1
|
Mironov IV, Kharlamova VY, Makotchenko EV. Some remarks on the biological application of gold(III) complexes. Biometals 2024; 37:233-246. [PMID: 37855996 DOI: 10.1007/s10534-023-00545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/23/2023] [Indexed: 10/20/2023]
Abstract
Gold(III) complexes are widely studied as antitumor agents and show good results. The interaction with biologically active thiols (thiomalate, cysteine, glutathione (GSH) and human serum albumin) of a number of gold(III) complexes with N-containing polydentate ligands in aqueous solution with pH 7.4 and 0.2 M NaCl was studied. Complexes with 1,10-phenanthroline and 2,2'-bipyridyl, Au(phen)(OH)2+ and Au(bipy)(OH)2+, react fast with an excess of any of these thiols and in less than a few seconds transform into gold(I) bis-thiolate complexes. For complexes with deprotonated ethylenediamine and diethylenetriamine, Au(en)(en-H)2+ and Au(dien-H)(Cl,OH)+, at a significant excess of GSH, a relatively long-lived gold(III) complex AuIII(GSH)iLj is formed. At t = 37 °C, it transforms into the gold(I) bis-thiolate complex Au(GSH)2 by 90% in 4 h. However, for other thiols, the rate of decomposition of similar complexes is about 10 times higher. Some other complexes were also considered. In all cases, a fairly fast reduction of gold(III) to gold(I) occurs with the formation of the gold(I) bis-thiolates.
Collapse
Affiliation(s)
- Igor V Mironov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Avenue, Novosibirsk, 630090, Russia.
| | - Viktoria Yu Kharlamova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Avenue, Novosibirsk, 630090, Russia
| | - Eugenia V Makotchenko
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Avenue, Novosibirsk, 630090, Russia
| |
Collapse
|
2
|
Metal-Based Complexes in Cancer Treatment. Biomedicines 2022; 10:biomedicines10102573. [PMID: 36289835 PMCID: PMC9599845 DOI: 10.3390/biomedicines10102573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022] Open
|
3
|
Mironov IV, Kharlamova VY. Substitution of Cl– by OH– in the Phenanthroline Gold(III) Complex and Its Redox Interaction with Glutathione in Aqueous Solution. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622070166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Lu Y, Ma X, Chang X, Liang Z, Lv L, Shan M, Lu Q, Wen Z, Gust R, Liu W. Recent development of gold(I) and gold(III) complexes as therapeutic agents for cancer diseases. Chem Soc Rev 2022; 51:5518-5556. [PMID: 35699475 DOI: 10.1039/d1cs00933h] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metal complexes have demonstrated significant antitumor activities and platinum complexes are well established in the clinical application of cancer chemotherapy. However, the platinum-based treatment of different types of cancers is massively hampered by severe side effects and resistance development. Consequently, the development of novel metal-based drugs with different mechanism of action and pharmaceutical profile attracts modern medicinal chemists to design and synthesize novel metal-based agents. Among non-platinum anticancer drugs, gold complexes have gained considerable attention due to their significant antiproliferative potency and efficacy. In most situations, the gold complexes exhibit anticancer activities by targeting thioredoxin reductase (TrxR) or other thiol-rich proteins and enzymes and trigger cell death via reactive oxygen species (ROS). Interestingly, gold complexes were recently reported to elicit biochemical hallmarks of immunogenic cell death (ICD) as an ICD inducer. In this review, the recent progress of gold(I) and gold(III) complexes is comprehensively summarized, and their activities and mechanism of action are documented.
Collapse
Affiliation(s)
- Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaoyan Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xingyu Chang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenlin Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lin Lv
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Min Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qiuyue Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenfan Wen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ronald Gust
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Center for Chemistry and Biomedicine, Innsbruck, Austria.
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,State key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
5
|
Massai L, Messori L, Carpentieri A, Amoresano A, Melchiorre C, Fiaschi T, Modesti A, Gamberi T, Magherini F. The effects of two gold-N-heterocyclic carbene (NHC) complexes in ovarian cancer cells: a redox proteomic study. Cancer Chemother Pharmacol 2022; 89:809-823. [PMID: 35543764 PMCID: PMC9135895 DOI: 10.1007/s00280-022-04438-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/15/2022] [Indexed: 01/04/2023]
Abstract
PURPOSE Ovarian cancer is the fifth leading cause of cancer-related deaths in women. Standard treatment consists of tumor debulking surgery followed by platinum and paclitaxel chemotherapy; yet, despite the initial response, about 70-75% of patients develop resistance to chemotherapy. Gold compounds represent a family of very promising anticancer drugs. Among them, we previously investigated the cytotoxic and pro-apoptotic properties of Au(NHC) and Au(NHC)2PF6, i.e., a monocarbene gold(I) complex and the corresponding bis(carbene) complex. Gold compounds are known to alter the redox state of cells interacting with free cysteine and selenocysteine residues of several proteins. Herein, a redox proteomic study has been carried out to elucidate the mechanisms of cytotoxicity in A2780 human ovarian cancer cells. METHODS A biotinylated iodoacetamide labeling method coupled with mass spectrometry was used to identify oxidation-sensitive protein cysteines. RESULTS Gold carbene complexes cause extensive oxidation of several cellular proteins; many affected proteins belong to two major functional classes: carbohydrate metabolism, and cytoskeleton organization/cell adhesion. Among the affected proteins, Glyceraldehyde-3-phosphate dehydrogenase inhibition was proved by enzymatic assays and by ESI-MS studies. We also found that Au(NHC)2PF6 inhibits mitochondrial respiration impairing complex I function. Concerning the oxidized cytoskeletal proteins, gold binding to the free cysteines of actin was demonstrated by ESI-MS analysis. Notably, both gold compounds affected cell migration and invasion. CONCLUSIONS In this study, we deepened the mode of action of Au(NHC) and Au(NHC)2PF6, identifying common cellular targets but confirming their different influence on the mitochondrial function.
