L.)
- Research Institute of Clinical Medicine, Biomedical Research Institute, Jeonbuk National University, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea;
| |
Collapse
|
5
|
Schoberleitner I, Lackner M, Coraça-Huber DC, Augustin A, Imsirovic A, Sigl S, Wolfram D. SMI-Capsular Fibrosis and Biofilm Dynamics: Molecular Mechanisms, Clinical Implications, and Antimicrobial Approaches. Int J Mol Sci 2024; 25:11675. [PMID: 39519227 PMCID: PMC11546664 DOI: 10.3390/ijms252111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Silicone mammary implants (SMIs) frequently result in capsular fibrosis, which is marked by the overproduction of fibrous tissue surrounding the implant. This review provides a detailed examination of the molecular and immunological mechanisms driving capsular fibrosis, focusing on the role of foreign body responses (FBRs) and microbial biofilm formation. We investigate how microbial adhesion to implant surfaces and biofilm development contribute to persistent inflammation and fibrotic responses. The review critically evaluates antimicrobial strategies, including preoperative antiseptic protocols and antimicrobial-impregnated materials, designed to mitigate infection and biofilm-related complications. Additionally, advancements in material science, such as surface modifications and antibiotic-impregnated meshes, are discussed for their potential to reduce capsular fibrosis and prevent contracture of the capsule. By integrating molecular insights with clinical applications, this review aims to elucidate the current understanding of SMI-related fibrotic responses and highlight knowledge gaps. The synthesis of these findings aims to guide future research directions of improved antimicrobial interventions and implant materials, ultimately advancing the management of capsular fibrosis and enhancing patient outcomes.
Collapse
Affiliation(s)
- Ines Schoberleitner
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Débora C. Coraça-Huber
- BIOFILM Lab, Department of Orthopedics and Traumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Angela Augustin
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anja Imsirovic
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stephan Sigl
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Dolores Wolfram
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
Chávez-López LM, Carballo-López GI, Lugo-Ibarra KDC, Castro-Ceseña AB. A comprehensive framework for managing metabolic dysfunction-associated steatotic liver disease: analyzing novel risk factors and advances in nanotechnology-based treatments and diagnosis. RSC Med Chem 2024; 15:2622-2642. [PMID: 39149095 PMCID: PMC11324041 DOI: 10.1039/d4md00420e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 08/17/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) presents a growing global health challenge requiring innovative approaches for effective management. This comprehensive review examines novel risk factors, including environmental pollutants like heavy metals, and underscores the complexity of personalized medicine tailored to individual patient profiles, influenced by gender and sex differences. Traditional treatments for MASLD, such as glucose- and lipid-lowering agents, show mixed results, highlighting the necessity for larger, long-term studies to establish safety and efficacy. Alternative therapies, including antioxidants, stem cells, and antiplatelets, although promising, demand extensive clinical trials for validation. This review highlights the importance of personalized medicine, considering individual variations and specific factors such as gender and sex, to optimize treatment responses. The shift from metabolic-associated fatty liver disease (MAFLD) to MASLD terminology underscores the metabolic components of the disease, aligning with the multiple-hit theory and highlighting the necessity for comprehensive risk factor management. Our vision advocates for an integrated approach to MASLD, encompassing extensive risk factor analysis and the development of safer, more effective treatments. Primary prevention and awareness initiatives are crucial in addressing the rising prevalence of MASLD. Future research must prioritize larger, long-term studies and personalized medicine principles to ensure the effective use of emerging therapies and technologies. The review underscores the need for continuous exploration and innovation, balancing the benefits and challenges of nanotechnology, to combat MASLD and improve patient outcomes comprehensively.
