1
|
Sahnoon L, Bajbouj K, Mahboub B, Hamoudi R, Hamid Q. Targeting IL-13 and IL-4 in Asthma: Therapeutic Implications on Airway Remodeling in Severe Asthma. Clin Rev Allergy Immunol 2025; 68:44. [PMID: 40257546 PMCID: PMC12011922 DOI: 10.1007/s12016-025-09045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2025] [Indexed: 04/22/2025]
Abstract
Asthma is a chronic respiratory disorder affecting individuals across all age groups. It is characterized by airway inflammation and remodeling and leads to progressive airflow restriction. While corticosteroids remain a mainstay therapy, their efficacy is limited in severe asthma due to genetic and epigenetic alterations, as well as elevated pro-inflammatory cytokines interleukin-4 (IL-4), interleukin-13 (IL-13), and interleukin-5 (IL-5), which drive structural airway changes including subepithelial fibrosis, smooth muscle hypertrophy, and goblet cell hyperplasia. This underscores the critical need for biologically targeted therapies. This review systematically examines the roles of IL-4 and IL-13, key drivers of type-2 inflammation, in airway remodeling and their potential as therapeutic targets. IL-4 orchestrates eosinophil recruitment, immunoglobulin class switching, and Th2 differentiation, whereas IL-13 directly modulates structural cells, including fibroblasts and epithelial cells, to promote mucus hypersecretion and extracellular matrix (ECM) deposition. Despite shared signaling pathways, IL-13 emerges as the dominant cytokine in remodeling processes including mucus hypersecretion, fibrosis and smooth muscle hypertrophy. While IL-4 primarily amplifies inflammatory cascades by driving IgE switching, promoting Th2 cell polarization that sustain cytokine release, and inducing chemokines to recruit eosinophils. In steroid-resistant severe asthma, biologics targeting IL-4/IL-13 show promise in reducing exacerbations and eosinophilic inflammation. However, their capacity to reverse established remodeling remains inconsistent, as clinical trials prioritize inflammatory biomarkers over long-term structural outcomes. This synthesis highlights critical gaps in understanding the durability of IL-4/IL-13 inhibition on airway structure and advocates for therapies combining biologics with remodeling-specific strategies. Through the integration of mechanistic insights and clinical evidence, this review emphasizes the need for long-term studies utilizing advanced imaging, histopathological techniques, and patient-reported outcomes to evaluate how IL-4/IL-13-targeted therapies alter airway remodeling and symptom burden, thereby informing more effective treatment approaches for severe, steroid-resistant asthma.
Collapse
Affiliation(s)
- Lina Sahnoon
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Bassam Mahboub
- Rashid Hospital, Dubai Health, 4545, Dubai, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Division of Surgery and Interventional Science, University College London, London, UK.
- Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, Sharjah, United Arab Emirates.
| | - Qutayba Hamid
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Meakins-Christie Laboratories, McGill University, Montreal, Québec, Canada.
| |
Collapse
|
2
|
Luo YF, Deng Y, Yang F, Meiduosiji, Xiong X, Yuan YL, Ao SH. The role of ILC2s in asthma combined with atopic dermatitis: bridging the gap from research to clinical practice. Front Immunol 2025; 16:1567817. [PMID: 40236701 PMCID: PMC11996653 DOI: 10.3389/fimmu.2025.1567817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/11/2025] [Indexed: 04/17/2025] Open
Abstract
Asthma, a complex and heterogeneous respiratory disease, is often accompanied by various comorbidities, notably atopic dermatitis (AD). AD characterized by recurrent eczematous lesions and severe itching, can trigger or exacerbate asthma. Individuals with AD are 2.16 times more likely to develop asthma compared to the reference population. Furthermore, asthmatics with AD experience more severe and frequent emergency department visits and hospital admissions compared to patients with asthma alone. The close connection between asthma and AD indicates there are overlap pathophysiologic mechanisms. It is well-known that dysregulated type 2 (T2) immune inflammation is pivotal in the development of both AD and asthma, traditionally attributed to CD4+ type 2 helper T (Th2) cells. Over the past decade, group 2 innate lymphoid cells (ILC2s), as potent innate immune cells, have been demonstrated to be the key drivers of T2 inflammation, playing a crucial role in the pathogenesis of both asthma and AD. ILC2s not only trigger T2 immune-inflammation but also coordinate the recruitment and activation of innate and adaptive immune cells, thereby intensifying the inflammatory response. They are rapidly activated by epithelium alarmins producing copious amounts of T2 cytokines such as interleukin (IL) -5 and IL-13 that mediate the airway inflammation, hyperresponsiveness, and cutaneous inflammation in asthma and AD, respectively. The promising efficiency of targeted ILC2s in asthma and AD has further proven their essential roles in the pathogenesis of both conditions. However, to the best of our knowledge, there is currently no review article specifically exploring the role of ILC2s in asthma combined with AD and their potential as future therapeutic targets. Hence, we hypothesize that ILC2s may play a role in the pathogenesis of asthma combined with AD, and targeting ILC2s could be a promising therapeutic approach for this complex condition in the future. In this review, we discuss recent insights in ILC2s biology, focus on the current knowledge of ILC2s in asthma, AD, particularly in asthma combined with AD, and suggest how this knowledge might be used for improved treatments of asthma combined with AD.
Collapse
Affiliation(s)
- Yan-fang Luo
- Department of Respirology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Deng
- Department of Respirology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Feng Yang
- Department of Respirology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Meiduosiji
- Department of Respirology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xia Xiong
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Dermatology, The First Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yu-lai Yuan
- Department of Respirology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Su-hua Ao
- Department of Respirology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Al-Ahmad M, Ali A, Talat W. Younger severe asthma patients with interleukin 4 (CC variant) and dupilumab treatment are more likely to achieve clinical remission. BMC Pulm Med 2025; 25:131. [PMID: 40119276 PMCID: PMC11929188 DOI: 10.1186/s12890-025-03578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/05/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Asthma is a complex condition characterized by variable respiratory symptoms and chronic inflammation. In recent years, the use of biologics in severe asthma patients led to significant improvements in symptom control and disease outcomes. This has prompted healthcare providers to explore the possibility of achieving clinical remission (CR). This study aimed to evaluate the prevalence of clinical remission in severe asthma patients treated with biologics. Additionally, to identify factors associated with achieving clinical remission. METHODS The study recruited 116 patients from a national severe asthma registry in Kuwait, focusing on patients who had been treated with biologic therapy for at least 12 months. CR was defined as the absence of exacerbations and oral corticosteroids (OCS) use, an Asthma Control Test (ACT) score of ≥ 20, Asthma Control Questionnaire (ACQ-6) score of ≤ 0.75 and forced expiratory volume in one second (FEV1) ≥ 80% predicted. Data were collected on demographics, clinical, and functional parameters; including biomarkers such as blood eosinophils count (BEC), total immunoglobulin E (IgE), and fractional exhaled nitric oxide (FeNO), as well as the polymorphism patterns of the interleukin-4 (IL-4) and tumor necrosis factor-alpha (TNF-α) genes. RESULTS Patients with severe asthma were predominantly female (68.9%) with an average age of 54.09 years. Most had adult-onset asthma (67.3%), comorbid allergic rhinitis (AR) (81.03%), and experienced frequent exacerbations, with a median of four corticosteroids-requiring flare-ups per year. The allergic eosinophilic phenotype was common (74.14%), and a significant portion carried the CC genotype of the IL-4 gene (51.72%) or the GG genotype of the TNFα gene (57.76%). Biologic therapy significantly improved asthma control, reduced exacerbations and OCS use while improved lung function (p = 0.001 for all). About 18.1% of patients achieved CR after at least 12 months of biologic therapy, with dupilumab being the most effective, especially in biologic-naive patients. A multiple logistic regression analysis found that increasing age was negatively associated with CR (OR 0.95, p = 0.02), while the CC genotype of the IL-4 gene (OR 4.57, p = 0.008) and the use of dupilumab (OR 3.63, p = 0.001) were strong positive predictors of CR. CONCLUSION This study suggested that CR can be achieved in patients with severe asthma. However, biologic therapy, particularly dupilumab, offers a promising avenue for achieving CR in comparison to other biologics, especially in younger patients with specific genetic profiles (CC genotype of the IL-4 gene).
