1
|
Tu L, Zou Z, Yang Y, Wang S, Xing B, Feng J, Jin Y, Cheng M. Targeted drug delivery systems for atherosclerosis. J Nanobiotechnology 2025; 23:306. [PMID: 40269931 PMCID: PMC12016489 DOI: 10.1186/s12951-025-03384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
Atherosclerosis is a complex cardiovascular disease driven by multiple factors, including aging, inflammation, oxidative stress, and plaque rupture. The progression of this disease is often covert, emphasizing the need for early biomarkers and effective intervention measures. In recent years, advancements in therapeutic strategies have highlighted the potential of targeting specific processes in atherosclerosis, such as plaque localization, macrophage activity, and key enzymes. Based on this, this review discusses the potential role of targeted drugs in the treatment of atherosclerosis. It also focuses on their clinical efficacy in anti-atherosclerosis treatment and their ability to provide more precise therapeutic approaches. The findings underscore that future research can concentrate on exploring newer drug delivery systems and biomarkers to further refine clinical treatment strategies and enhance the long-term dynamic management of atherosclerosis.
Collapse
Affiliation(s)
- Liangxing Tu
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
| | - Zijian Zou
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
| | - Ye Yang
- Wenzhou Yining Geriatric Hospital, Wenzhou, 325041, P.R. China
| | - Siying Wang
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
| | - Banghuai Xing
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
| | - Jianfang Feng
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
- Guangxi University of Chinese Medicine, Nanning, 530200, P.R. China
| | - Yi Jin
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China.
| | - Meng Cheng
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China.
| |
Collapse
|
2
|
Al-Kuraishy HM, Sulaiman GM, Mohammed HA, Dawood RA, Albuhadily AK, Al-Gareeb AI, Klionsky DJ, Abomughaid MM. Insight into the Mechanistic role of Colchicine in Atherosclerosis. Curr Atheroscler Rep 2025; 27:40. [PMID: 40111634 DOI: 10.1007/s11883-025-01291-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
PURPOSE OF REVIEW Globally, the prevalence of atherosclerosis (AS) is rising. Currently, there is no specific drug for AS. Therefore, this review aims to discuss the protective mechanisms of colchicine against the development and progression of atherosclerosis (AS). RECENT FINDINGS Many studies highlighted that the anti-inflammatory drug colchicine reduces the severity of AS, although the underlying mechanism for the beneficial effect of colchicine was not fully clarified. AS is a chronic progressive vascular disorder characterized by the formation of atherosclerotic plaques. Endothelial dysfunction is an initial stage in the pathogenesis of AS that is induced by oxidized low-density lipoprotein (oxLDL). Engulfment of oxLDL by macrophages triggers the development of inflammation due to the release of pro-inflammatory cytokines and growth factors. Inflammatory and adhesion molecules are involved in the pathogenesis of AS. Infiltration and accumulation of leukocytes provoke erosion, rupture, and thrombosis of the atherosclerotic plaque. Therefore, targeting inflammation and leukocyte infiltration by anti-inflammatory agents may reduce AS progression and complications. The anti-inflammatory drug colchicine reduces the severity of AS, although the underlying mechanism for the beneficial effect of colchicine was not fully elucidated. IN CONCLUSION colchicine through inhibition of vascular inflammation, oxidative stress, platelet aggregation and the modulation of autophagy reduces the development and progression of AS.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ghassan M Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad, Iraq.
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, 51452, Qassim, Saudi Arabia
| | - Retaj A Dawood
- Department of Biology, College of Science, Al-Mustaqbal University, Hilla, 51001, Iraq
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Jabir Ibn Hayyan Medical University, Al-Ameer Qu, PO.Box13 Kufa, Najaf, Iraq
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Mosleh M Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, 67714, Bisha, Saudi Arabia
| |
Collapse
|
3
|
Fedotova EI, Berezhnov AV, Popov DY, Shitikova EY, Vinokurov AY. The Role of mtDNA Mutations in Atherosclerosis: The Influence of Mitochondrial Dysfunction on Macrophage Polarization. Int J Mol Sci 2025; 26:1019. [PMID: 39940788 PMCID: PMC11817597 DOI: 10.3390/ijms26031019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Atherosclerosis is a complex inflammatory process associated with high-mortality cardiovascular diseases. Today, there is a growing body of evidence linking atherosclerosis to mutations of mitochondrial DNA (mtDNA). But the mechanism of this link is insufficiently studied. Atherosclerosis progression involves different cell types and macrophages are one of the most important. Due to their high plasticity, macrophages can demonstrate pro-inflammatory and pro-atherogenic (macrophage type M1) or anti-inflammatory and anti-atherogenic (macrophage type M2) effects. These two cell types, formed as a result of external stimuli, differ significantly in their metabolic profile, which suggests the central role of mitochondria in the implementation of the macrophage polarization route. According to this, we assume that mtDNA mutations causing mitochondrial disturbances can play the role of an internal trigger, leading to the formation of macrophage M1 or M2. This review provides a comparative analysis of the characteristics of mitochondrial function in different types of macrophages and their possible associations with mtDNA mutations linked with inflammation-based pathologies including atherosclerosis.
Collapse
Affiliation(s)
- Evgeniya I. Fedotova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia; (E.I.F.); (A.V.B.)
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (D.Y.P.); (E.Y.S.)
| | - Alexey V. Berezhnov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia; (E.I.F.); (A.V.B.)
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (D.Y.P.); (E.Y.S.)
| | - Daniil Y. Popov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (D.Y.P.); (E.Y.S.)
| | - Elena Y. Shitikova
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (D.Y.P.); (E.Y.S.)
| | - Andrey Y. Vinokurov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (D.Y.P.); (E.Y.S.)
| |
Collapse
|
4
|
Chandimali N, Bak SG, Park EH, Lim HJ, Won YS, Kim EK, Park SI, Lee SJ. Free radicals and their impact on health and antioxidant defenses: a review. Cell Death Discov 2025; 11:19. [PMID: 39856066 PMCID: PMC11760946 DOI: 10.1038/s41420-024-02278-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025] Open
Abstract
Free radicals, characterized by the presence of unpaired electrons, are highly reactive species that play a significant role in human health. These molecules can be generated through various endogenous processes, such as mitochondrial respiration and immune cell activation, as well as exogenous sources, including radiation, pollution, and smoking. While free radicals are essential for certain physiological processes, such as cell signaling and immune defense, their overproduction can disrupt the delicate balance between oxidants and antioxidants, leading to oxidative stress. Oxidative stress results in the damage of critical biomolecules like DNA, proteins, and lipids, contributing to the pathogenesis of various diseases. Chronic conditions such as cancer, cardiovascular diseases, neurodegenerative disorders, and inflammatory diseases have been strongly associated with the harmful effects of free radicals. This review provides a comprehensive overview of the characteristics and types of free radicals, their mechanisms of formation, and biological impacts. Additionally, we explore natural compounds and extracts studied for their antioxidant properties, offering potential therapeutic avenues for managing free radical-induced damage. Future research directions are also discussed to advance our understanding and treatment of free radical-associated diseases.
Collapse
Affiliation(s)
- Nisansala Chandimali
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Korea
- Applied Biological Engineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Korea
| | - Seon Gyeong Bak
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Korea
| | - Eun Hyun Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Korea
- Department of Veterinary Pathology, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Korea
| | - Hyung-Jin Lim
- Scripps Korea Antibody Institute, Chuncheon, 24341, Korea
| | - Yeong-Seon Won
- Division of Research Management, Department of Bioresource Industrialization, Honam National Institute of Biological Resource, Mokpo, 58762, Korea
| | - Eun-Kyung Kim
- Nutritional Education Major, Graduate School of Education, Dong-A University, Busan, 49315, Korea
| | - Sang-Ik Park
- Department of Veterinary Pathology, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Korea.
| | - Seung Jae Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Korea.
- Applied Biological Engineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Korea.
| |
Collapse
|
5
|
Le MPT, Marasinghe CK, Je JY. Chitosan oligosaccharides: A potential therapeutic agent for inhibiting foam cell formation in atherosclerosis. Int J Biol Macromol 2024; 282:137186. [PMID: 39491693 DOI: 10.1016/j.ijbiomac.2024.137186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Foam cell formation is a key hallmark in atherosclerosis and associated cardiovascular diseases (CVDs). The potential anti-atherosclerotic potential of chitosan oligosaccharides (COS) was investigated using oxLDL-treated RAW264.7 murine cells. COS treatment led to a significant inhibition of lipid accumulation, as demonstrated by Oil Red O staining, and reduced levels of total cholesterol, free cholesterol, cholesterol esters, and triglycerides in.oxLDL-treated RAW264.7 cells. COS blocked cholesterol influx through down-regulating class A1 scavenger receptors (SR-A1) and cluster of differentiation 36 (CD36) expression and stimulated cholesterol efflux through up-regulating ABC transporters ABCA-1 and ABCG-1 expressions. Additionally, COS treatment stimulated nuclear signaling pathways involving peroxisome proliferator-activated receptor-γ (PPAR-γ) and liver X receptor α (LXR-α), and also led to the phosphorylation of AMP-activated protein kinase (AMPK). COS further demonstrated anti-inflammatory effects by inhibiting the production of pro-inflammatory cytokines and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in oxLDL-treated RAW264.7 cells, through suppression of NF-κB signaling. Furthermore, COS alleviated oxidative stress induced by oxLDL by activating Nrf2 signaling and enhancing the expression of antioxidant genes, including heme oxygenase-1 (HO-1), superoxide dismutase (SOD), glutathione peroxidase (Gpx), and catalase (CAT). In conclusion, COS can be beneficial in preventing atherosclerosis and related diseases.