Collapse
Affiliation(s)
- Lucia M Chávez-López
- Facultad de Medicina, Centro de Estudios Universitarios Xochicalco Campus Ensenada San Francisco 1139, Fraccionamiento Misión C.P. 22830 Ensenada Baja California Mexico
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE) Carretera Ensenada-Tijuana No. 3918, Zona Playitas C.P. 22860 Ensenada Baja California Mexico
| | - Gabriela I Carballo-López
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE) Carretera Ensenada-Tijuana No. 3918, Zona Playitas C.P. 22860 Ensenada Baja California Mexico
| | | | - Ana B Castro-Ceseña
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE) Carretera Ensenada-Tijuana No. 3918, Zona Playitas C.P. 22860 Ensenada Baja California Mexico
- CONAHCYT - Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE) Carretera Ensenada-Tijuana No. 3918, Zona Playitas C.P. 22860 Ensenada Baja California Mexico
| |
Collapse
|
7
|
Singh S, Wairkar S. Revolutionizing the Treatment of Idiopathic Pulmonary Fibrosis: From Conventional Therapies to Advanced Drug Delivery Systems. AAPS PharmSciTech 2024; 25:78. [PMID: 38589751 DOI: 10.1208/s12249-024-02793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/16/2024] [Indexed: 04/10/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease that has been well-reported in the medical literature. Its incidence has risen, particularly in light of the recent COVID-19 pandemic. Conventionally, IPF is treated with antifibrotic drugs-pirfenidone and nintedanib-along with other drugs for symptomatic treatments, including corticosteroids, immunosuppressants, and bronchodilators based on individual requirements. Several drugs and biologicals such as fluorofenidone, thymoquinone, amikacin, paclitaxel nifuroxazide, STAT3, and siRNA have recently been evaluated for IPF treatment that reduces collagen formation and cell proliferation in the lung. There has been a great deal of research into various treatment options for pulmonary fibrosis using advanced delivery systems such as liposomal-based nanocarriers, chitosan nanoparticles, PLGA nanoparticles, solid lipid nanocarriers, and other nanoformulations such as metal nanoparticles, nanocrystals, cubosomes, magnetic nanospheres, and polymeric micelles. Several clinical trials are also ongoing for advanced IPF treatments. This article elaborates on the pathophysiology of IPF, its risk factors, and different advanced drug delivery systems for treating IPF. Although extensive preclinical data is available for these delivery systems, the clinical performance and scale-up studies would decide their commercial translation.
Collapse
Affiliation(s)
- Sanskriti Singh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, Maharashtra, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, Maharashtra, India.
| |
Collapse
|
8
|
Hernandez-Montelongo J, Salazar-Araya J, Mas-Hernández E, Oliveira DS, Garcia-Sandoval JP. Unraveling Drug Delivery from Cyclodextrin Polymer-Coated Breast Implants: Integrating a Unidirectional Diffusion Mathematical Model with COMSOL Simulations. Pharmaceutics 2024; 16:486. [PMID: 38675147 PMCID: PMC11055099 DOI: 10.3390/pharmaceutics16040486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
Breast cancer ranks among the most commonly diagnosed cancers worldwide and bears the highest mortality rate. As an integral component of cancer treatment, mastectomy entails the complete removal of the affected breast. Typically, breast reconstruction, involving the use of silicone implants (augmentation mammaplasty), is employed to address the aftermath of mastectomy. To mitigate postoperative risks associated with mammaplasty, such as capsular contracture or bacterial infections, the functionalization of breast implants with coatings of cyclodextrin polymers as drug delivery systems represents an excellent alternative. In this context, our work focuses on the application of a mathematical model for simulating drug release from breast implants coated with cyclodextrin polymers. The proposed model considers a unidirectional diffusion process following Fick's second law, which was solved using the orthogonal collocation method, a numerical technique employed to approximate solutions for ordinary and partial differential equations. We conducted simulations to obtain release profiles for three therapeutic molecules: pirfenidone, used for preventing capsular contracture; rose Bengal, an anticancer agent; and the antimicrobial peptide KR-12. Furthermore, we calculated the diffusion profiles of these drugs through the cyclodextrin polymers, determining parameters related to diffusivity, solute solid-liquid partition coefficients, and the Sherwood number. Finally, integrating these parameters in COMSOL multiphysics simulations, the unidirectional diffusion mathematical model was validated.