Collapse
Affiliation(s)
- Mona Al-Ahmad
- Department of Microbiology, College of Medicine, Kuwait University, Safat, P.O. Box 24923, Kuwait City, 13110, Kuwait.
- Department of Allergy, Al-Rashed Allergy Center, Ministry of Health, Kuwait City, Kuwait.
| | - Asmaa Ali
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Allergy, Al-Rashed Allergy Center, Ministry of Health, Kuwait City, Kuwait
- Department of Pulmonary Medicine, Abbassia Chest Hospital, Ministry of Health, Cairo, Egypt
| | - Wafaa Talat
- Department of Allergy, Al-Rashed Allergy Center, Ministry of Health, Kuwait City, Kuwait.
| |
Collapse
|
4
|
D’Aiuto V, Mormile I, Granata F, Romano A, Della Casa F, Mignogna G, de Paulis A, Rossi FW. Eosinophil-Driven vs. Eosinophil-Associated Severe Asthma: Practical Implications for Target Treatment. Int J Mol Sci 2025; 26:1729. [PMID: 40004192 PMCID: PMC11855446 DOI: 10.3390/ijms26041729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/10/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
Severe asthma (SA) is a chronic inflammatory condition affecting approximately 10% of asthmatic patients, and eosinophils are considered key pathogenetic actors in a significant number of patients. Biological therapies have been demonstrated to improve asthma control by decreasing exacerbation rates and reducing the use of oral corticosteroids. In this context, phenotyping and endotyping patients with SA is essential for selecting the most effective therapeutic approach. For this purpose, biomarkers such as IgE, absolute blood eosinophil count, and fractional exhaled nitric oxide (FeNO) are crucial in defining a patient's inflammatory profile. Their integration provides a framework for classifying asthma into T2-high, T2-mild, or T2-low categories, guiding personalized treatment strategies. By incorporating multiple biomarkers into a unified model, it is possible to better stratify patients and optimize biologic therapy selection, paving the way for improved outcomes in SA management. This review aims to evaluate the role of phenotyping and endotyping SA patients, with particular attention to the impact of eosinophilic inflammation and combinatory biomarkers on decision-making processes for the selection of biological therapies.
Collapse
Affiliation(s)
- Valentina D’Aiuto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.D.); (F.G.); (F.D.C.); (A.d.P.); (F.W.R.)
| | - Ilaria Mormile
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.D.); (F.G.); (F.D.C.); (A.d.P.); (F.W.R.)
| | - Francescopaolo Granata
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.D.); (F.G.); (F.D.C.); (A.d.P.); (F.W.R.)
| | - Antonio Romano
- Head and Neck Section, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy;
| | - Francesca Della Casa
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.D.); (F.G.); (F.D.C.); (A.d.P.); (F.W.R.)
| | - Gabriele Mignogna
- Post-Graduate Program in Clinical Immunology and Allergy, University of Naples Federico II, 80131 Naples, Italy;
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.D.); (F.G.); (F.D.C.); (A.d.P.); (F.W.R.)
- Center for Basic and Clinical Immunology Research (CISI) University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.D.); (F.G.); (F.D.C.); (A.d.P.); (F.W.R.)
- Center for Basic and Clinical Immunology Research (CISI) University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
| |
Collapse
|
5
|
Maspero JF, Antila MA, Deschildre A, Bacharier LB, Altincatal A, Laws E, Mortensen E, Radwan A, Jacob-Nara JA, Deniz Y, Rowe PJ, Lederer DJ, Hardin M. Dupilumab Efficacy in Children With Type 2 Asthma Receiving High- to Medium-Dose Inhaled Corticosteroids (VOYAGE). THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:3303-3312. [PMID: 39209068 DOI: 10.1016/j.jaip.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND In phase 3 VOYAGE (NCT02948959; Evaluation of Dupilumab in Children With Uncontrolled Asthma), dupilumab showed clinical efficacy with an acceptable safety profile in children aged 6 to 11 years with uncontrolled moderate to severe type 2 asthma (blood eosinophils ≥150 cells/μL or FeNO ≥20 ppb). OBJECTIVE We analyzed dupilumab's efficacy in children with type 2 asthma by high- or medium-dose inhaled corticosteroids (ICS) at baseline. METHODS Children were randomized to receive add-on dupilumab 100/200 mg (by body weight ≤30 kg/>30 kg) every 2 weeks or placebo for 52 weeks and stratified by high- or medium-dose ICS at baseline. End points were annualized severe exacerbation rate, changes from baseline in percent predicted FEV1, and seven-item Asthma Control Questionnaire-Interviewer Administered (ACQ-7-IA) score, proportions of ACQ-7-IA responders (improvement ≥0.5), and biomarker changes. RESULTS In children receiving high-dose (n = 152) or medium-dose (n = 195) ICS at baseline, dupilumab versus placebo reduced severe exacerbation rates by 63% (P < .001) and 59% (P = .003), respectively. At week 52, dupilumab improved percent predicted FEV1 by least squares mean difference versus placebo of 5.7 percentage points (P = .02) and 9.35 points (P < .001), and reduced ACQ-7-IA scores by 0.53 points (P < .001) and 0.40 points (P < .001), respectively. No significant treatment interactions between ICS subgroups were detected at week 52. Significant improvements were observed in ACQ-7-IA responder rates and most type 2 biomarker levels. CONCLUSION Dupilumab reduced severe exacerbation rates and improved lung function and asthma control in children with uncontrolled moderate to severe type 2 asthma regardless of ICS dose at baseline.