Collapse
Affiliation(s)
- My Phuong Thi Le
- Department of Food and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | | | - Jae-Young Je
- Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
6
|
Mosalmanzadeh N, Pence BD. Oxidized Low-Density Lipoprotein and Its Role in Immunometabolism. Int J Mol Sci 2024; 25:11386. [PMID: 39518939 PMCID: PMC11545486 DOI: 10.3390/ijms252111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Modified cholesterols such as oxidized low-density lipoprotein (OxLDL) contribute to atherosclerosis and other disorders through the promotion of foam cell formation and inflammation. In recent years, it has become evident that immune cell responses to inflammatory molecules such as OxLDLs depend on cellular metabolic functions. This review examines the known effects of OxLDL on immunometabolism and immune cell responses in atherosclerosis and several other diseases. We additionally provide context on the relationship between OxLDL and aging/senescence and identify gaps in the literature and our current understanding in these areas.
Collapse
Affiliation(s)
| | - Brandt D. Pence
- College of Health Sciences and Center for Nutraceutical and Dietary Supplement Research, University of Memphis, Memphis, TN 38111, USA
| |
Collapse
|
7
|
Marasinghe CK, Je JY. Blue Mussel-Derived Bioactive Peptides PIISVYWK (P1) and FSVVPSPK (P2): Promising Agents for Inhibiting Foam Cell Formation and Inflammation in Cardiovascular Diseases. Mar Drugs 2024; 22:466. [PMID: 39452874 PMCID: PMC11509633 DOI: 10.3390/md22100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Atherosclerosis is a key etiological event in the development of cardiovascular diseases (CVDs), strongly linked to the formation of foam cells. This study explored the effects of two blue mussel-derived bioactive peptides (BAPs), PIISVYWK (P1) and FSVVPSPK (P2), on inhibiting foam cell formation and mitigating inflammation in oxLDL-treated RAW264.7 macrophages. Both peptides significantly suppressed intracellular lipid accumulation and cholesterol levels while promoting cholesterol efflux by downregulating cluster of differentiation 36 (CD36) and class A1 scavenger receptors (SR-A1) and upregulating ATP binding cassette subfamily A member 1 (ABCA-1) and ATP binding cassette subfamily G member 1 (ABCG-1) expressions. The increased expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and liver X receptor-alpha (LXR-α) further validated their role in enhancing cholesterol efflux. Additionally, P1 and P2 inhibited foam cell formation in oxLDL-treated human aortic smooth muscle cells and exerted anti-inflammatory effects by reducing pro-inflammatory cytokines, nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), primarily through inhibiting NF-κB activation. Furthermore, P1 and P2 alleviated oxidative stress by activating the Nrf2/HO-1 pathway. Our findings demonstrate that P1 and P2 have significant potential in reducing foam cell formation and inflammation, both critical factors in atherosclerosis development. These peptides may serve as promising therapeutic agents for the prevention and treatment of CVDs associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
| | - Jae-Young Je
- Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
8
|
Hertiš Petek T, Marčun Varda N. Childhood Cardiovascular Health, Obesity, and Some Related Disorders: Insights into Chronic Inflammation and Oxidative Stress. Int J Mol Sci 2024; 25:9706. [PMID: 39273654 PMCID: PMC11396019 DOI: 10.3390/ijms25179706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Childhood obesity and associated metabolic abnormalities have become pressing public health concerns worldwide, significantly impacting cardiovascular health. Metabolic syndrome, characterized by a cluster of metabolic abnormalities including central obesity, altered glucose metabolism, dyslipidemia, and arterial hypertension, has emerged as a critical precursor to cardiovascular disease. Chronic systemic inflammation and oxidative stress seem to play pivotal roles in the pathogenesis of childhood obesity-related disorders such as early atherosclerosis. A significant distinction between the objective components of cardiovascular health metrics, including body mass index, blood pressure, cholesterol, and fasting glucose levels, and the definition of metabolic syndrome is evident in the identification of obesity. Whereas cardiovascular health metrics predominantly rely on body mass index percentiles to assess obesity, metabolic syndrome criteria prioritize waist circumference, specifically targeting individuals with a measurement ≥90th percentile. This discrepancy emphasizes the need for a nuanced approach in assessing the risks associated with obesity and underscores the importance of considering multiple factors when evaluating cardiovascular risk in children. By recognizing the complex interplay between various health metrics, obesity and metabolic syndrome criteria, clinicians can more accurately identify individuals at risk and tailor interventions accordingly to mitigate cardiovascular disease in children with obesity.
Collapse
Affiliation(s)
- Tjaša Hertiš Petek
- Department of Paediatrics, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
| | - Nataša Marčun Varda
- Department of Paediatrics, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
9
|
Atalay Ekiner S, Gęgotek A, Skrzydlewska E. Inflammasome activity regulation by PUFA metabolites. Front Immunol 2024; 15:1452749. [PMID: 39290706 PMCID: PMC11405227 DOI: 10.3389/fimmu.2024.1452749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Oxidative stress and the accompanying chronic inflammation constitute an important metabolic problem that may lead to pathology, especially when the body is exposed to physicochemical and biological factors, including UV radiation, pathogens, drugs, as well as endogenous metabolic disorders. The cellular response is associated, among others, with changes in lipid metabolism, mainly due to the oxidation and the action of lipolytic enzymes. Products of oxidative fragmentation/cyclization of polyunsaturated fatty acids (PUFAs) [4-HNE, MDA, 8-isoprostanes, neuroprostanes] and eicosanoids generated as a result of the enzymatic metabolism of PUFAs significantly modify cellular metabolism, including inflammation and the functioning of the immune system by interfering with intracellular molecular signaling. The key regulators of inflammation, the effectiveness of which can be regulated by interacting with the products of lipid metabolism under oxidative stress, are inflammasome complexes. An example is both negative or positive regulation of NLRP3 inflammasome activity by 4-HNE depending on the severity of oxidative stress. 4-HNE modifies NLRP3 activity by both direct interaction with NLRP3 and alteration of NF-κB signaling. Furthermore, prostaglandin E2 is known to be positively correlated with both NLRP3 and NLRC4 activity, while its potential interference with AIM2 or NLRP1 activity is unproven. Therefore, the influence of PUFA metabolites on the activity of well-characterized inflammasome complexes is reviewed.
Collapse
Affiliation(s)
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
10
|
Manoharan MM, Montes GC, Acquarone M, Swan KF, Pridjian GC, Nogueira Alencar AK, Bayer CL. Metabolic theory of preeclampsia: implications for maternal cardiovascular health. Am J Physiol Heart Circ Physiol 2024; 327:H582-H597. [PMID: 38968164 PMCID: PMC11442029 DOI: 10.1152/ajpheart.00170.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Preeclampsia (PE) is a multisystemic disorder of pregnancy that not only causes perinatal mortality and morbidity but also has a long-term toll on the maternal and fetal cardiovascular system. Women diagnosed with PE are at greater risk for the subsequent development of hypertension, ischemic heart disease, cardiomyopathy, cerebral edema, seizures, and end-stage renal disease. Although PE is considered heterogeneous, inefficient extravillous trophoblast (EVT) migration leading to deficient spiral artery remodeling and increased uteroplacental vascular resistance is the likely initiation of the disease. The principal pathophysiology is placental hypoxia, causing subsequent oxidative stress, leading to mitochondrial dysfunction, mitophagy, and immunological imbalance. The damage imposed on the placenta in turn results in the "stress response" categorized by the dysfunctional release of vasoactive components including oxidative stressors, proinflammatory factors, and cytokines into the maternal circulation. These bioactive factors have deleterious effects on systemic endothelial cells and coagulation leading to generalized vascular dysfunction and hypercoagulability. A better understanding of these metabolic factors may lead to novel therapeutic approaches to prevent and treat this multisystemic disorder. In this review, we connect the hypoxic-oxidative stress and inflammation involved in the pathophysiology of PE to the resulting persistent cardiovascular complications in patients with preeclampsia.