Collapse
Affiliation(s)
- Jacobo Hernandez-Montelongo
- Department of Physical and Mathematical Sciences, Catholic University of Temuco, Temuco 4813302, Chile
- Department of Translational Bioengineering, University of Guadalajara, Guadalajara 44430, Mexico
| | - Javiera Salazar-Araya
- Department of Mathematics and Statistics, University of La Frontera, Temuco 4811230, Chile;
| | - Elizabeth Mas-Hernández
- Faculty of Chemistry, Autonomous University of Queretaro, Campus Pedro Escobedo, Queretaro 76700, Mexico;
- Department of Mathematical Engineering, University of La Frontera, Temuco 4811230, Chile
| | - Douglas Soares Oliveira
- Jandaia do Sul Advanced Campus, Federal University of Parana, Jandaia do Sul 86900-000, PR, Brazil;
| | | |
Collapse
|
9
|
Ivanova E, Fayzullin A, Minaev N, Dolganova I, Serejnikova N, Gafarova E, Tokarev M, Minaeva E, Aleksandrova P, Reshetov I, Timashev P, Shekhter A. Surface Topography of PLA Implants Defines the Outcome of Foreign Body Reaction: An In Vivo Study. Polymers (Basel) 2023; 15:4119. [PMID: 37896364 PMCID: PMC10610271 DOI: 10.3390/polym15204119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
The formation of a dense fibrous capsule around the foreign body and its contracture is the most common complication of biomaterial implantation. The aim of our research is to find out how the surface of the implant influences the inflammatory and fibrotic reactions in the surrounding tissues. We made three types of implants with a remote surface topography formed of polylactide granules with different diameters: large (100-200 µm), medium (56-100 µm) and small (1-56 µm). We placed these implants in skin pockets in the ears of six chinchilla rabbits. We explanted the implants on the 7th, 14th, 30th and 60th days and performed optical coherence tomography, and histological, immunohistochemical and morphometric studies. We examined 72 samples and compared the composition of immune cell infiltration, vascularization, the thickness of the peri-implant tissues, the severity of fibrotic processes and α-SMA expression in myofibroblasts. We analyzed the scattering coefficient of tissue layers on OCT scans. We found that implants made from large granules induced a milder inflammatory process and slower formation of a connective tissue capsule around the foreign body. Our results prove the importance of assessing the surface texture in order to avoid the formation of capsular contracture after implantation.
Collapse
Affiliation(s)
- Elena Ivanova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (E.I.); (A.F.); (N.S.); (E.G.); (M.T.); (P.T.)
- B.V. Petrovsky Russian Research Center of Surgery, 2 Abrikosovskiy Lane, Moscow 119991, Russia
| | - Alexey Fayzullin
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (E.I.); (A.F.); (N.S.); (E.G.); (M.T.); (P.T.)
| | - Nikita Minaev
- Institute of Photon Technologies of FSRC “Crystallography and Photonics” RAS, Troitsk, Moscow 108840, Russia; (N.M.); (E.M.)
| | - Irina Dolganova
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, 2 Osipyan St., Chernogolovka 142432, Russia;
| | - Natalia Serejnikova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (E.I.); (A.F.); (N.S.); (E.G.); (M.T.); (P.T.)
| | - Elvira Gafarova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (E.I.); (A.F.); (N.S.); (E.G.); (M.T.); (P.T.)
| | - Mark Tokarev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (E.I.); (A.F.); (N.S.); (E.G.); (M.T.); (P.T.)
| | - Ekaterina Minaeva
- Institute of Photon Technologies of FSRC “Crystallography and Photonics” RAS, Troitsk, Moscow 108840, Russia; (N.M.); (E.M.)
| | - Polina Aleksandrova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., Moscow 119991, Russia;
| | - Igor Reshetov
- L.L. Levshin Institute of Cluster Oncology, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia;
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (E.I.); (A.F.); (N.S.); (E.G.); (M.T.); (P.T.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Anatoly Shekhter
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (E.I.); (A.F.); (N.S.); (E.G.); (M.T.); (P.T.)