Collapse
Affiliation(s)
| | | | - Antoine Deschildre
- Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, Lille, France
| | - Leonard B Bacharier
- Division of Allergy, Immunology and Pulmonary Medicine, Monroe Carell Jr Children's Hospital at Vanderbilt University Medical Center, Nashville, Tenn
| | | | | | | | - Amr Radwan
- Regeneron Pharmaceuticals Inc, Tarrytown, NY
| | | | - Yamo Deniz
- Regeneron Pharmaceuticals Inc, Tarrytown, NY
| | | | | | | |
Collapse
|
6
|
Sunata K, Miyata J, Kawashima Y, Konno R, Ishikawa M, Hasegawa Y, Onozato R, Otsu Y, Matsuyama E, Sasaki H, Okuzumi S, Mochimaru T, Masaki K, Kabata H, Kawana A, Arita M, Fukunaga K. Multiomics analysis identified IL-4-induced IL1RL1 high eosinophils characterized by prominent cysteinyl leukotriene metabolism. J Allergy Clin Immunol 2024; 154:1277-1288. [PMID: 39067484 DOI: 10.1016/j.jaci.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Clinical studies have demonstrated that IL-4, a type 2 cytokine, plays an important role in the pathogenesis of chronic rhinosinusitis and eosinophilic asthma. However, the direct effect of IL-4 on eosinophils remains unclear. OBJECTIVE We aimed to elucidate the inflammatory effects of IL-4 on the functions of human eosinophils. METHODS A multiomics analysis comprising transcriptomics, proteomics, lipidomics, quantitative RT-PCR, and flow cytometry was performed by using blood eosinophils from healthy subjects stimulated with IL-4, IL-5, or a combination thereof. RESULTS Transcriptomic and proteomic analyses revealed that both IL-4 and IL-5 upregulate the expression of γ-gultamyl transferase 5, a fatty acid-metabolizing enzyme that converts leukotriene C4 into leukotriene D4. In addition, IL-4 specifically upregulates the expression of IL-1 receptor-like 1 (IL1RL1), a receptor for IL-33 and transglutaminase-2. Additional transcriptomic analysis of cells stimulated with IL-13 revealed altered gene expression profiles, characterized by the upregulation of γ-gultamyl transferase 5, transglutaminase-2, and IL1RL1. The IL-13-induced changes were not totally different from the IL-4-induced changes. Lipidomic analysis revealed that IL-5 and IL-4 additively increased the extracellular release of leukotriene D4. In vitro experiments revealed that STAT6 and IL-4 receptor-α control the expression of these molecules in the presence of IL-4 and IL-13. Analysis of eosinophils derived from patients with allergic disorders indicated the involvement of IL-4 and IL-13 at the inflamed sites. CONCLUSIONS IL-4 induces the proallergic phenotype of IL1RL1high eosinophils, with prominent cysteinyl leukotriene metabolism via STAT6. These cellular changes represent potential therapeutic targets for chronic rhinosinusitis and eosinophilic asthma.
Collapse
Affiliation(s)
- Keeya Sunata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan; Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Jun Miyata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan; Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan; Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan.
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Ryo Konno
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Masaki Ishikawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Yoshinori Hasegawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Ryuta Onozato
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yo Otsu
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Emiko Matsuyama
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hisashi Sasaki
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Shinichi Okuzumi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takao Mochimaru
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan; Department of Respiratory Medicine, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Katsunori Masaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroki Kabata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Akihiko Kawana
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan; Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan; Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Jiang Y, Wang Y, Guo J, Wang Z, Wang X, Yao X, Yang H, Zou Y. Exploring potential therapeutic targets for asthma: a proteome-wide Mendelian randomization analysis. J Transl Med 2024; 22:978. [PMID: 39472987 PMCID: PMC11520847 DOI: 10.1186/s12967-024-05782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Asthma poses a significant global health challenge, characterized by high rates of morbidity and mortality. Despite available treatments, many severe asthma patients remain poorly managed, highlighting the need for novel therapeutic strategies. This study aims to identify potential drug targets for asthma by examining the influence of circulating plasma proteins on asthma risk. METHODS This study employs summary-data-based Mendelian randomization (MR) and two-sample MR methods to investigate the association between 2940 plasma proteins from the UK Biobank study and asthma. The analysis includes discovery (FinnGen cohort) and replication (GERA cohort) phases, with Bayesian colocalization used to validate the relationships between proteins and asthma. Furthermore, protein-protein interaction and druggability assessments were conducted on high-evidence strength protein biomarkers, and candidate drug prediction and molecular docking were performed for proteins without targeted drugs. Given the complexity of asthma pathogenesis, the study also explores the relationships between plasma proteins and asthma-related endpoints (e.g., obesity-related asthma, infection-related asthma, childhood asthma) to identify potential therapeutic targets for different subtypes. RESULTS In the discovery cohort, 75 plasma proteins were associated with asthma, including IL1RAP, IL1RL1, IL6, CXCL5, and CXCL8. Additionally, 6 proteins (IL4R, LTB, CASP8, MAX, PCDH12, and SCLY) were validated through co-localization analysis and validation cohort. The assessment of drug targetability revealed potential drug targets for IL4R, CASP8, and SCLY, while candidate drugs were predicted for LTB and MAX proteins. MAX exhibited strong binding affinity with multiple small molecules indicating a highly stable interaction and significant druggability potential. Analysis of the 75 proteins with 9 asthma-related endpoints highlighted promising targets such as DOK2, ITGAM, CA1, BTN2A1, and GZMB. CONCLUSION These findings elucidate the link between asthma, its related endpoints, and plasma proteins, advancing our understanding of molecular pathogenesis and treatment strategies. The discovery of potential therapeutic targets offers new insights into asthma drug target research.
Collapse
Affiliation(s)
- Yuhan Jiang
- Clinical School of Pediatrics, Tianjin Medical University, Tianjin, China
- Department of Pulmonology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Machang Compus, 225 Machang Road, Hexi District, Tianjin, 300074, China
| | - Yifan Wang
- Clinical School of Pediatrics, Tianjin Medical University, Tianjin, China
- Department of Pulmonology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Machang Compus, 225 Machang Road, Hexi District, Tianjin, 300074, China
| | - Ju Guo
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zixuan Wang
- Clinical School of Pediatrics, Tianjin Medical University, Tianjin, China
| | - Xuelin Wang
- Department of Pulmonology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Machang Compus, 225 Machang Road, Hexi District, Tianjin, 300074, China
| | - Xueming Yao
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hongxi Yang
- Department of Bioinformatics, School of Basic Medical Science, Tianjin Medical University, Tianjin, 300070, China.
| | - Yingxue Zou
- Clinical School of Pediatrics, Tianjin Medical University, Tianjin, China.
- Department of Pulmonology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Machang Compus, 225 Machang Road, Hexi District, Tianjin, 300074, China.
| |
Collapse
|
8
|
Djeddi S, Fernandez-Salinas D, Huang GX, Aguiar VRC, Mohanty C, Kendziorski C, Gazal S, Boyce JA, Ober C, Gern JE, Barrett NA, Gutierrez-Arcelus M. Rhinovirus infection of airway epithelial cells uncovers the non-ciliated subset as a likely driver of genetic risk to childhood-onset asthma. CELL GENOMICS 2024; 4:100636. [PMID: 39197446 PMCID: PMC11480861 DOI: 10.1016/j.xgen.2024.100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/11/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024]
Abstract
Asthma is a complex disease caused by genetic and environmental factors. Studies show that wheezing during rhinovirus infection correlates with childhood asthma development. Over 150 non-coding risk variants for asthma have been identified, many affecting gene regulation in T cells, but the effects of most risk variants remain unknown. We hypothesized that airway epithelial cells could also mediate genetic susceptibility to asthma given they are the first line of defense against respiratory viruses and allergens. We integrated genetic data with transcriptomics of airway epithelial cells subject to different stimuli. We demonstrate that rhinovirus infection significantly upregulates childhood-onset asthma-associated genes, particularly in non-ciliated cells. This enrichment is also observed with influenza infection but not with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or cytokine activation. Overall, our results suggest that rhinovirus infection is an environmental factor that interacts with genetic risk factors through non-ciliated airway epithelial cells to drive childhood-onset asthma.