Collapse
Affiliation(s)
- Mistina M Manoharan
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, United States
| | - Guilherme C Montes
- Department of Pharmacology and Psychobiology, Roberto Alcântara Gomes Institute Biology (IBRAG), Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Mariana Acquarone
- Department of Neurology, Tulane University, New Orleans, Louisiana, United States
| | - Kenneth F Swan
- Department of Obstetrics and Gynecology, Tulane University, New Orleans, Louisiana, United States
| | - Gabriella C Pridjian
- Department of Obstetrics and Gynecology, Tulane University, New Orleans, Louisiana, United States
| | | | - Carolyn L Bayer
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, United States
- Department of Obstetrics and Gynecology, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
11
|
Suryan V, Chandra NC. Cholesterol and Cytokines: Molecular Links to Atherosclerosis and Carcinogenesis. Cell Biochem Biophys 2024; 82:1837-1844. [PMID: 38943010 DOI: 10.1007/s12013-024-01383-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
An increase of cholesterol concentration within the artery obstructs arterial blood flow once it deposits alongside the arterial wall. This results in atherosclerosis. Carcinogenesis causes a quicker clearance of vascular cholesterol to meet the demands of tumour cell development. Both illnesses have an increased concentration of pro-inflammatory cytokines in the blood. To search the comparative characteristics of cholesterol and pro-inflammatory cytokines in the pathogenesis of atherosclerosis and carcinogenesis, a comprehensive online survey using MEDLINE, Scopus, PubMed, and Google Scholar was conducted for relevant journals with key search term cholesterol and cytokines in atherosclerotic and cancerous patients. According to reports, hypercholesterolaemia related dyslipidemia causes atherosclerosis in blood arteries and hypercholesterolaemia in cell nucleus is a reason for developing carcinogenesis. It is also noted that pro-inflammatory cytokines are involved in both of the aforementioned pathogenesis. Changes in anti-inflammatory cytokines are only the characteristic features of each kind. Thus, Cholesterol and pro-inflammatory cytokines are intensely interlinked in the genesis of atherosclerotic and carcinogenic consequences.
Collapse
Affiliation(s)
- Varsha Suryan
- Department of Biochemistry, Faculty of Medicine & Health Sciences, Shree Guru Gobind Singh Tricentenary University, Budhera, Gurugram (Delhi-NCR), Haryana, 122505, India
- Department of Paramedical Science, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary University, Budhera, Gurugram (Delhi-NCR), Haryana, 122505, India
| | - Nimai Chand Chandra
- Department of Biochemistry, Faculty of Medicine & Health Sciences, Shree Guru Gobind Singh Tricentenary University, Budhera, Gurugram (Delhi-NCR), Haryana, 122505, India.
| |
Collapse
|
12
|
Alradwan I, AL Fayez N, Alomary MN, Alshehri AA, Aodah AH, Almughem FA, Alsulami KA, Aldossary AM, Alawad AO, Tawfik YMK, Tawfik EA. Emerging Trends and Innovations in the Treatment and Diagnosis of Atherosclerosis and Cardiovascular Disease: A Comprehensive Review towards Healthier Aging. Pharmaceutics 2024; 16:1037. [PMID: 39204382 PMCID: PMC11360443 DOI: 10.3390/pharmaceutics16081037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases (CVDs) are classed as diseases of aging, which are associated with an increased prevalence of atherosclerotic lesion formation caused by such diseases and is considered as one of the leading causes of death globally, representing a severe health crisis affecting the heart and blood vessels. Atherosclerosis is described as a chronic condition that can lead to myocardial infarction, ischemic cardiomyopathy, stroke, and peripheral arterial disease and to date, most pharmacological therapies mainly aim to control risk factors in patients with cardiovascular disease. Advances in transformative therapies and imaging diagnostics agents could shape the clinical applications of such approaches, including nanomedicine, biomaterials, immunotherapy, cell therapy, and gene therapy, which are emerging and likely to significantly impact CVD management in the coming decade. This review summarizes the current anti-atherosclerotic therapies' major milestones, strengths, and limitations. It provides an overview of the recent discoveries and emerging technologies in nanomedicine, cell therapy, and gene and immune therapeutics that can revolutionize CVD clinical practice by steering it toward precision medicine. CVD-related clinical trials and promising pre-clinical strategies that would significantly impact patients with CVD are discussed. Here, we review these recent advances, highlighting key clinical opportunities in the rapidly emerging field of CVD medicine.
Collapse
Affiliation(s)
- Ibrahim Alradwan
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Nojoud AL Fayez
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Mohammad N. Alomary
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Abdullah A. Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Alhassan H. Aodah
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Fahad A. Almughem
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Khulud A. Alsulami
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Ahmad M. Aldossary
- Wellness and Preventative Medicine Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Abdullah O. Alawad
- Healthy Aging Research Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Yahya M. K. Tawfik
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Essam A. Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| |
Collapse
|
13
|
Godbole S, Solomon JL, Johnson M, Srivastava A, Carsons SE, Belilos E, De Leon J, Reiss AB. Treating Cardiovascular Disease in the Inflammatory Setting of Rheumatoid Arthritis: An Ongoing Challenge. Biomedicines 2024; 12:1608. [PMID: 39062180 PMCID: PMC11275112 DOI: 10.3390/biomedicines12071608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Despite progress in treating rheumatoid arthritis, this autoimmune disorder confers an increased risk of developing cardiovascular disease (CVD). Widely used screening protocols and current clinical guidelines are inadequate for the early detection of CVD in persons with rheumatoid arthritis. Traditional CVD risk factors alone cannot be applied because they underestimate CVD risk in rheumatoid arthritis, missing the window of opportunity for prompt intervention to decrease morbidity and mortality. The lipid profile is insufficient to assess CVD risk. This review delves into the connection between systemic inflammation in rheumatoid arthritis and the premature onset of CVD. The shared inflammatory and immunologic pathways between the two diseases that result in subclinical atherosclerosis and disrupted cholesterol homeostasis are examined. The treatment armamentarium for rheumatoid arthritis is summarized, with a particular focus on each medication's cardiovascular effect, as well as the mechanism of action, risk-benefit profile, safety, and cost. A clinical approach to CVD screening and treatment for rheumatoid arthritis patients is proposed based on the available evidence. The mortality gap between rheumatoid arthritis and non-rheumatoid arthritis populations due to premature CVD represents an urgent research need in the fields of cardiology and rheumatology. Future research areas, including risk assessment tools and novel immunotherapeutic targets, are highlighted.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (J.L.S.); (M.J.); (A.S.); (S.E.C.); (E.B.); (J.D.L.)
| |
Collapse
|
14
|
Mukalel AJ, Hamilton AG, Billingsley MM, Li J, Thatte AS, Han X, Safford HC, Padilla MS, Papp T, Parhiz H, Weissman D, Mitchell MJ. Oxidized mRNA Lipid Nanoparticles for In Situ Chimeric Antigen Receptor Monocyte Engineering. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2312038. [PMID: 39628840 PMCID: PMC11611297 DOI: 10.1002/adfm.202312038] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 12/06/2024]
Abstract
Chimeric antigen receptor (CAR) monocyte and macrophage therapies are promising solid tumor immunotherapies that can overcome the challenges facing conventional CAR T cell therapy. mRNA lipid nanoparticles (mRNA-LNPs) offer a viable platform for in situ engineering of CAR monocytes with transient and tunable CAR expression to reduce off-tumor toxicity and streamline cell manufacturing. However, identifying LNPs with monocyte tropism and intracellular delivery potency is difficult using traditional screening techniques. Here, ionizable lipid design and high-throughput in vivo screening are utilized to identify a new class of oxidized LNPs with innate tropism and mRNA delivery to monocytes. A library of oxidized (oLNPs) and unoxidized LNPs (uLNPs) is synthesized to evaluate mRNA delivery to immune cells. oLNPs demonstrate notable differences in morphology, ionization energy, and pKa, therefore enhancing delivery to human macrophages, but not T cells. Subsequently, in vivo library screening with DNA barcodes identifies an oLNP formulation, C14-O2, with innate tropism to monocytes. In a proof-of-concept study, the C14-O2 LNP is used to engineer functional CD19-CAR monocytes in situ for robust B cell aplasia (45%) in healthy mice. This work highlights the utility of oxidized LNPs as a promising platform for engineering CAR macrophages/monocytes for solid tumor CAR monocyte therapy.