| |
Collapse
|
10
|
Fitzpatrick X, Fayzullin A, Wang G, Parker L, Dokos S, Guller A. Cells-in-Touch: 3D Printing in Reconstruction and Modelling of Microscopic Biological Geometries for Education and Future Research Applications. Bioengineering (Basel) 2023; 10:687. [PMID: 37370618 DOI: 10.3390/bioengineering10060687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Additive manufacturing (3D printing) and computer-aided design (CAD) still have limited uptake in biomedical and bioengineering research and education, despite the significant potential of these technologies. The utility of organ-scale 3D-printed models of living structures is widely appreciated, while the workflows for microscopy data translation into tactile accessible replicas are not well developed yet. Here, we demonstrate an accessible and reproducible CAD-based methodology for generating 3D-printed scalable models of human cells cultured in vitro and imaged using conventional scanning confocal microscopy with fused deposition modeling (FDM) 3D printing. We termed this technology CiTo-3DP (Cells-in-Touch for 3D Printing). As a proof-of-concept, we created dismountable CiTo-3DP models of human epithelial, mesenchymal, and neural cells by using selectively stained nuclei and cytoskeletal components. We also provide educational and research context for the presented cellular models. In the future, the CiTo-3DP approach can be adapted to different imaging and 3D printing modalities and comprehensively present various cell types, subcellular structures, and extracellular matrices. The resulting CAD and 3D printed models could be used for a broad spectrum of education and research applications.
Collapse
Affiliation(s)
- Xavier Fitzpatrick
- ARC Centre of Excellence for Nanoscale Biophotonics, Sydney, NSW 2052, Australia
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alexey Fayzullin
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Gonglei Wang
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lindsay Parker
- ARC Centre of Excellence for Nanoscale Biophotonics, Sydney, NSW 2052, Australia
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Socrates Dokos
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Anna Guller
- ARC Centre of Excellence for Nanoscale Biophotonics, Sydney, NSW 2052, Australia
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
11
|
Imaichi-Kobayashi S, Kassab R, Piersigilli A, Robertson R, Leonard C, Long N, Dean B, Phaneuf M, Ling V. An electrospun macrodevice for durable encapsulation of human cells with consistent secretion of therapeutic antibodies. Biomaterials 2023; 298:122123. [PMID: 37172505 DOI: 10.1016/j.biomaterials.2023.122123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/31/2023] [Accepted: 04/08/2023] [Indexed: 05/15/2023]
Abstract
Frequent subcutaneous or intravenous administrations of therapeutic biomolecules can be costly and inconvenient for patients. Implantation of encapsulated recombinant cells represents a promising approach for the sustained delivery of biotherapeutics. However, foreign body and fibrotic response against encapsulation materials results in drastically reduced viability of encapsulated cells, presenting a major engineering challenge for biocompatibility. Here, we show that the multi-laminate electrospun retrievable macrodevice (Bio-Spun) protects genetically modified human cells after subcutaneous implant in mice. We describe here a biocompatible nanofiber device that limits fibrosis and extends implant survival. For more than 150 days, these devices supported human cells engineered to secrete the antibodies: vedolizumab, ustekinumab, and adalimumab, while eliciting minimal fibrotic response in mice. The porous electrospun cell chamber allowed secretion of the recombinant antibodies into the host bloodstream, and prevented infiltration of host cells into the chamber. High plasma levels (>50 μg/mL) of antibody were maintained in the optimized devices for more than 5 months. Our findings demonstrate that macrodevices constructed from electrospun materials are effective in protecting genetically engineered cells for the sustained administration of recombinant therapeutic antibodies.
Collapse
Affiliation(s)
| | | | - Alessandra Piersigilli
- Department of Drug Safety Research and Evaluation, Takeda Pharmaceuticals, Cambridge, MA, USA
| | | | - Christopher Leonard
- Department of Drug Safety Research and Evaluation, Takeda Pharmaceuticals, Cambridge, MA, USA
| | | | | | | | - Vincent Ling
- Department of Pharmaceutical Science, Takeda Pharmaceuticals, Cambridge, MA, USA.