Collapse
Affiliation(s)
- Sarah Djeddi
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniela Fernandez-Salinas
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Licenciatura en Ciencias Genómicas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, México
| | - George X Huang
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Vitor R C Aguiar
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chitrasen Mohanty
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Steven Gazal
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90007, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, USA
| | - Joshua A Boyce
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - James E Gern
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, USA; Departments of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Nora A Barrett
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
9
|
Bauer AH, Yadav SR, Chen CB. Use of Dupilumab in Pediatric Patients: A Review. CURRENT PEDIATRICS REPORTS 2024; 12:25-34. [DOI: 10.1007/s40124-024-00321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 01/05/2025]
|
10
|
Ji H, Tan LD, Hafzalla GW, Nguyen N, Alismail A. Navigating biologic therapies in elderly asthma. Respir Med 2024; 227:107655. [PMID: 38679338 DOI: 10.1016/j.rmed.2024.107655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024]
Abstract
The prevalence of asthma among the elderly population has witnessed a notable rise, presenting unique challenges in diagnosis and management. Biologic therapies, such as omalizumab, mepolizumab, reslizumab, benralizumab, dupilumab, and tezepelumab, have demonstrated efficacy in targeting specific pathways associated with severe asthma in elderly individuals. However, a significant research gap exists in the application of these therapies in elderly asthma patients. Despite the considerable size of the elderly asthma population and the social and economic burden that this specific demographic imposes on society, the available body of research catering to this group is limited. Notably, no RCTs have been expressly designed for the elderly across all asthma biologic therapies. Moreover, most RCTs have set upper age cutoffs, commonly 75 years old, and exclusion criteria for common comorbidities in the elderly, thus marginalizing this group from pivotal research. This underscores the crucial need for intentional inclusion of elderly participants in separately designed clinical trials and more researches, aiming to augment the generalizability of findings and enhance therapeutic outcomes. Given the distinct physiological changes associated with aging, there may be a concern regarding the efficacy and safety of biologic therapies in the elderly compared to non-elderly adults, posing a barrier to their use in this population. However, observational studies have shown similar benefits of these therapies in elderly individuals as seen in non-elderly adults. Other anticipated challenges related to initiating biologic therapy in elderly people with asthma including dosing consideration and monitoring strategies, which are important areas of investigation for optimizing asthma management will be discussed in this review. In summary, this review navigates the current landscape of biologic therapies for elderly asthma, offering valuable insights for various stakeholders, including researchers, healthcare providers, and policymakers, to advance asthma care in this vulnerable population. We propose that future research should concentrate on tailored, evidence-based approaches to address the undertreatment of elderly asthma patients.
Collapse
Affiliation(s)
- HyeIn Ji
- Department of Medicine, Loma Linda University Health, Loma Linda, CA, USA
| | - Laren D Tan
- Department of Medicine, Loma Linda University Health, Loma Linda, CA, USA; Department of Cardiopulmonary Sciences, Loma Linda University Health, Loma Linda, CA, USA
| | - George W Hafzalla
- Department of Medicine, Loma Linda University Health, Loma Linda, CA, USA
| | - Nolan Nguyen
- Department of Medicine, Loma Linda University Health, Loma Linda, CA, USA
| | - Abdullah Alismail
- Department of Medicine, Loma Linda University Health, Loma Linda, CA, USA; Department of Cardiopulmonary Sciences, Loma Linda University Health, Loma Linda, CA, USA.
| |
Collapse
|
11
|
Shishodia S, Haloob N, Hopkins C. Antibody-based therapeutics for chronic rhinosinusitis with nasal polyps. Expert Opin Biol Ther 2024; 24:491-502. [PMID: 38900023 DOI: 10.1080/14712598.2024.2370397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION Chronic rhinosinusitis with nasal polyps (CRSwNP) is a prevalent inflammatory condition with heterogenous underlying endotypes, the most common being type 2 mediated inflammation. Several biologics have been developed to target specific pro-inflammatory cytokines and their receptors with proven efficacy in both quantitative and qualitative outcomes in patients with severe uncontrolled disease. However, there is an ongoing debate on the role of biologics relative to conventional therapies for CRSwNP and their efficacy in patient subgroups with non-polyp type 2 disease. AREAS COVERED This review examines the evidence on the efficacy and safety of biologics in CRSwNP, recommendations for their use, and discusses the broader economic factors influencing their application in clinical practice. EXPERT OPINION Emerging real-life data demonstrating the variable efficacy of the available biologics for patients with CRSwNP, coupled with the high cost compared to conventional therapies such as surgery, renders biologics to be considered as an add-on therapy in the majority of cases. However, ongoing research into increasing biologic dose intervals and novel therapies targeting alternative pathways may offer a more cost-effective and sustainable option in future.
Collapse
Affiliation(s)
- Shama Shishodia
- Department of Rhinology and Skull Base Surgery, Guy's and St Thomas' Hospital NHS, Foundation Trust, London, UK
| | - Nora Haloob
- Department of Rhinology and Skull Base Surgery, Guy's and St Thomas' Hospital NHS, Foundation Trust, London, UK
| | - Claire Hopkins
- Department of Rhinology and Skull Base Surgery, Guy's and St Thomas' Hospital NHS, Foundation Trust, London, UK
| |
Collapse
|
12
|
Jaroenpuntaruk V, Pongdee T. A Phase 3 Trial of Dupilumab for People With Chronic Obstructive Pulmonary Disease and Elevated Peripheral Blood Eosinophil Counts. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:1394-1396. [PMID: 38724168 DOI: 10.1016/j.jaip.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 06/22/2024]
Affiliation(s)
| | - Thanai Pongdee
- Division of Allergic Diseases, Mayo Clinic, Rochester, Minn
| |
Collapse
|
13
|
Khan S, Bilal H, Khan MN, Fang W, Chang W, Yin B, Song NJ, Liu Z, Zhang D, Yao F, Wang X, Wang Q, Cai L, Hou B, Wang J, Mao C, Liu L, Zeng Y. Interleukin inhibitors and the associated risk of candidiasis. Front Immunol 2024; 15:1372693. [PMID: 38605952 PMCID: PMC11007146 DOI: 10.3389/fimmu.2024.1372693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Interleukins (ILs) are vital in regulating the immune system, enabling to combat fungal diseases like candidiasis effectively. Their inhibition may cause enhanced susceptibility to infection. IL inhibitors have been employed to control autoimmune diseases and inhibitors of IL-17 and IL-23, for example, have been associated with an elevated risk of Candida infection. Thus, applying IL inhibitors might impact an individual's susceptibility to Candida infections. Variations in the severity of Candida infections have been observed between individuals with different IL inhibitors, necessitating careful consideration of their specific risk profiles. IL-1 inhibitors (anakinra, canakinumab, and rilonacept), IL-2 inhibitors (daclizumab, and basiliximab), and IL-4 inhibitors (dupilumab) have rarely been associated with Candida infection. In contrast, tocilizumab, an inhibitor of IL-6, has demonstrated an elevated risk in the context of coronavirus disease 2019 (COVID-19) treatment, as evidenced by a 6.9% prevalence of candidemia among patients using the drug. Furthermore, the incidence of Candida infections appeared to be higher in patients exposed to IL-17 inhibitors than in those exposed to IL-23 inhibitors. Therefore, healthcare practitioners must maintain awareness of the risk of candidiasis associated with using of IL inhibitors before prescribing them. Future prospective studies need to exhaustively investigate candidiasis and its associated risk factors in patients receiving IL inhibitors. Implementing enduring surveillance methods is crucial to ensure IL inhibitors safe and efficient utilization of in clinical settings.