Collapse
Affiliation(s)
- Alvin J. Mukalel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alex G. Hamilton
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Margaret M. Billingsley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jacqueline Li
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ajay S. Thatte
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xuexiang Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hannah C. Safford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marshall S. Padilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tyler Papp
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hamideh Parhiz
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Oskroba A, Bartusik-Aebisher D, Myśliwiec A, Dynarowicz K, Cieślar G, Kawczyk-Krupka A, Aebisher D. Photodynamic Therapy and Cardiovascular Diseases. Int J Mol Sci 2024; 25:2974. [PMID: 38474220 DOI: 10.3390/ijms25052974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/24/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Cardiovascular diseases are the third most common cause of death in the world. The most common are heart attacks and stroke. Cardiovascular diseases are a global problem monitored by many centers, including the World Health Organization (WHO). Atherosclerosis is one aspect that significantly influences the development and management of cardiovascular diseases. Photodynamic therapy (PDT) is one of the therapeutic methods used for various types of inflammatory, cancerous and non-cancer diseases. Currently, it is not practiced very often in the field of cardiology. It is most often practiced and tested experimentally under in vitro experimental conditions. In clinical practice, the use of PDT is still rare. The aim of this review was to characterize the effectiveness of PDT in the treatment of cardiovascular diseases. Additionally, the most frequently used photosensitizers in cardiology are summarized.
Collapse
Affiliation(s)
- Aleksander Oskroba
- Science Club, Faculty of Medicine, Medical University of Lublin, 20-059 Lublin, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, 35-959 Rzeszów, Poland
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 St., 41-902 Bytom, Poland
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 St., 41-902 Bytom, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, 35-959 Rzeszów, Poland
| |
Collapse
|
16
|
Liuizė (Abramavičiūtė) A, Mongirdienė A. TGF-β Isoforms and GDF-15 in the Development and Progression of Atherosclerosis. Int J Mol Sci 2024; 25:2104. [PMID: 38396781 PMCID: PMC10889676 DOI: 10.3390/ijms25042104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The effect of oxidised lipoproteins on the endothelium, monocytes, platelets, and macrophages is a key factor in the initiation and development of atherosclerosis. Antioxidant action, lipoprotein metabolism, and chronic inflammation are the fields of research interest for better understanding the development of the disease. All the fields are related to inflammation and hence to the secretion of cytokines, which are being investigated as potential diagnostic markers for the onset of atherosclerosis. Pathways of vascular damage are crucial for the development of new laboratory readouts. The very early detection of endothelial cell damage associated with the onset of atherosclerosis, allowing the initiation of therapy, remains a major research goal. This article summarises the latest results on the relationship of tumour growth factor beta (TGF-β) isoforms and growth differentiation factor 15 (GDF-15) to the pathogenesis of atherosclerosis: which cells involved in atherosclerosis produce them, which effectors stimulate their synthesis and secretion, how they influence atherosclerosis development, and the relationship between the levels of TGF-β and GDF-15 in the blood and the development and extent of atherosclerosis.
Collapse
Affiliation(s)
| | - Aušra Mongirdienė
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| |
Collapse
|
17
|
Coornaert I, Breynaert A, Hermans N, De Meyer GRY, Martinet W. α-Tocopherol inhibits atherogenesis and improves cardiac function in mice independently of its antioxidant properties. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2024; 6:e240002. [PMID: 38717284 PMCID: PMC11227056 DOI: 10.1530/vb-24-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024]
Abstract
The impact of α-tocopherol on atherosclerosis is unclear and controversial. While some studies suggest potential benefits, such as antioxidant properties that may reduce oxidative stress, other studies indicate no significant preventive effects. The intricate interplay of various factors, including dosage, individual differences, and study methodologies, contributes to the ongoing uncertainty surrounding α-tocopherol's role in atherosclerosis. Further research is needed to clarify its impact and establish clearer guidelines. Therefore, we aimed to evaluate the impact of α-tocopherol on atherogenesis in ApoE-/- fibrillin (Fbn)1C1039G/+ mice, which is a unique mouse model of advanced atherosclerosis with typical features, such as large necrotic cores, high levels of inflammation, and intraplaque neovascularization, that resemble the unstable phenotype of human plaques. ApoE-/- Fbn1C1039G+/- mice were fed a western-type diet (WD) supplemented with a high dose of α-tocopherol (500 mg/kg diet), while control mice were fed a WD containing a low dose of α-tocopherol (50 mg/kg diet). The high dose of α-tocopherol reduced plaque thickness and necrotic core area in the right common carotid artery (RCCA) after 24 weeks WD. Moreover, α-tocopherol decreased plaque formation and intraplaque neovascularization in the RCCA. In addition to its antiatherogenic effect, chronic supplementation of α-tocopherol improved cardiac function in ApoE-/- Fbn1C1039G/+ mice. However, chronic supplementation of α-tocopherol did not decrease lipid peroxidation. On the contrary, α-tocopherol acted as a prooxidant by increasing plasma levels of oxidized LDL and plaque malondialdehyde, an end product of lipid peroxidation. Our data indicate that α-tocopherol inhibits atherogenesis and improves cardiac function independent of its antioxidant properties.
Collapse
Affiliation(s)
- Isabelle Coornaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
- Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | | | - Nina Hermans
- NatuRAPT Research Group, University of Antwerp, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
- Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
- Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
18
|
Ravi S, Martin LC, Krishnan M, Kumaresan M, Manikandan B, Ramar M. Interactions between macrophage membrane and lipid mediators during cardiovascular diseases with the implications of scavenger receptors. Chem Phys Lipids 2024; 258:105362. [PMID: 38006924 DOI: 10.1016/j.chemphyslip.2023.105362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The onset and progression of cardiovascular diseases with the major underlying cause being atherosclerosis, occur during chronic inflammatory persistence in the vascular system, especially within the arterial wall. Such prolonged maladaptive inflammation is driven by macrophages and their key mediators are generally attributed to a disparity in lipid metabolism. Macrophages are the primary cells of innate immunity, endowed with expansive membrane domains involved in immune responses with their signalling systems. During atherosclerosis, the membrane domains and receptors control various active organisations of macrophages. Their scavenger/endocytic receptors regulate the trafficking of intracellular and extracellular cargo. Corresponding influence on lipid metabolism is mediated by their dynamic interaction with scavenger membrane receptors and their integrated mechanisms such as pinocytosis, phagocytosis, cholesterol export/import, etc. This interaction not only results in the functional differentiation of macrophages but also modifies their structural configurations. Here, we reviewed the association of macrophage membrane biomechanics and their scavenger receptor families with lipid metabolites during the event of atherogenesis. In addition, the membrane structure of macrophages and the signalling pathways involved in endocytosis integrated with lipid metabolism are detailed. This article establishes future insights into the scavenger receptors as potential targets for cardiovascular disease prevention and treatment.
Collapse
Affiliation(s)
- Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | | | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Manikandan Kumaresan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni's College for Women, Chennai 600 015, India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
19
|
Chirumbolo S, Valdenassi L, Tirelli U, Pandolfi S, Franzini M. The use of the medical ozone in the immune challenge of multidrug resistant (MDR) bacteria and the role of mitochondria. Microbes Infect 2024; 26:105242. [PMID: 38380603 DOI: 10.1016/j.micinf.2023.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 02/22/2024]
Affiliation(s)
| | - Luigi Valdenassi
- Italian Scientific Society in Oxygen Ozone Therapy (SIOOT), Bergamo, Italy
| | | | - Sergio Pandolfi
- Italian Scientific Society in Oxygen Ozone Therapy (SIOOT), Bergamo, Italy
| | - Marianno Franzini
- Italian Scientific Society in Oxygen Ozone Therapy (SIOOT), Bergamo, Italy.
| |
Collapse
|
20
|
Kwak D, Bradley PB, Subbotina N, Ling S, Teitz-Tennenbaum S, Osterholzer JJ, Sisson TH, Kim KK. CD36/Lyn kinase interactions within macrophages promotes pulmonary fibrosis in response to oxidized phospholipid. Respir Res 2023; 24:314. [PMID: 38098035 PMCID: PMC10722854 DOI: 10.1186/s12931-023-02629-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
Recent data from human studies and animal models have established roles for type II alveolar epithelial cell (AEC2) injury/apoptosis and monocyte/macrophage accumulation and activation in progressive lung fibrosis. Although the link between these processes is not well defined, we have previously shown that CD36-mediated uptake of apoptotic AEC2s by lung macrophages is sufficient to drive fibrosis. Importantly, apoptotic AEC2s are rich in oxidized phospholipids (oxPL), and amongst its multiple functions, CD36 serves as a scavenger receptor for oxPL. Recent studies have established a role for oxPLs in alveolar scarring, and we hypothesized that uptake and accrual of oxPL by CD36 would cause a macrophage phenotypic change that promotes fibrosis. To test this hypothesis, we treated wild-type and CD36-null mice with the oxPL derivative oxidized phosphocholine (POVPC) and found that CD36-null mice were protected from oxPL-induced scarring. Compared to WT mice, fewer macrophages accumulated in the lungs of CD36-null animals, and the macrophages exhibited a decreased accumulation of intracellular oxidized lipid. Importantly, the attenuated accrual of oxPL in CD36-null macrophages was associated with diminished expression of the profibrotic mediator, TGFβ. Finally, the pathway linking oxPL uptake and TGFβ expression was found to require CD36-mediated activation of Lyn kinase. Together, these observations elucidate a causal pathway that connects AEC2 injury with lung macrophage activation via CD36-mediated uptake of oxPL and suggest several potential therapeutic targets.