| |
Collapse
|
12
|
Valieva Y, Igrunkova A, Fayzullin A, Serejnikova N, Kurkov A, Fayzullina N, Valishina D, Bakulina A, Timashev P, Shekhter A. Epimorphic Regeneration of Elastic Cartilage: Morphological Study into the Role of Cellular Senescence. BIOLOGY 2023; 12:biology12040565. [PMID: 37106768 PMCID: PMC10136161 DOI: 10.3390/biology12040565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
Control over endogenous reparative mechanisms is the future of regenerative medicine. The rabbit ear defect is a rare model which allows the observation of the epimorphic regeneration of elastic cartilage. However, the mechanisms of phenotypical restoration of this highly differentiated tissue have not been studied. We modelled circular ear defects of different sizes (4, 6, and 8 mm in diameter) in 12 laboratory rabbits, and observed them during 30, 60, 90, and 120 day periods. Excised tissues were processed and analyzed by standard histological methods and special histochemical reactions for senescence associated-β-galactosidase and lectin markers. We demonstrated that larger defects caused significant elevation of senescence associated-β-galactosidase in chondrocytes. The fullness of epimorphic regeneration of elastic cartilage depended on the activation of cellular senescence and synthesis of elastic fibers. Further investigation into the role of cells with senescence-associated secretory phenotype in damaged tissues can present new targets for controlled tissue regeneration.
Collapse
Affiliation(s)
- Yana Valieva
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Aleksandra Igrunkova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia
- Department of Human Anatomy and Histology, N. V. Sklifosovsky Institute of Clinical Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Alexey Fayzullin
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Natalia Serejnikova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Aleksandr Kurkov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Nafisa Fayzullina
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Dina Valishina
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Alesia Bakulina
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Anatoly Shekhter
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia
| |
Collapse
|
13
|
Guller A, Igrunkova A. Engineered Microenvironments for 3D Cell Culture and Regenerative Medicine: Challenges, Advances, and Trends. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010017. [PMID: 36671589 PMCID: PMC9854955 DOI: 10.3390/bioengineering10010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
The overall goal of regenerative medicine is to restore the functional performance of the tissues and organs that have been severely damaged or lost due to traumas and diseases [...].
Collapse
Affiliation(s)
- Anna Guller
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
- Correspondence:
| | - Alexandra Igrunkova
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
- World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119992, Russia
| |
Collapse
|
14
|
Ivanova TA, Zubanova EM, Popova AA, Gromov OI, Golubeva EN, Ksendzov EA, Kostyuk SV, Timashev PS. The Diffusion of TEMPONE Radical in the Graft Copolymer of N-Isopropylacrylamide with Oligolactide in the Presence of Supercritical Carbon Dioxide by In Situ EPR Method. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793122070089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Leung KS, Shirazi S, Cooper LF, Ravindran S. Biomaterials and Extracellular Vesicle Delivery: Current Status, Applications and Challenges. Cells 2022; 11:2851. [PMID: 36139426 PMCID: PMC9497093 DOI: 10.3390/cells11182851] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022] Open
Abstract
In this review, we will discuss the current status of extracellular vesicle (EV) delivery via biopolymeric scaffolds for therapeutic applications and the challenges associated with the development of these functionalized scaffolds. EVs are cell-derived membranous structures and are involved in many physiological processes. Naïve and engineered EVs have much therapeutic potential, but proper delivery systems are required to prevent non-specific and off-target effects. Targeted and site-specific delivery using polymeric scaffolds can address these limitations. EV delivery with scaffolds has shown improvements in tissue remodeling, wound healing, bone healing, immunomodulation, and vascular performance. Thus, EV delivery via biopolymeric scaffolds is becoming an increasingly popular approach to tissue engineering. Although there are many types of natural and synthetic biopolymers, the overarching goal for many tissue engineers is to utilize biopolymers to restore defects and function as well as support host regeneration. Functionalizing biopolymers by incorporating EVs works toward this goal. Throughout this review, we will characterize extracellular vesicles, examine various biopolymers as a vehicle for EV delivery for therapeutic purposes, potential mechanisms by which EVs exert their effects, EV delivery for tissue repair and immunomodulation, and the challenges associated with the use of EVs in scaffolds.