Collapse
Affiliation(s)
- Sabir Khan
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hazrat Bilal
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Muhammad Nadeem Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Wenjie Fang
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wenqiang Chang
- School of Pharmacy, Shandong University, Qingdao, Shandong, China
| | - Bin Yin
- Department of Dermatovenereology, Chengdu Second People’s Hospital, Chengdu, China
| | - Ning-jing Song
- Department of Dermatology, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Zhongrong Liu
- Department of Dermatology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dongxing Zhang
- Department of Dermatology, Meizhou Dongshan Hospital, Meizhou, Guangdong, China
- Department of Dermatology, Meizhou People’s Hospital, Meizhou, Guangdong, China
| | - Fen Yao
- Department of Pharmacy, Shantou University School Medical College, Shantou, China
| | - Xun Wang
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Qian Wang
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Lin Cai
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Bing Hou
- Department of Clinical Laboratory, Skin and Venereal Diseases Prevention and Control Hospital of Shantou City, Shantou, Guangdong, China
| | - Jiayue Wang
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyan Mao
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingxi Liu
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuebin Zeng
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Garg D, Que LG, Ingram JL. Effects of biological therapies on patients with Type-2 high asthma and comorbid obesity. Front Pharmacol 2024; 14:1315540. [PMID: 38259298 PMCID: PMC10800376 DOI: 10.3389/fphar.2023.1315540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Over 20 million adults and 6 million children in the United States (US) have asthma, a chronic respiratory disease characterized by airway inflammation, bronchoconstriction, and mucus hypersecretion. Obesity, another highly prevalent disease in the US, is a major risk factor for asthma and a significant cause of diminished asthma control, increased submucosal eosinophilia, and reduced quality of life. A large subgroup of these patients experiences severe symptoms and recurrent exacerbations despite maximal dosage of standard asthma therapies. In the past two decades, the development of biological therapies has revolutionized the field and advanced our understanding of type 2 inflammatory biomarkers. However, patients with obesity and comorbid asthma are not principally considered in clinical trials of biologics. Large landmark cluster analyses of patients with asthma have consistently identified specific asthma phenotypes that associate with obesity but may be differentiated by age of asthma onset and inflammatory cell profiles in sputum. These patterns suggest that biologic processes driving asthma pathology are heterogenous among patients with obesity. The biological mechanisms driving pathology in patients with asthma and comorbid obesity are not well understood and likely multifactorial. Future research needs to be done to elicit the cellular and metabolic functions in the relationship of obesity and asthma to yield the best treatment options for this multiplex condition. In this review, we explore the key features of type 2 inflammation in asthma and discuss the effectiveness, safety profile, and research gaps regarding the currently approved biological therapies in asthma patients with obesity.
Collapse
Affiliation(s)
- Diya Garg
- Department of Pathology and Laboratory Medicine, Neurology, and Biological Chemistry, Irvine, CA, United States
| | - Loretta G. Que
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, United States
| | - Jennifer L. Ingram
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
15
|
Pelaia C, Benfante A, Busceti MT, Caiaffa MF, Campisi R, Carpagnano GE, Crimi N, D’Amato M, Foschino Barbaro MP, Maglio A, Minenna E, Nolasco S, Paglino G, Papia F, Pelaia G, Portacci A, Ricciardi L, Scichilone N, Scioscia G, Triggiani M, Valenti G, Vatrella A, Crimi C. Real-life effects of dupilumab in patients with severe type 2 asthma, according to atopic trait and presence of chronic rhinosinusitis with nasal polyps. Front Immunol 2023; 14:1121237. [PMID: 37063895 PMCID: PMC10098307 DOI: 10.3389/fimmu.2023.1121237] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/20/2023] [Indexed: 04/01/2023] Open
Abstract
Background The efficacy of dupilumab as biological treatment of severe asthma and chronic rhinosinusitis with nasal polyps (CRSwNP) depends on its ability to inhibit the pathophysiologic mechanisms involved in type 2 inflammation. Objective To assess in a large sample of subjects with severe asthma, the therapeutic impact of dupilumab in real-life, with regard to positive or negative skin prick test (SPT) and CRSwNP presence or absence. Methods Clinical, functional, and laboratory parameters were measured at baseline and 24 weeks after the first dupilumab administration. Moreover, a comparative evaluation was carried out in relation to the presence or absence of SPT positivity and CRSwNP. Results Among the 127 recruited patients with severe asthma, 90 had positive SPT, while 78 reported CRSwNP. Compared with the 6 months preceding the first dupilumab injection, asthma exacerbations decreased from 4.0 (2.0-5.0) to 0.0 (0.0-0.0) (p < 0.0001), as well as the daily prednisone intake fell from 12.50 mg (0.00-25.00) to 0.00 mg (0.00-0.00) (p < 0.0001). In the same period, asthma control test (ACT) score increased from 14 (10-18) to 22 (20-24) (p < 0.0001), and sino-nasal outcome test (SNOT-22) score dropped from 55.84 ± 20.32 to 19.76 ± 12.76 (p < 0.0001). Moreover, we observed relevant increases in forced expiratory volume in one second (FEV1) from the baseline value of 2.13 L (1.62-2.81) to 2.39 L (1.89-3.06) (p < 0.0001). Fractional exhaled nitric oxide (FeNO) values decreased from 27.0 ppb (18.0-37.5) to 13.0 ppb (5.0-20.0) (p < 0.0001). These improvements were quite similar in subgroups of patients characterized by SPT negativity or positivity, and CRSwNP absence or presence. No statistically significant correlations were detected between serum IgE levels, baseline blood eosinophils or FeNO levels and dupilumab-induced changes, with the exception of FEV1 increase, which was shown to be positively correlated with FeNO values (r = 0.3147; p < 0.01). Conclusion Our results consolidate the strategic position of dupilumab in its role as an excellent therapeutic option currently available within the context of modern biological treatments of severe asthma and CRSwNP, frequently driven by type 2 airway inflammation.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Alida Benfante
- Dipartimento di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Maria Teresa Busceti
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | | | - Raffaele Campisi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Nunzio Crimi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria D’Amato
- Department of Respiratory Medicine, University “Federico II” of Naples, Naples, Italy
| | | | - Angelantonio Maglio
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Elena Minenna
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Santi Nolasco
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giuseppe Paglino
- Allergology and Pulmonology Unit, Provincial Outpatient Center of Palermo, Palermo, Italy
| | - Francesco Papia
- Allergology and Pulmonology Unit, Provincial Outpatient Center of Palermo, Palermo, Italy
| | - Girolamo Pelaia
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Andrea Portacci
- Department of Basic Medical Science, Neuroscience and Sense Organs, University “Aldo Moro”, Bari, Italy
| | - Luisa Ricciardi
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Nicola Scichilone
- Dipartimento di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Giulia Scioscia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Triggiani
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Giuseppe Valenti
- Allergology and Pulmonology Unit, Provincial Outpatient Center of Palermo, Palermo, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
16
|
Papaioannou AI, Fouka E, Bartziokas K, Kallieri M, Vontetsianos A, Porpodis K, Rovina N, Loukides S, Bakakos P. Defining response to therapy with biologics in severe asthma: from global evaluation to super response and remission. Expert Rev Respir Med 2023; 17:481-493. [PMID: 37318035 DOI: 10.1080/17476348.2023.2226392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/13/2023] [Indexed: 06/16/2023]
Abstract
INTRODUCTION In recent years, monoclonal antibodies targeting Type-2 inflammatory pathways have been developed for severe asthma treatment. However, even when patients are carefully selected, the response to treatment varies. AREAS COVERED Different studies have evaluated response to therapy with biologics such as exacerbation reduction, symptom improvement, pulmonary function increase, improvement in QoL, or decrease of oral corticosteroids, showing that all patients do not respond to all disease aspects and leading to an extensive debate regarding the definition of response. EXPERT OPINION Assessing response to therapy is of great importance, but since there is no uniform definition of treatment response, the recognition of patients who really benefit from these therapies remains an unmet need. In the same context, identifying non-responding patients in which biologic therapy should be switched or substituted by alternative treatment options is of paramount importance. In this review, we present the road trip of the definition of therapeutic response to biologics in severe asthmatics by presenting the current relevant medical literature. We also present the suggested predictors of response, with an emphasis on the so-called super-responders. Finally, we discuss the recent insights regarding asthma remission as a feasible treatment goal and provide a simple algorithm for the evaluation of response.