Collapse
Affiliation(s)
- Doyun Kwak
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
| | - Patrick B Bradley
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
| | - Natalia Subbotina
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
| | - Song Ling
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
| | - Seagal Teitz-Tennenbaum
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
- Pulmonary Section, Department of Medicine, VA Ann Arbor Health System, Ann Arbor, MI, 48105, USA
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
- Pulmonary Section, Department of Medicine, VA Ann Arbor Health System, Ann Arbor, MI, 48105, USA
| | - Thomas H Sisson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
| | - Kevin K Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
21
|
Luo T, Zhang Z, Xu J, Liu H, Cai L, Huang G, Wang C, Chen Y, Xia L, Ding X, Wang J, Li X. Atherosclerosis treatment with nanoagent: potential targets, stimulus signals and drug delivery mechanisms. Front Bioeng Biotechnol 2023; 11:1205751. [PMID: 37404681 PMCID: PMC10315585 DOI: 10.3389/fbioe.2023.1205751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/31/2023] [Indexed: 07/06/2023] Open
Abstract
Cardiovascular disease (CVDs) is the first killer of human health, and it caused up at least 31% of global deaths. Atherosclerosis is one of the main reasons caused CVDs. Oral drug therapy with statins and other lipid-regulating drugs is the conventional treatment strategies for atherosclerosis. However, conventional therapeutic strategies are constrained by low drug utilization and non-target organ injury problems. Micro-nano materials, including particles, liposomes, micelles and bubbles, have been developed as the revolutionized tools for CVDs detection and drug delivery, specifically atherosclerotic targeting treatment. Furthermore, the micro-nano materials also could be designed to intelligently and responsive targeting drug delivering, and then become a promising tool to achieve atherosclerosis precision treatment. This work reviewed the advances in atherosclerosis nanotherapy, including the materials carriers, target sites, responsive model and treatment results. These nanoagents precisely delivery the therapeutic agents to the target atherosclerosis sites, and intelligent and precise release of drugs, which could minimize the potential adverse effects and be more effective in atherosclerosis lesion.
Collapse
Affiliation(s)
- Ting Luo
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zhen Zhang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Junbo Xu
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hanxiong Liu
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Lin Cai
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Gang Huang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Chunbin Wang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yingzhong Chen
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Long Xia
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xunshi Ding
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jin Wang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xin Li
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
22
|
Markina YV, Kirichenko TV, Tolstik TV, Bogatyreva AI, Zotova US, Cherednichenko VR, Postnov AY, Markin AM. Target and Cell Therapy for Atherosclerosis and CVD. Int J Mol Sci 2023; 24:10308. [PMID: 37373454 DOI: 10.3390/ijms241210308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiovascular diseases (CVD) and, in particular, atherosclerosis, remain the main cause of death in the world today. Unfortunately, in most cases, CVD therapy begins after the onset of clinical symptoms and is aimed at eliminating them. In this regard, early pathogenetic therapy for CVD remains an urgent problem in modern science and healthcare. Cell therapy, aimed at eliminating tissue damage underlying the pathogenesis of some pathologies, including CVD, by replacing it with various cells, is of the greatest interest. Currently, cell therapy is the most actively developed and potentially the most effective treatment strategy for CVD associated with atherosclerosis. However, this type of therapy has some limitations. In this review, we have tried to summarize the main targets of cell therapy for CVD and atherosclerosis in particular based on the analysis using the PubMed and Scopus databases up to May 2023.
Collapse
Affiliation(s)
- Yuliya V Markina
- Petrovsky National Research Center of Surgery, Moscow 119991, Russia
| | | | - Taisiya V Tolstik
- Petrovsky National Research Center of Surgery, Moscow 119991, Russia
| | | | - Ulyana S Zotova
- Petrovsky National Research Center of Surgery, Moscow 119991, Russia
| | | | - Anton Yu Postnov
- Petrovsky National Research Center of Surgery, Moscow 119991, Russia
| | - Alexander M Markin
- Petrovsky National Research Center of Surgery, Moscow 119991, Russia
- Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow 117198, Russia
| |
Collapse
|
23
|
Bezsonov E, Khotina V, Glanz V, Sobenin I, Orekhov A. Lipids and Lipoproteins in Atherosclerosis. Biomedicines 2023; 11:biomedicines11051424. [PMID: 37239095 DOI: 10.3390/biomedicines11051424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease [...].
Collapse
Affiliation(s)
- Evgeny Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution " Petrovsky National Research Centre of Surgery", 3 Tsyurupa Street, 117418 Moscow, Russia
- Department of Biology and General Genetics, I. M. Sechenov First Moscow State Medical University, 8 Izmailovsky Boulevard, 105043 Moscow, Russia
| | - Victoria Khotina
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Victor Glanz
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution " Petrovsky National Research Centre of Surgery", 3 Tsyurupa Street, 117418 Moscow, Russia
| | - Igor Sobenin
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 15a 3rd Cherepkovskaya Street, 121552 Moscow, Russia
| | - Alexander Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution " Petrovsky National Research Centre of Surgery", 3 Tsyurupa Street, 117418 Moscow, Russia
| |
Collapse
|
24
|
Xie L, Zhao YX, Zheng Y, Li XF. The pharmacology and mechanisms of platycodin D, an active triterpenoid saponin from Platycodon grandiflorus. Front Pharmacol 2023; 14:1148853. [PMID: 37089949 PMCID: PMC10117678 DOI: 10.3389/fphar.2023.1148853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Chinese doctors widely prescribed Platycodon grandiflorus A. DC. (PG) to treat lung carbuncles in ancient China. Modern clinical experiences have demonstrated that PG plays a crucial role in treating chronic pharyngitis, plum pneumonia, pneumoconiosis, acute and chronic laryngitis, and so forth. Additionally, PG is a food with a long history in China, Japan, and Korea. Furthermore, Platycodin D (PLD), an oleanane-type triterpenoid saponin, is one of the active substances in PG. PLD has been revealed to have anti-inflammatory, anti-viral, anti-oxidation, anti-obesity, anticoagulant, spermicidal, anti-tumor etc., activities. And the mechanism of the effects draws lots of attention, with various signaling pathways involved in these processes. Additionally, research on PLD's pharmacokinetics and extraction processes is under study. The bioavailability of PLD could be improved by being prescribed with Glycyrrhiza uralensis Fisch. or by creating a new dosage form. PLD has been recently considered to have the potential to be a solubilizer or an immunologic adjuvant. Meanwhile, PLD was discovered to have hemolytic activity correlated. PLD has broad application prospects and reveals practical pharmacological activities in pre-clinical research. The authors believe that these activities of PLD contribute to the efficacy of PG. What is apparent is that the clinical translation of PLD still has a long way to go. With the help of modern technology, the scope of clinical applications of PLD is probable to be expanded from traditional applications to new fields.
Collapse
Affiliation(s)
| | | | | | - Xiao-Fang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
25
|
OxLDL-Induced Foam Cell Formation Inhibitory Activity of Pepsin Hydrolysate of Ark Shell (Scapharca subcrenata (Lischke, 1869)) in RAW264.7 Macrophages. J Food Biochem 2023. [DOI: 10.1155/2023/6905673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Inhibitory effect of ark shell (Scapharca subcrenata (Lischke, 1869)) proteolytic hydrolysates (ASHs) on oxidized low-density lipoprotein (oxLDL)-induced macrophage foam cell formation was investigated. Two types of ASHs were prepared by Alcalase® and pepsin, ASAH (ark shell-Alcalase® hydrolysates), and ASPH (ark shell-pepsin hydrolysate). Oil Red O staining results showed that ASPH suppressed foam cell formation and lipid accumulation more than ASAH in oxLDL-induced foam cell formation of RAW264.7 macrophages. ASPH reduced the levels of total cholesterol, cholesterol ester, and free cholesterol in oxLDL-treated RAW264.7 macrophages. It was found that ASPH increased cholesterol efflux and decreased cholesterol influx rate. In this regard, protein expressions of CD36 and scavenger receptor class A1 (SR-A1) for cholesterol influx and ATP-binding cassette transporter A1 and G1 (ABCA1 and ABCG1) for cholesterol efflux were investigated. ASPH treatment resulted in an increase of ABCA1 and ABCG1 expression but downregulated CD36 and SR-A1 expression. Furthermore, ASPH suppressed production of proinflammatory cytokines, including tumor necrosis factor-α and interleukin-6 and -1β, through regulating nuclear factor-kappa B (NF-κB) in oxLDL-induced foam cell formation of RAW264.7 macrophages. Taken together, our data indicate that ASPH might be a useful ingredient in functional foods for ameliorating atherosclerosis by preventing foam cell formation.