Collapse
Affiliation(s)
- Kasey S. Leung
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Sajjad Shirazi
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Lyndon F. Cooper
- School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
16
|
Guimier E, Carson L, David B, Lambert JM, Heery E, Malcolm RK. Pharmacological Approaches for the Prevention of Breast Implant Capsular Contracture. J Surg Res 2022; 280:129-150. [PMID: 35969932 DOI: 10.1016/j.jss.2022.06.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 11/15/2022]
Abstract
Capsular contracture is a common complication associated with breast implants following reconstructive or aesthetic surgery in which a tight or constricting scar tissue capsule forms around the implant, often distorting the breast shape and resulting in chronic pain. Capsulectomy (involving full removal of the capsule surrounding the implant) and capsulotomy (where the capsule is released and/or partly removed to create more space for the implant) are the most common surgical procedures used to treat capsular contracture. Various structural modifications of the implant device (including use of textured implants, submuscular placement of the implant, and the use of polyurethane-coated implants) and surgical strategies (including pre-operative skin washing and irrigation of the implant pocket with antibiotics) have been and/or are currently used to help reduce the incidence of capsular contracture. In this article, we review the pharmacological approaches-both commonly practiced in the clinic and experimental-reported in the scientific and clinical literature aimed at either preventing or treating capsular contracture, including (i) pre- and post-operative intravenous administration of drug substances, (ii) systemic (usually oral) administration of drugs before and after surgery, (iii) modification of the implant surface with grafted drug substances, (iv) irrigation of the implant or peri-implant tissue with drugs prior to implantation, and (v) incorporation of drugs into the implant shell or filler prior to surgery followed by drug release in situ after implantation.
Collapse
Affiliation(s)
| | - Louise Carson
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Benny David
- NuSil Technology LLC, Carpinteria, California
| | | | | | - R Karl Malcolm
- School of Pharmacy, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
17
|
Fayzullin A, Vladimirov G, Kuryanova A, Gafarova E, Tkachev S, Kosheleva N, Istranova E, Istranov L, Efremov Y, Novikov I, Bikmulina P, Puzakov K, Petrov P, Vyazankin I, Nedorubov A, Khlebnikova T, Kapustina V, Trubnikov P, Minaev N, Kurkov A, Royuk V, Mikhailov V, Parshin D, Solovieva A, Lipina M, Lychagin A, Timashev P, Svistunov A, Fomin V, Shpichka A. A defined road to tracheal reconstruction: laser structuring and cell support for rapid clinic translation. Stem Cell Res Ther 2022; 13:317. [PMID: 35842689 PMCID: PMC9288261 DOI: 10.1186/s13287-022-02997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/12/2022] [Indexed: 11/10/2022] Open
Abstract
One of the severe complications occurring because of the patient's intubation is tracheal stenosis. Its incidence has significantly risen because of the COVID-19 pandemic and tends only to increase. Here, we propose an alternative to the donor trachea and synthetic prostheses-the tracheal equivalent. To form it, we applied the donor trachea samples, which were decellularized, cross-linked, and treated with laser to make wells on their surface, and inoculated them with human gingiva-derived mesenchymal stromal cells. The fabricated construct was assessed in vivo using nude (immunodeficient), immunosuppressed, and normal mice and rabbits. In comparison with the matrix ones, the tracheal equivalent samples demonstrated the thinning of the capsule, the significant vessel ingrowth into surrounding tissues, and the increase in the submucosa resorption. The developed construct was shown to be highly biocompatible and efficient in trachea restoration. These results can facilitate its clinical translation and be a base to design clinical trials.
Collapse
Affiliation(s)
- Alexey Fayzullin
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Georgiy Vladimirov
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Anastasia Kuryanova
- Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Elvira Gafarova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
| | - Sergei Tkachev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Nastasia Kosheleva
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Elena Istranova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Leonid Istranov
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Yuri Efremov
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Ivan Novikov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Polina Bikmulina
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
| | - Kirill Puzakov
- Department of Diagnostic Radiology and Radiotherapy, Sechenov University, Moscow, Russia
| | - Pavel Petrov
- Department of Traumatology, Orthopedics and Disaster Surgery, Sechenov University, Moscow, Russia
| | - Ivan Vyazankin
- Department of Traumatology, Orthopedics and Disaster Surgery, Sechenov University, Moscow, Russia
| | - Andrey Nedorubov
- Center for Preclinical Studies, Sechenov University, Moscow, Russia
| | | | | | - Pavel Trubnikov
- Center for Preclinical Studies, Sechenov University, Moscow, Russia
| | - Nikita Minaev
- Research Center Crystallography and Photonics RAS, Institute of Photonic Technologies, Moscow, Russia
| | - Aleksandr Kurkov
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Valery Royuk
- University Hospital No 1, Sechenov University, Moscow, Russia
| | | | - Dmitriy Parshin
- Department of Surgery No 1, Sechenov University, Moscow, Russia
| | - Anna Solovieva
- Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Marina Lipina
- Department of Traumatology, Orthopedics and Disaster Surgery, Sechenov University, Moscow, Russia
| | - Alexey Lychagin
- Department of Traumatology, Orthopedics and Disaster Surgery, Sechenov University, Moscow, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia. .,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia.