Collapse
Affiliation(s)
- Andriana I Papaioannou
- 1st Respiratory Medicine Department, National and Kapodistrian University of Athens, Medical School, "Sotiria" Chest Hospital, Athens, Greece
| | - Evangelia Fouka
- Medical School, Department of Respiratory Medicine, General Hospital G. Papanikolaou, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Division for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | | | - Maria Kallieri
- Medical School, 2nd Respiratory Medicine Department, General University Hospital "Attikon", National and Kapodistrian University of Athens, Athens, Greece
| | - Angelos Vontetsianos
- 1 Respiratory Medicine Department, National and Kapodistrian University of Athens, Medical School, "Sotiria" Chest Hospital, Athens, Greece
| | - Konstantinos Porpodis
- Medical School, Department of Respiratory Medicine, General Hospital G. Papanikolaou, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikoletta Rovina
- 1 Respiratory Medicine Department, National and Kapodistrian University of Athens, Medical School, "Sotiria" Chest Hospital, Athens, Greece
| | - Stelios Loukides
- Medical School, 2 Respiratory Medicine Department, General University Hospital "Attikon", National and Kapodistrian University of Athens, Athens, Greece
| | - Petros Bakakos
- 1 Respiratory Medicine Department, National and Kapodistrian University of Athens, Medical School, "Sotiria" Chest Hospital, Athens, Greece
| |
Collapse
|
17
|
Zoumot Z, Al Busaidi N, Tashkandi W, Aljohaney AA, Isse S, Vidyasagar K, Ukwaja KN. Tezepelumab for Patients with Severe Uncontrolled Asthma: A Systematic Review and Meta-Analysis. J Asthma Allergy 2022; 15:1665-1679. [PMID: 36425526 PMCID: PMC9680989 DOI: 10.2147/jaa.s378062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
Tezepelumab is a human monoclonal antibody that blocks thymic stromal lymphopoietin, an epithelial-cell-derived cytokine implicated in the pathogenesis of asthma. It was approved by the United States Federal Drug Administration (US FDA) as an add-on maintenance treatment for patients with severe uncontrolled asthma in December 2021. We conducted a systematic review and meta-analysis to investigate the safety and efficacy of tezepelumab on forced expiratory volume (FEV1) (L), the rate of asthma exacerbations, health-related quality of life, fractional exhaled nitric oxide (FeNO) (ppb), and blood eosinophil count (cells/mL) in patients with severe, uncontrolled asthma. Mean changes for efficacy and proportions (safety) with their corresponding 95% confidence intervals (CIs) were used to provide pooled estimates. A total of six randomized controlled trials comprising 2667 patients were included, of whom 1610 were treated with tezepelumab and 1057 received placebo. The pooled analysis showed that tezepelumab treatment resulted in an improvement in FEV1 of 0.15 L (95% CI: 0.12 to 0.17), a reduction in the asthma exacerbation rate per year of 0.60 (95% CI: 0.51 to 0.70), and a reduction in FeNO of -12.41 ppb (95% CI: -14.28 to -10.53) when compared to placebo. Improvements in FEV1 and FeNO levels were maintained at 24 and 52 weeks. As for safety, patients did not experience a higher incidence of adverse drug reactions with tezepelumab (0.79 (95% CI: 0.55 to 1.12)) as compared to placebo. As for quality of life, different doses of the tezepelumab intervention group depicted non-significant improvement in the QoL, from 0.15 (95% CI: -0.09 to 0.38) for 70 mg, 0.18 (95% CI: -0.10 to 0.46) for 210 mg, 0.08 (95% CI: -0.16 to 0.32) for 280 mg as compared to the placebo. Tezepelumab significantly reduced exacerbation rates and improved FEV1 with an acceptable safety profile.
Collapse
Affiliation(s)
- Zaid Zoumot
- Respiratory Institute Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Nasser Al Busaidi
- Department of Pulmonology, Royal Hospital, Muscat, Sultanate of Oman
| | - Wail Tashkandi
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed A Aljohaney
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Said Isse
- Respiratory Institute Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kota Vidyasagar
- Department of Pharmacy, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana, 506009, India
| | - Kingsley Nnanna Ukwaja
- Department of Medicine, Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Ebonyi State, Nigeria
| |
Collapse
|
18
|
Evelyn E, Djohan PB, Herawati F. Dupilumab Efficacy and Safety as an Add-On Therapy in Uncontrolled Asthma Patients: A Systematic Review. JOURNAL OF HEALTH SCIENCES 2022. [DOI: 10.33086/jhs.v15i03.2788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Asthma is a heterogeneous chronic inflammatory condition affecting the lung. Standard treatment, a high-dose inhaled corticosteroid (ICS) and long-acting bronchodilator (LABA), effectively manages asthma in most individuals. However, 5%-10% of individuals with asthma were ineffective with those treatments. Recent RCTs suggested that Dupilumab posed potential as an add-on therapy. This systematic review aims to support the efficacy (the annualized rate of severe asthma exacerbation and increase in FEV1) and the safety of Dupilumab as an add-on therapy in uncontrolled asthma patients. We used "(Asthma) AND (Dupilumab)" as keywords on PubMed and ScienceDirect. We included only RCT design studies comparing the efficacy and safety of Dupilumab with a placebo in uncontrolled asthma patients. The placebo was ICS and LABA or oral glucocorticoids. This paper included five RCTs with 3400 participants, and their quality was assessed using Critical Appraisal Tools Program (CASP) tools. We conducted a meta-analysis to calculate the pooled risk ratio (RR). In addition, we used Mantel-Haenszel with 95% confidence intervals for dichotomous data. Furthermore, we used a random-effects model to count for interstudy heterogeneity. Then, we processed data using Revman 5.4. Dupilumab as an add-on therapy significantly showed a consistent effect in lower the annualized rate of severe asthma exacerbation (RR= 0.46; 95% CI 0.36- 0.58; p=0.007) and increased FEV1 compared to placebo. In addition, the most common adverse effect of using Dupilumab were injection site reaction, upper respiratory tract infections, and eosinophilia. In conclusion, Dupilumab is safe and well-tolerated as moderate-to-severe uncontrolled asthma add-on therapy
Collapse
|
19
|
Menzella F, Ballarin A, Sartor M, Floriani AF, Corsi L, Dartora C, Tonin S, Romagnoli M. Comparison between clinical trials and real-world evidence studies on biologics for severe asthma. J Int Med Res 2022; 50:3000605221133689. [PMID: 36420737 PMCID: PMC9703569 DOI: 10.1177/03000605221133689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/30/2022] [Indexed: 12/30/2023] Open
Abstract
In recent years, the more widespread availability of biological drugs with specific mechanisms of action has led to significant breakthroughs in the management of severe asthma. Over time, numerous randomised clinical trials have been conducted to evaluate the efficacy and safety of these biologics and define the eligibility criteria of patients suitable for various therapeutic options. These studies were conducted under controlled conditions not always applicable to real life. For this and other reasons, real-world evidence and pragmatic studies are required to provide useful information on the effectiveness of biological drugs and their safety, even in the long term. Because differences in outcomes have sometimes emerged between clinical trials and real-life studies, it is important to clarify the causes of these discrepancies and define the significance of the results of studies conducted in the course of daily clinical practice. Thus, a scientific debate is ongoing, and no consensus has been reached. The purpose of this narrative review is to analyse the differences between randomised trials and real-world evidence studies, focusing on their roles in guiding clinicians among different therapeutic options and understanding the reasons for the large discrepancies often found in the results obtained.