Collapse
|
26
|
Poznyak AV, Sukhorukov VN, Surkova R, Orekhov NA, Orekhov AN. Glycation of LDL: AGEs, impact on lipoprotein function, and involvement in atherosclerosis. Front Cardiovasc Med 2023; 10:1094188. [PMID: 36760567 PMCID: PMC9904536 DOI: 10.3389/fcvm.2023.1094188] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Atherosclerosis is a complex disease, and there are many factors that influence its development and the course of the disease. A deep understanding of the pathological mechanisms underlying atherogenesis is needed to develop optimal therapeutic strategies and treatments. In this review, we have focused on low density lipoproteins. According to multiple studies, their atherogenic properties are associated with multiple modifications of lipid particles. One of these modifications is Glycation. We considered aspects related to the formation of modified particles, as well as the influence of modification on their functioning. We paid special attention to atherogenicity and the role of glycated low-density lipoprotein (LDL) in atherosclerosis.
Collapse
Affiliation(s)
- Anastasia V. Poznyak
- Institute for Atherosclerosis Research, Moscow, Russia,*Correspondence: Anastasia V. Poznyak,
| | - Vasily N. Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Raisa Surkova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Nikolay A. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Moscow, Russia,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
27
|
Hydroxytyrosol Reduces Foam Cell Formation and Endothelial Inflammation Regulating the PPARγ/LXRα/ABCA1 Pathway. Int J Mol Sci 2023; 24:ijms24032057. [PMID: 36768382 PMCID: PMC9916557 DOI: 10.3390/ijms24032057] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Cholesterol accumulation in macrophages leads to the formation of foam cells and increases the risk of developing atherosclerosis. We have verified whether hydroxytyrosol (HT), a phenolic compound with anti-inflammatory and antioxidant properties, can reduce the cholesterol build up in THP-1 macrophage-derived foam cells. We have also investigated the potential mechanisms. Oil Red O staining and high-performance liquid chromatography (HPLC) assays were utilized to detect cellular lipid accumulation and cholesterol content, respectively, in THP-1 macrophages foam cells treated with HT. The impact of HT on cholesterol metabolism-related molecules (SR-A1, CD36, LOX-1, ABCA1, ABCG1, PPARγ and LRX-α) in foam cells was assessed using real-time PCR (RT-qPCR) and Western blot analyses. Finally, the effect of HT on the adhesion of THP-1 monocytes to human vascular endothelial cells (HUVEC) was analyzed to study endothelial activation. We found that HT activates the PPARγ/LXRα pathway to upregulate ABCA1 expression, reducing cholesterol accumulation in foam cells. Moreover, HT significantly inhibited monocyte adhesion and reduced the levels of adhesion factors (ICAM-1 and VCAM-1) and pro-inflammatory factors (IL-6 and TNF-α) in LPS-induced endothelial cells. Taken together, our findings suggest that HT, with its ability to interfere with the import and export of cholesterol, could represent a new therapeutic strategy for the treatment of atherosclerotic disease.
Collapse
|
28
|
Bezsonov E, Baig MS, Bukrinsky M, Myasoedova V, Ravani A, Sukhorukov V, Zhang D, Khotina V, Orekhov A. Editorial: Lipids and inflammation in health and disease, volume II. Front Cardiovasc Med 2023; 10:1174902. [PMID: 37123473 PMCID: PMC10130650 DOI: 10.3389/fcvm.2023.1174902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Affiliation(s)
- Evgeny Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- The Cell Physiology and Pathology Laboratory, Orel State University Named After I.S.Turgenev, Orel, Russia
- Correspondence: Evgeny Bezsonov Alexander Orekhov
| | - Mirza S. Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, India
| | - Michael Bukrinsky
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | | | | | - Vasily Sukhorukov
- Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Dongwei Zhang
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, China
| | - Victoria Khotina
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Alexander Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
- Correspondence: Evgeny Bezsonov Alexander Orekhov
| |
Collapse
|
29
|
Kozlov S, Okhota S, Avtaeva Y, Melnikov I, Matroze E, Gabbasov Z. Von Willebrand factor in diagnostics and treatment of cardiovascular disease: Recent advances and prospects. Front Cardiovasc Med 2022; 9:1038030. [PMID: 36531725 PMCID: PMC9755348 DOI: 10.3389/fcvm.2022.1038030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/21/2022] [Indexed: 10/10/2023] Open
Abstract
Von Willebrand factor (VWF) is a large multimeric glycoprotein involved in hemostasis. It is essential for platelet adhesion to the subendothelium of the damaged endothelial layer at high shear rates. Such shear rates occur in small-diameter arteries, especially at stenotic sites. Moreover, VWF carries coagulation factor VIII and protects it from proteolysis in the bloodstream. Deficiency or dysfunction of VWF predisposes to bleeding. In contrast, an increase in the concentration of high molecular weight multimers (HMWM) of VWF is closely associated with arterial thrombotic events. Severe aortic stenosis (AS) or hypertrophic obstructive cardiomyopathy (HOCM) can deplete HMWM of VWF and lead to cryptogenic, gastrointestinal, subcutaneous, and mucosal bleeding. Considering that VWF facilitates primary hemostasis and a local inflammatory response at high shear rates, its dysfunction may contribute to the development of coronary artery disease (CAD) and its complications. However, current diagnostic methods do not allow for an in-depth analysis of this contribution. The development of novel diagnostic techniques, primarily microfluidic, is underway. Such methods can provide physiologically relevant assessments of VWF function at high shear rates; however, they have not been introduced into clinical practice. The development and use of agents targeting VWF interaction with the vessel wall and/or platelets may be reasonable in prevention of CAD and its complications, given the prominent role of VWF in arterial thrombosis.
Collapse
Affiliation(s)
- Sergey Kozlov
- Department of Problems of Atherosclerosis, National Medical Research Centre of Cardiology Named After Academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Sergey Okhota
- Department of Problems of Atherosclerosis, National Medical Research Centre of Cardiology Named After Academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yuliya Avtaeva
- Laboratory of Cell Hemostasis, National Medical Research Centre of Cardiology Named After Academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Ivan Melnikov
- Laboratory of Cell Hemostasis, National Medical Research Centre of Cardiology Named After Academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
- Laboratory of Gas Exchange, Biomechanics and Barophysiology, State Scientific Center of the Russian Federation—The Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Evgeny Matroze
- Laboratory of Cell Hemostasis, National Medical Research Centre of Cardiology Named After Academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Innovative Pharmacy, Medical Devices and Biotechnology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Zufar Gabbasov
- Laboratory of Cell Hemostasis, National Medical Research Centre of Cardiology Named After Academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
30
|
Macrophage-, Dendritic-, Smooth Muscle-, Endothelium-, and Stem Cells-Derived Foam Cells in Atherosclerosis. Int J Mol Sci 2022; 23:ijms232214154. [PMID: 36430636 PMCID: PMC9695208 DOI: 10.3390/ijms232214154] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Atherosclerosis is an inflammatory disease depending on the buildup, called plaque, of lipoproteins, cholesterol, extracellular matrix elements, and various types of immune and non-immune cells on the artery walls. Plaque development and growth lead to the narrowing of the blood vessel lumen, blocking blood flow, and eventually may lead to plaque burst and a blood clot. The prominent cellular components of atherosclerotic plaque are the foam cells, which, by trying to remove lipoprotein and cholesterol surplus, also participate in plaque development and rupture. Although the common knowledge is that the foam cells derive from macrophages, studies of the last decade clearly showed that macrophages are not the only cells able to form foam cells in atherosclerotic plaque. These findings give a new perspective on atherosclerotic plaque formation and composition and define new targets for anti-foam cell therapies for atherosclerosis prevention. This review gives a concise description of foam cells of different pedigrees and describes the main mechanisms participating in their formation and function.