Collapse
Affiliation(s)
- Lara Massai
- Department of Chemistry 'Ugo Schiff', University of Florence, via della Lastruccia 3-13, Sesto Fiorentino, 50019, Firenze, Italy
| | - Luigi Messori
- Department of Chemistry 'Ugo Schiff', University of Florence, via della Lastruccia 3-13, Sesto Fiorentino, 50019, Firenze, Italy
| | - Andrea Carpentieri
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Chiara Melchiorre
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Tania Fiaschi
- Department of Experimental and Clinical Biomedical Sciences, Mario Serio" University of Florence Viale G.B. Morgagni 50, 50134, Florence, Italy
| | - Alessandra Modesti
- Department of Experimental and Clinical Biomedical Sciences, Mario Serio" University of Florence Viale G.B. Morgagni 50, 50134, Florence, Italy
| | - Tania Gamberi
- Department of Experimental and Clinical Biomedical Sciences, Mario Serio" University of Florence Viale G.B. Morgagni 50, 50134, Florence, Italy.
| | - Francesca Magherini
- Department of Experimental and Clinical Biomedical Sciences, Mario Serio" University of Florence Viale G.B. Morgagni 50, 50134, Florence, Italy.
| |
Collapse
|
6
|
Luo M, Ma X, Jiang W, Zhang J, Liu W, Wei S, Liu H. Novel phosphanegold(I) thiolate complexes suppress de novo lipid synthesis in human lung cancer. Eur J Med Chem 2022; 232:114168. [DOI: 10.1016/j.ejmech.2022.114168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/17/2022] [Accepted: 01/30/2022] [Indexed: 12/13/2022]
|
7
|
Mad-Adam N, Rattanaburee T, Tanawattanasuntorn T, Graidist P. Effects of trans-(±)-kusunokinin on chemosensitive and chemoresistant ovarian cancer cells. Oncol Lett 2022; 23:59. [PMID: 34992691 PMCID: PMC8721857 DOI: 10.3892/ol.2021.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022] Open
Abstract
Ovarian cancer ranks eighth in cancer incidence and mortality among women worldwide. Cisplatin-based chemotherapy is commonly used for patients with ovarian cancer. However, the clinical efficacy of cisplatin is limited due to the occurrence of adverse side effects and development of cancer chemoresistance during treatment. Trans-(±)-kusunokinin has been previously reported to inhibit cell proliferation and induce cell apoptosis in various cancer cell types, including breast, colon and cholangiocarcinoma. However, the potential effects of (±)-kusunokinin on ovarian cancer remains unknown. In the present study, chemosensitive ovarian cancer cell line A2780 and chemoresistant ovarian cancer cell lines A2780cis, SKOV-3 and OVCAR-3 were treated with trans-(±)-kusunokinin to investigate its potential effects. MTT, colony formation, apoptosis and multi-caspase assays were used to determine cytotoxicity, the ability of single cells to form colonies, induction of apoptosis and multi-caspase activity, respectively. Moreover, western blot analysis was performed to determine the proteins level of topoisomerase II, cyclin D1, CDK1, Bax and p53-upregulated modulator of apoptosis (PUMA). The results demonstrated that trans-(±)-kusunokinin exhibited the strongest cytotoxicity against A2780cis cells with an IC50 value of 3.4 µM whilst also reducing the colony formation of A2780 and A2780cis cells. Trans-(±)-kusunokinin also induced the cells to undergo apoptosis and increased multi-caspase activity in A2780 and A2780cis cells. This compound significantly downregulated topoisomerase II, cyclin D1 and CDK1 expression, but upregulated Bax and PUMA expression in both A2780 and A2780cis cells. In conclusion, trans-(±)-kusunokinin suppressed ovarian cancer cells through the inhibition of colony formation, cell proliferation and the induction of apoptosis. This pure compound could be a potential targeted therapy for ovarian cancer treatment in the future. However, studies in an animal model and clinical trial need to be performed to support the efficacy and safety of this new treatment.
Collapse
Affiliation(s)
- Nadeeya Mad-Adam
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Thidarath Rattanaburee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Tanotnon Tanawattanasuntorn
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
8
|
In Vitro Anti-SARS-CoV-2 Activity of Selected Metal Compounds and Potential Molecular Basis for Their Actions Based on Computational Study. Biomolecules 2021; 11:biom11121858. [PMID: 34944502 PMCID: PMC8699537 DOI: 10.3390/biom11121858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022] Open
Abstract
Metal-based drugs represent a rich source of chemical substances of potential interest for the treatment of COVID-19. To this end, we have developed a small but representative panel of nine metal compounds, including both synthesized and commercially available complexes, suitable for medical application and tested them in vitro against the SARS-CoV-2 virus. The screening revealed that three compounds from the panel, i.e., the organogold(III) compound Aubipyc, the ruthenium(III) complex KP1019, and antimony trichloride (SbCl3), are endowed with notable antiviral properties and an acceptable cytotoxicity profile. These initial findings prompted us to perform a computational study to unveil the likely molecular basis of their antiviral actions. Calculations evidenced that the metalation of nucleophile sites in SARS-CoV-2 proteins or nucleobase strands, induced by Aubipyc, SbCl3, and KP1019, is likely to occur. Remarkably, we found that only the deprotonated forms of Cys and Sec residues can react favorably with these metallodrugs. The mechanistic implications of these findings are discussed.
Collapse
|