Collapse
Affiliation(s)
| | - Andrea Ballarin
- Pulmonology Unit, S. Valentino Hospital, AULSS2 Marca Trevigiana, Italy
| | - Maria Sartor
- Pulmonology Unit, S. Valentino Hospital, AULSS2 Marca Trevigiana, Italy
| | | | - Lorenzo Corsi
- Pulmonology Unit, S. Valentino Hospital, AULSS2 Marca Trevigiana, Italy
| | - Cristina Dartora
- Pulmonology Unit, S. Valentino Hospital, AULSS2 Marca Trevigiana, Italy
| | - Silvia Tonin
- Pulmonology Unit, S. Valentino Hospital, AULSS2 Marca Trevigiana, Italy
| | - Micaela Romagnoli
- Pulmonology Unit, Cà Foncello Hospital, AULSS2 Marca Trevigiana, Italy
| |
Collapse
|
20
|
Pelaia C, Pelaia G, Crimi C, Maglio A, Armentaro G, Calabrese C, Sciacqua A, Gallelli L, Vatrella A. Biological Therapy of Severe Asthma with Dupilumab, a Dual Receptor Antagonist of Interleukins 4 and 13. Vaccines (Basel) 2022; 10:vaccines10060974. [PMID: 35746582 PMCID: PMC9229960 DOI: 10.3390/vaccines10060974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Interleukin-4 (IL-4) and interleukin-13 (IL-13) are key cytokines involved in the pathophysiology of both immune-inflammatory and structural changes underlying type 2 asthma. IL-4 plays a pivotal role in Th2 cell polarization, immunoglobulin E (IgE) synthesis and eosinophil recruitment into the airways. IL-13 synergizes with IL-4 in inducing IgE production and also promotes nitric oxide (NO) synthesis, eosinophil chemotaxis, bronchial hyperresponsiveness and mucus secretion, as well as the proliferation of airway resident cells such as fibroblasts and smooth muscle cells. The biological effects of IL-4 and IL-13 are mediated by complex signaling mechanisms activated by receptor dimerization triggered by cytokine binding to the α-subunit of the IL-4 receptor (IL-4Rα). The fully human IgG4 monoclonal antibody dupilumab binds to IL-4Rα, thereby preventing its interactions with both IL-4 and IL-13. This mechanism of action makes it possible for dupilumab to effectively inhibit type 2 inflammation, thus significantly reducing the exacerbation of severe asthma, the consumption of oral corticosteroids (OCS) and the levels of fractional exhaled NO (FeNO). Dupilumab has been approved not only for the add-on therapy of severe asthma, but also for the biological treatment of atopic dermatitis and nasal polyposis.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (G.P.); (L.G.)
- Correspondence: ; Tel.: +39-0961-3647007; Fax: +39-0961-3647193
| | - Giulia Pelaia
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (G.P.); (L.G.)
| | - Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy;
| | - Angelantonio Maglio
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Salerno, Italy; (A.M.); (A.V.)
| | - Giuseppe Armentaro
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (G.A.); (A.S.)
| | - Cecilia Calabrese
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (G.A.); (A.S.)
| | - Luca Gallelli
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (G.P.); (L.G.)
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Salerno, Italy; (A.M.); (A.V.)
| |
Collapse
|
21
|
Ragnoli B, Morjaria J, Pignatti P, Montuschi P, Barbieri M, Mondini L, Ruggero L, Trotta L, Malerba M. Dupilumab and tezepelumab in severe refractory asthma: new opportunities. Ther Adv Chronic Dis 2022; 13:20406223221097327. [PMID: 35655942 PMCID: PMC9152192 DOI: 10.1177/20406223221097327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/11/2022] [Indexed: 11/15/2022] Open
Abstract
Bronchial asthma is a chronic inflammatory condition with increasing prevalence worldwide that may present as heterogeneous phenotypes defined by the T2-mediated pattern of airway inflammation T2-high and T2-low asthma. Severe refractory asthma includes a subset of asthmatic patients who fail to control their disease despite maximal therapy and represent a group of patients needing marked resource utilization and hence may be eligible to add-on biological therapies. Among the new biologics, we focused our attention on two monoclonal antibodies: dupilumab, exerting a dual blockade of cytokine (interleukin (IL)-4 and IL-13) signaling; and tezepelumab, acting at a higher level preventing the binding of thymic stromal lymphopoietin (TSLP) to its receptor, thus blocking TSLP, IL-25, and IL-33 signaling, hence modulating airway T2 immune responses. With their different mechanisms of action, these two biologics represent important options to provide an enhanced personalized treatment regimen. Several clinical trials have been conducted testing the efficacy and safety of dupilumab in severe refractory asthmatic patients showing improvements in lung function, asthma control, and reducing exacerbations. Similar results were reported with tezepelumab that, differently from dupilumab, acts irrespectively on eosinophilic or non-eosinophilic phenotype. In this review, we provide an overview of the most important highlights regarding dupilumab and tezepelumab characteristics and mechanism of action with a critical review of the principal results of clinical (Phase II and III) studies concluded and those still in progress.
Collapse
Affiliation(s)
| | - Jaymin Morjaria
- Department of Respiratory Medicine, Harefield Hospital, Guy’s & St Thomas’ NHS Foundation Trust, Harefield, UK
| | - Patrizia Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia, Pavia, Italy
| | - Paolo Montuschi
- Pharmacology Department, Faculty of Medicine, Catholic University of the Sacred Heart, Milan, Italy
- Airways Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College of Science Technology and Medicine, London, UK
| | | | | | - Luca Ruggero
- Respiratory Unit, S. Andrea Hospital, Vercelli, Italy
| | | | - Mario Malerba
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy
- Respiratory Unit, S. Andrea Hospital, Vercelli, Italy
| |
Collapse
|
22
|
Pelaia C, Pelaia G, Crimi C, Maglio A, Stanziola AA, Calabrese C, Terracciano R, Longhini F, Vatrella A. Novel Biological Therapies for Severe Asthma Endotypes. Biomedicines 2022; 10:1064. [PMID: 35625801 PMCID: PMC9138687 DOI: 10.3390/biomedicines10051064] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 12/29/2022] Open
Abstract
Severe asthma comprises several heterogeneous phenotypes, underpinned by complex pathomechanisms known as endotypes. The latter are driven by intercellular networks mediated by molecular components which can be targeted by specific monoclonal antibodies. With regard to the biological treatments of either allergic or non-allergic eosinophilic type 2 asthma, currently available antibodies are directed against immunoglobulins E (IgE), interleukin-5 (IL-5) and its receptor, the receptors of interleukins-4 (IL-4) and 13 (IL-13), as well as thymic stromal lymphopoietin (TSLP) and other alarmins. Among these therapeutic strategies, the best choice should be made according to the phenotypic/endotypic features of each patient with severe asthma, who can thus respond with significant clinical and functional improvements. Conversely, very poor options so far characterize the experimental pipelines referring to the perspective biological management of non-type 2 severe asthma, which thereby needs to be the focus of future thorough research.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Giulia Pelaia
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy;
| | - Angelantonio Maglio
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Salerno, Italy; (A.M.); (A.V.)
| | - Anna Agnese Stanziola
- First Division of Pneumology, High Speciality Hospital “V. Monaldi” and University “Federico II” of Naples, Medical School, 80131 Naples, Italy;
| | - Cecilia Calabrese
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| | - Rosa Terracciano
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Federico Longhini
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Salerno, Italy; (A.M.); (A.V.)