Collapse
|
31
|
Wang B, Yang X, Sun X, Liu J, Fu Y, Liu B, Qiu J, Lian J, Zhou J. ATF3 in atherosclerosis: a controversial transcription factor. J Mol Med (Berl) 2022; 100:1557-1568. [PMID: 36207452 DOI: 10.1007/s00109-022-02263-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022]
Abstract
Atherosclerosis, the pathophysiological basis of most malignant cardiovascular diseases, remains a global concern. Transcription factors play a key role in regulating cell function and disease progression in developmental signaling pathways involved in atherosclerosis. Activated transcription factor (ATF) 3 is an adaptive response gene in the ATF/cAMP response element binding (CREB) protein family that acts as a transcription suppressor or activator by forming homodimers or heterodimers with other ATF/CREB members. Appropriate ATF3 expression is vital for normal physiological cell function. Notably, ATF3 exhibits distinct roles in vascular endothelial cells, macrophages, and the liver, which will also be described in detail. This review provides a new perspective for atherosclerosis therapy by summarizing the mechanism of ATF3 in atherosclerosis, as well as the structure and pathophysiological properties of ATF3. KEY MESSAGES: • In endothelial cells, ATF3 overexpression aggravates oxidative stress and inflammation. • In macrophages and liver cells, ATF3 can act as a negative regulator of inflammation and promote cholesterol metabolism. • ATF3 can be used as a potential therapeutic factor in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Bingyu Wang
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China
| | - Xi Yang
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China.,Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China.,Central Laboratory, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Xinyi Sun
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China
| | - Jianhui Liu
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China.,Central Laboratory, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Yin Fu
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China
| | - Bingyang Liu
- Central Laboratory, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Jun Qiu
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China
| | - Jiangfang Lian
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China.,Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China.,Central Laboratory, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Jianqing Zhou
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China. .,Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China. .,Central Laboratory, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China.
| |
Collapse
|
32
|
Yang Y, Ding X, Chen F, Wu X, Chen Y, Zhang Q, Cao J, Wang J, Dai Y. Inhibition Effects of Nippostrongylus brasiliensis and Its Derivatives against Atherosclerosis in ApoE-/- Mice through Anti-Inflammatory Response. Pathogens 2022; 11:pathogens11101208. [PMID: 36297265 PMCID: PMC9610917 DOI: 10.3390/pathogens11101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis (AS) is a dominant and growing cause of death and disability worldwide that involves inflammation from its inception to the emergence of complications. Studies have demonstrated that intervention with helminth infections or derived products could modulate the host immune response and effectively prevent or mitigate the onset and progression of inflammation-related diseases. Therefore, to understand the molecular mechanisms underlying the development of atherosclerosis, we intervened in ApoE-/- mice maintained on a high-fat diet with Nippostrongylus brasiliensis (N. brasiliensis) infection and immunized with its derived products. We found that N. brasiliensis infection and its derived proteins had suitable protective effects both in the initial and progressive stages of atherosclerosis, effectively reducing aortic arch plaque areas and liver lipid contents and downregulating serum LDL levels, which may be associated with the significant upregulation of serum anti-inflammatory cytokines (IL-10 and IL-4) and the down-regulation of proinflammatory cytokines (TNF-α and IFN-γ) in the serum. In conclusion, these data highlighted the effective regulatory role of N. brasiliensis and its derived proteins in the development and progression of atherosclerosis. This could provide a promising new avenue for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yougui Yang
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Xin Ding
- Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Fuzhong Chen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaomin Wu
- Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
- Microbiological Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei 230601, China
| | - Yuying Chen
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Qiang Zhang
- Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Jun Cao
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Junhong Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Correspondence: (J.W.); (Y.D.)
| | - Yang Dai
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
- Correspondence: (J.W.); (Y.D.)
| |
Collapse
|
33
|
Zhang Q, Li Z, Liu X, Zhao M. Recombinant Humanized IgG1 Antibody Protects against oxLDL-Induced Oxidative Stress and Apoptosis in Human Monocyte/Macrophage THP-1 Cells by Upregulation of MSRA via Sirt1-FOXO1 Axis. Int J Mol Sci 2022; 23:ijms231911718. [PMID: 36233020 PMCID: PMC9569918 DOI: 10.3390/ijms231911718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022] Open
Abstract
Oxidized low-density lipoprotein (oxLDL)-induced oxidative stress and apoptosis are considered as critical contributors to cardiovascular diseases. Methionine sulfoxide reductase A (MSRA) is a potent intracellular oxidoreductase and serves as an essential factor that protects cells against oxidative damage. Here, we firstly provide evidence that recombinant humanized IgG1 antibody treatment upregulated the expression of MSRA in THP-1 cells to defend against oxLDL-induced oxidative stress and apoptosis. It was also observed that the upregulation of MSRA is regulated by the forkhead box O transcription factor (FOXO1), and the acetylation of FOXO1 increased when exposed to oxLDL but declined when treated with recombinant humanized IgG1 antibody. In addition, we identified that silent information regulator 1 (SIRT1) suppresses FOXO1 acetylation. Importantly, SIRT1 or FOXO1 deficiency impaired the anti-oxidative stress and anti-apoptotic effect of recombinant humanized IgG1 antibody. Together, our results suggest that recombinant humanized IgG1 antibody exerts its anti-oxidative stress and anti-apoptotic function by upregulation of MSRA via the Sirt1-FOXO1 axis.
Collapse
Affiliation(s)
- Qi Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhonghao Li
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xianyan Liu
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ming Zhao
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Correspondence:
| |
Collapse
|
34
|
Atheroprotective Effects of Glycyrrhiza glabra L. Molecules 2022; 27:molecules27154697. [PMID: 35897875 PMCID: PMC9332620 DOI: 10.3390/molecules27154697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Cardiovascular diseases associated with atherosclerosis are the major cause of death in developed countries. Early prevention and treatment of atherosclerosis are considered to be an important aspect of the therapy of cardiovascular disease. Preparations based on natural products affect the main pathogenetic steps of atherogenesis, and so represent a perspective for the long-term prevention of atherosclerosis development. Numerous experimental and clinical studies have demonstrated the multiple beneficial effects of licorice and its bioactive compounds—anti-inflammatory, anti-cytokine, antioxidant, anti-atherogenic, and anti-platelet action—which allow us to consider licorice as a promising atheroprotective agent. In this review, we summarized the current knowledge on the licorice anti-atherosclerotic mechanisms of action based on the results of experimental studies, including the results of the in vitro study demonstrating licorice effect on the ability of blood serum to reduce intracellular cholesterol accumulation in cultured macrophages, and presented the results of clinical studies confirming the ameliorating activity of licorice in regard to traditional cardiovascular risk factors as well as the direct anti-atherosclerotic effect of licorice.
Collapse
|
35
|
Bezsonov EE, Gratchev A, Orekhov AN. Macrophages in Health and Non-Infectious Disease 2.0. Biomedicines 2022; 10:biomedicines10061215. [PMID: 35740237 PMCID: PMC9219829 DOI: 10.3390/biomedicines10061215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Evgeny E. Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 3 Tsyurupa Street, 117418 Moscow, Russia
- Department of Biology and General Genetics, I. M. Sechenov First Moscow State Medical University (Sechenov University), 8 Izmailovsky Boulevard, 105043 Moscow, Russia
- Correspondence: (E.E.B.); (A.N.O.)
| | - Alexei Gratchev
- N.N. Blokhin Cancer Research Center, Institute of Carcinogenesis, 115478 Moscow, Russia;
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 3 Tsyurupa Street, 117418 Moscow, Russia
- Correspondence: (E.E.B.); (A.N.O.)
| |
Collapse
|
36
|
Thirty-Five-Year History of Desialylated Lipoproteins Discovered by Vladimir Tertov. Biomedicines 2022; 10:biomedicines10051174. [PMID: 35625910 PMCID: PMC9138341 DOI: 10.3390/biomedicines10051174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is one of the leading causes of death in developed and developing countries. The atherogenicity phenomenon cannot be separated from the role of modified low-density lipoproteins (LDL) in atherosclerosis development. Among the multiple modifications of LDL, desialylation deserves to be discussed separately, since its atherogenic effects and contribution to atherogenicity are often underestimated or, simply, forgotten. Vladimir Tertov is linked to the origin of the research related to desialylated lipoproteins, including the association of modified LDL with atherogenicity, autoimmune nature of atherosclerosis, and discovery of sialidase activity in blood plasma. The review will briefly discuss all the above-mentioned information, with a description of the current situation in the research.