| | | | - Victor Fomin
- Department of Internal Medicine No 1, Sechenov University, Moscow, Russia.,Sechenov University, Moscow, Russia
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
| |
Collapse
|
18
|
Ivanova TA, Golubeva EN. Aliphatic Polyesters for Biomedical Purposes: Design and Kinetic Regularities of Degradation in vitro. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793122030162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Implants as Targeted Drug Delivery Systems (Review). Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Failure Analysis of TEVG’s II: Late Failure and Entering the Regeneration Pathway. Cells 2022; 11:cells11060939. [PMID: 35326390 PMCID: PMC8946846 DOI: 10.3390/cells11060939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/03/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
Tissue-engineered vascular grafts (TEVGs) are a promising alternative to treat vascular disease under complex hemodynamic conditions. However, despite efforts from the tissue engineering and regenerative medicine fields, the interactions between the material and the biological and hemodynamic environment are still to be understood, and optimization of the rational design of vascular grafts is an open challenge. This is of special importance as TEVGs not only have to overcome the surgical requirements upon implantation, they also need to withhold the inflammatory response and sustain remodeling of the tissue. This work aims to analyze and evaluate the bio-molecular interactions and hemodynamic phenomena between blood components, cells and materials that have been reported to be related to the failure of the TEVGs during the regeneration process once the initial stages of preimplantation have been resolved, in order to tailor and refine the needed criteria for the optimal design of TEVGs.
Collapse
|
21
|
Fayzullin A, Bakulina A, Mikaelyan K, Shekhter A, Guller A. Implantable Drug Delivery Systems and Foreign Body Reaction: Traversing the Current Clinical Landscape. Bioengineering (Basel) 2021; 8:bioengineering8120205. [PMID: 34940358 PMCID: PMC8698517 DOI: 10.3390/bioengineering8120205] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 01/02/2023] Open
Abstract
Precise delivery of therapeutics to the target structures is essential for treatment efficiency and safety. Drug administration via conventional routes requires overcoming multiple transport barriers to achieve and maintain the local drug concentration and commonly results in unwanted off-target effects. Patients’ compliance with the treatment schedule remains another challenge. Implantable drug delivery systems (IDDSs) provide a way to solve these problems. IDDSs are bioengineering devices surgically placed inside the patient’s tissues to avoid first-pass metabolism and reduce the systemic toxicity of the drug by eluting the therapeutic payload in the vicinity of the target tissues. IDDSs present an impressive example of successful translation of the research and engineering findings to the patient’s bedside. It is envisaged that the IDDS technologies will grow exponentially in the coming years. However, to pave the way for this progress, it is essential to learn lessons from the past and present of IDDSs clinical applications. The efficiency and safety of the drug-eluting implants depend on the interactions between the device and the hosting tissues. In this review, we address this need and analyze the clinical landscape of the FDA-approved IDDSs applications in the context of the foreign body reaction, a key aspect of implant–tissue integration.
Collapse
Affiliation(s)
- Alexey Fayzullin
- Department of Experimental Morphology and Biobanking, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.F.); (A.B.); (K.M.); (A.S.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Alesia Bakulina
- Department of Experimental Morphology and Biobanking, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.F.); (A.B.); (K.M.); (A.S.)
| | - Karen Mikaelyan
- Department of Experimental Morphology and Biobanking, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.F.); (A.B.); (K.M.); (A.S.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Anatoly Shekhter
- Department of Experimental Morphology and Biobanking, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.F.); (A.B.); (K.M.); (A.S.)
| | - Anna Guller
- Department of Experimental Morphology and Biobanking, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.F.); (A.B.); (K.M.); (A.S.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW 2109, Australia
- Correspondence:
| |
Collapse
|