| |
Collapse
|
23
|
Pelaia C, Heffler E, Crimi C, Maglio A, Vatrella A, Pelaia G, Canonica GW. Interleukins 4 and 13 in Asthma: Key Pathophysiologic Cytokines and Druggable Molecular Targets. Front Pharmacol 2022; 13:851940. [PMID: 35350765 PMCID: PMC8957960 DOI: 10.3389/fphar.2022.851940] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
Interleukins (IL)-4 and -13 play a pivotal role in the pathobiology of type-2 asthma. Indeed, IL-4 is crucially involved in Th2 cell differentiation, immunoglobulin (Ig) class switching and eosinophil trafficking. IL-13 cooperates with IL-4 in promoting IgE synthesis, and also induces nitric oxide (NO) production, goblet cell metaplasia and fibroblast proliferation, as well as elicits contractile responses and hyperplasia of airway smooth muscle cells. IL-4 and IL-13 share common signaling pathways, activated by the binding of both cytokines to receptor complexes including the α-subunit of the IL-4 receptor (IL-4Rα). Therefore, the subsequent receptor dimerization is responsible for the pathophysiologic effects of IL-4 and IL-13. By selectively blocking IL-4Rα, the fully human IgG4 monoclonal antibody dupilumab behaves as a dual receptor antagonist of both IL-4 and IL-13. Through this mechanism of action, dupilumab exerts effective therapeutic actions in type-2 inflammation, thus decreasing asthma exacerbations, FeNO (fractional exhaled NO) levels, and the intake of oral corticosteroids (OCS). In addition to being approved for the add-on biological therapy of severe asthma, dupilumab has also been licensed for the treatment of nasal polyposis and atopic dermatitis.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Enrico Heffler
- Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Angelantonio Maglio
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Salerno, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Salerno, Italy
| | - Girolamo Pelaia
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Giorgio Walter Canonica
- Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
24
|
Ando K, Fukuda Y, Tanaka A, Sagara H. Comparative Efficacy and Safety of Tezepelumab and Other Biologics in Patients with Inadequately Controlled Asthma According to Thresholds of Type 2 Inflammatory Biomarkers: A Systematic Review and Network Meta-Analysis. Cells 2022; 11:819. [PMID: 35269440 PMCID: PMC8909778 DOI: 10.3390/cells11050819] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 12/20/2022] Open
Abstract
The anti-thymic stromal lymphopoietin antibody (tezepelumab) has therapeutical potential for inadequately controlled asthma. However, evidence comparing tezepelumab with other biologics is scarce. To address this issue, we performed a network meta-analysis to compare and rank the efficacy of five treatments (tezepelumab, dupilumab, benralizumab, mepolizumab, and placebo) in overall participants and in subgroups stratified by the thresholds of type 2 inflammatory biomarkers, including peripheral blood eosinophil count (PBEC) and fractional exhaled nitric oxide (FeNO). The primary endpoints were annualized exacerbation rate (AER) and any adverse events (AAEs). In the ranking assessment using surface under the cumulative ranking curve (SUCRA) of AER, tezepelumab ranked the highest overall and across subgroups (based on PBEC and FeNO level thresholds). A significant difference was observed between tezepelumab and dupilumab in the patient subgroup with PBEC < 150, and between tezepelumab and benralizumab in overall participants and the patient subgroup with PBEC ≥ 300 and ≥150, respectively. There was no significant difference in the incidence of AAEs in the overall participants between each pair of five treatment arms. These results provide a basis for the development of treatment strategies for asthma and may guide basic, clinical, or translational research.
Collapse
Affiliation(s)
- Koichi Ando
- Division of Respiratory Medicine and Allergology, Department of Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (Y.F.); (A.T.); (H.S.)
- Division of Internal Medicine, Showa University Dental Hospital Medical Clinic, Senzoku Campus, Showa University, 2-1-1 Kita-senzoku, Ohta-ku, Tokyo 145-8515, Japan
| | - Yosuke Fukuda
- Division of Respiratory Medicine and Allergology, Department of Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (Y.F.); (A.T.); (H.S.)
| | - Akihiko Tanaka
- Division of Respiratory Medicine and Allergology, Department of Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (Y.F.); (A.T.); (H.S.)
| | - Hironori Sagara
- Division of Respiratory Medicine and Allergology, Department of Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (Y.F.); (A.T.); (H.S.)
| |
Collapse
|
25
|
Sunil AA, Skaria T. Novel regulators of airway epithelial barrier function during inflammation: potential targets for drug repurposing. Expert Opin Ther Targets 2022; 26:119-132. [PMID: 35085478 DOI: 10.1080/14728222.2022.2035720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Endogenous inflammatory signaling molecules resulting from deregulated immune responses, can impair airway epithelial barrier function and predispose individuals with airway inflammatory diseases to exacerbations and lung infections. Targeting the specific endogenous factors disrupting the airway barrier therefore has the potential to prevent disease exacerbations without affecting the protective immune responses. AREAS COVERED Here, we review the endogenous factors and specific mechanisms disrupting airway epithelial barrier during inflammation and reflect on whether these factors can be specifically targeted by repurposed existing drugs. Literature search was conducted using PubMed, drug database of US FDA and European Medicines Agency until and including September 2021. EXPERT OPINION IL-4 and IL-13 signaling are the major pathways disrupting the airway epithelial barrier during airway inflammation. However, blocking IL-4/IL-13 signaling may adversely affect protective immune responses and increase susceptibility of host to infections. An alternate approach to modulate airway epithelial barrier function involves targeting specific downstream component of IL-4/IL-13 signaling or different inflammatory mediators responsible for regulation of airway epithelial barrier. Airway epithelium-targeted therapy using inhibitors of HDAC, HSP90, MIF, mTOR, IL-17A and VEGF may be a potential strategy to prevent airway epithelial barrier dysfunction in airway inflammatory diseases.
Collapse
Affiliation(s)
- Ahsan Anjoom Sunil
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Tom Skaria
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
26
|
Lee YW, Kim CW. Dupilumab Treatment for Asthma: On the Road to a New Horizon Beyond Ethnic Differences? ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:147-150. [PMID: 35255532 PMCID: PMC8914609 DOI: 10.4168/aair.2022.14.2.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/20/2022]
Affiliation(s)
- Yong Won Lee
- Department of Internal Medicine, Catholic Kwandong University College of Medicine, Incheon, Korea
| | - Cheol-Woo Kim
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
| |
Collapse
|
27
|
Poddighe D, Kovzel E. Impact of Anti-Type 2 Inflammation Biologic Therapy on COVID-19 Clinical Course and Outcome. J Inflamm Res 2021; 14:6845-6853. [PMID: 34934335 PMCID: PMC8684423 DOI: 10.2147/jir.s345665] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022] Open
Abstract
SARS-CoV-2 pandemic had a general and deep impact on the clinical management of chronic diseases, including respiratory and allergic disorders. At the beginning of the pandemic, one of the main concerns was the potential impact of immunosuppressive/immunomodulatory drugs on COVID-19 clinical course. In this review, we aim to summarize and analyze the available clinical evidence from patients treated with anti-type 2 inflammation biologics (including anti-IgE, anti-IL-5 and anti-IL-4 agents), who developed COVID-19. Overall, the treatment with anti-Th2 biologics can be considered safe during COVID-19. It does not worsen the clinical course and outcome of COVID-19, and it may be actually protective somehow from developing severe forms. Moreover, patients treated with these biological agents do not seem to be more prone to get infected by SARS-CoV-2.
Collapse
Affiliation(s)
- Dimitri Poddighe
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan, 010000, Kazakhstan
- Clinical Academic Department of Pediatrics, University Medical Center (UMC), Nur-Sultan, 010000, Kazakhstan
| | - Elena Kovzel
- Clinical Academic Department of Pediatrics, University Medical Center (UMC), Nur-Sultan, 010000, Kazakhstan
| |
Collapse
|