Collapse
|
37
|
Drvenica I, Stojić M, Fratrić N, Kovačić M, Grujić-Milanović J, Vejnović B, Marković D, Gvozdić D, Ilić V. Oral supplementation with organically modified clinoptilolite during prepartum period influences the redox status of peripheral blood and colostrum of primiparous dairy cows. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2070034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ivana Drvenica
- Grupa za imunologiju, Institute for Medical Research, National Institute of Republic of Serbia University of Belgrade, Beograd, Serbia
| | - Milica Stojić
- Katedra za fiziologiju i biohemiju, Faculty of Veterinary Medicine, University of Belgrade, Beograd, Serbia
| | - Natalija Fratrić
- Katedra za fiziologiju i biohemiju, Faculty of Veterinary Medicine, University of Belgrade, Beograd, Serbia
| | - Marijana Kovačić
- Grupa za imunologiju, Institute for Medical Research, National Institute of Republic of Serbia University of Belgrade, Beograd, Serbia
| | - Jelica Grujić-Milanović
- Grupa za kardiovaskularnu fiziologiju, Institute for Medical Research, National Institute of Republic of Serbia University of Belgrade, Beograd, Serbia
| | - Branislav Vejnović
- Katedra za ekonomiku i statistiku, Faculty of Veterinary Medicine, University of Belgrade, Beograd, Serbia
| | - Dragana Marković
- Grupa za imunologiju, Institute for Medical Research, National Institute of Republic of Serbia University of Belgrade, Beograd, Serbia
| | - Dragan Gvozdić
- Katedra za patofiziologiju, Faculty of Veterinary Medicine, University of Belgrade, Beograd, Serbia
| | - Vesna Ilić
- Grupa za imunologiju, Institute for Medical Research, National Institute of Republic of Serbia University of Belgrade, Beograd, Serbia
| |
Collapse
|
38
|
Hertiš Petek T, Petek T, Močnik M, Marčun Varda N. Systemic Inflammation, Oxidative Stress and Cardiovascular Health in Children and Adolescents: A Systematic Review. Antioxidants (Basel) 2022; 11:894. [PMID: 35624760 PMCID: PMC9137597 DOI: 10.3390/antiox11050894] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/16/2022] [Accepted: 04/24/2022] [Indexed: 12/02/2022] Open
Abstract
Recent studies indicate that cerebrovascular diseases and processes of atherosclerosis originate in the childhood era and are largely influenced by chronic inflammation. Some features of vascular dysfunction in adulthood may even be programmed prenatally via genetic influences and an unfavorable intrauterine milieu. Oxidative stress, defined by an imbalance between the production and generation of reactive oxygen species (ROS) in cells and tissues and the capability of an organism to scavenge these molecules via antioxidant mechanisms, has been linked to adverse cardiovascular health in adults, yet has not been systematically reviewed in the pediatric population. We performed a systematic search as per the PRISMA guidelines in PubMed/Medline and Cochrane Reviews and detected, in total, 1228 potentially eligible pediatric articles on systemic inflammation, oxidative stress, antioxidant use, cardiovascular disease and endothelial dysfunction. The abstracts and full-text manuscripts of these were screened for inclusion and exclusion criteria, and a total of 160 articles were included. The results indicate that systemic inflammation and oxidative stress influence cardiovascular health in many chronic pediatric conditions, including hypertension, obesity, diabetes mellitus types 1 and 2, chronic kidney disease, hyperlipidemia and obstructive sleep apnea. Exercise and diet may diminish ROS formation and enhance the total serum antioxidant capacity. Antioxidant supplementation may, in selected conditions, contribute to the diminution of the oxidative state and improve endothelial function; yet, in many areas, studies provide unsatisfactory results.
Collapse
Affiliation(s)
- Tjaša Hertiš Petek
- Department of Paediatrics, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (T.H.P.); (M.M.); (N.M.V.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Tadej Petek
- Department of Paediatrics, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (T.H.P.); (M.M.); (N.M.V.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Mirjam Močnik
- Department of Paediatrics, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (T.H.P.); (M.M.); (N.M.V.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Nataša Marčun Varda
- Department of Paediatrics, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (T.H.P.); (M.M.); (N.M.V.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
39
|
Hoebinger C, Rajcic D, Hendrikx T. Oxidized Lipids: Common Immunogenic Drivers of Non-Alcoholic Fatty Liver Disease and Atherosclerosis. Front Cardiovasc Med 2022; 8:824481. [PMID: 35083304 PMCID: PMC8784685 DOI: 10.3389/fcvm.2021.824481] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD), ranging from simple steatosis to inflammatory steatohepatitis (NASH) and cirrhosis, continues to rise, making it one of the major chronic liver diseases and indications for liver transplantation worldwide. The pathological processes underlying NAFLD not only affect the liver but are also likely to have systemic effects. In fact, growing evidence indicates that patients with NAFLD are at increased risk for developing atherosclerosis. Indeed, cardiovascular complications are the leading cause of mortality in NAFLD patients. Here, we aim to address common pathophysiological molecular pathways involved in chronic fatty liver disease and atherosclerosis. In particular, we focus on the role of oxidized lipids and the formation of oxidation-specific epitopes, which are important targets of host immunity. Acting as metabolic danger signals, they drive pro-inflammatory processes and thus contribute to disease progression. Finally, we summarize encouraging studies indicating that oxidized lipids are promising immunological targets to improve intervention strategies for NAFLD and potentially limit the risk of developing atherosclerosis.
Collapse
Affiliation(s)
- Constanze Hoebinger
- Department of Laboratory Medicine, Klinisches Institut für Labormedizin (KILM), Medical University Vienna, Vienna, Austria
| | - Dragana Rajcic
- Department of Laboratory Medicine, Klinisches Institut für Labormedizin (KILM), Medical University Vienna, Vienna, Austria
| | - Tim Hendrikx
- Department of Laboratory Medicine, Klinisches Institut für Labormedizin (KILM), Medical University Vienna, Vienna, Austria.,Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
40
|
Tang H, Zeng Z, Shang C, Li Q, Liu J. Epigenetic Regulation in Pathology of Atherosclerosis: A Novel Perspective. Front Genet 2022; 12:810689. [PMID: 34976029 PMCID: PMC8714670 DOI: 10.3389/fgene.2021.810689] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis, characterized by atherosclerotic plaques, is a complex pathological process that involves different cell types and can be seen as a chronic inflammatory disease. In the advanced stage, the ruptured atherosclerotic plaque can induce deadly accidents including ischemic stroke and myocardial infarction. Epigenetics regulation, including DNA methylation, histone modification, and non-coding RNA modification. maintains cellular identity via affecting the cellular transcriptome. The epigenetic modification process, mediating by epigenetic enzymes, is dynamic under various stimuli, which can be reversely altered. Recently, numerous studies have evidenced the close relationship between atherosclerosis and epigenetic regulations in atherosclerosis, providing us with a novel perspective in researching mechanisms and finding novel therapeutic targets of this serious disease. Here, we critically review the recent discoveries between epigenetic regulation mechanisms in atherosclerosis.
Collapse
Affiliation(s)
- Haishuang Tang
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Zhangwei Zeng
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Chenghao Shang
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Qiang Li
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Jianmin Liu
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| |
Collapse
|
41
|
Bezsonov EE, Sobenin IA, Orekhov AN. Lipids and Lipoproteins in Health and Disease. Biomedicines 2021; 10:biomedicines10010087. [PMID: 35052767 PMCID: PMC8773467 DOI: 10.3390/biomedicines10010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
- Evgeny E. Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia; (I.A.S.); (A.N.O.)
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology (A. P. Avtsyn Research Institute of Human Morphology), 3 Tsyurupa Street, 117418 Moscow, Russia
- Department of Biology and General Genetics, I. M. Sechenov First Moscow State Medical University (Sechenov University), 8 Izmailovsky Boulevard, 105043 Moscow, Russia
- Correspondence:
| | - Igor A. Sobenin
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia; (I.A.S.); (A.N.O.)
- National Medical Research Center of Cardiology, Laboratory of Medical Genetics, Institute of Experimental Cardiology, 15a 3rd Cherepkovskaya Street, 121552 Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia; (I.A.S.); (A.N.O.)
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology (A. P. Avtsyn Research Institute of Human Morphology), 3 Tsyurupa Street, 117418 Moscow, Russia
| |
Collapse
|
42
|
Sharapov MG, Gudkov SV, Lankin VZ, Novoselov VI. Role of Glutathione Peroxidases and Peroxiredoxins in Free Radical-Induced Pathologies. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1418-1433. [PMID: 34906041 DOI: 10.1134/s0006297921110067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review, we discuss the pathogenesis of some socially significant diseases associated with the development of oxidative stress, such as atherosclerosis, diabetes, and radiation sickness, as well as the possibilities of the therapeutic application of low-molecular-weight natural and synthetic antioxidants for the correction of free radical-induced pathologies. The main focus of this review is the role of two phylogenetically close families of hydroperoxide-reducing antioxidant enzymes peroxiredoxins and glutathione peroxidases - in counteracting oxidative stress. We also present examples of the application of exogenous recombinant antioxidant enzymes as therapeutic agents in the treatment of pathologies associated with free-radical processes and discuss the prospects of the therapeutic use of exogenous antioxidant enzymes, as well as the ways to improve their therapeutic properties.
Collapse
Affiliation(s)
- Mars G Sharapov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Sergey V Gudkov
- Prokhorov Institute of General Physics, Russian Academy of Sciences, Moscow, 119991, Russia.,Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, 603022, Russia.,All-Russian Research Institute of Phytopathology, Bolshiye Vyazemy, 143050, Russia
| | - Vadim Z Lankin
- National Medical Research Center of Cardiology, Ministry of Health of Russia, Moscow, 121552, Russia
| | - Vladimir I Novoselov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|