1
|
Zhong Y, Xia J, Liao L, Momeni MR. Non-coding RNAs and exosomal non-coding RNAs in diabetic retinopathy: A narrative review. Int J Biol Macromol 2024; 259:128182. [PMID: 37977468 DOI: 10.1016/j.ijbiomac.2023.128182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Diabetic retinopathy (DR) is a devastating complication of diabetes, having extensive and resilient effects on those who suffer from it. As yet, the underlying cell mechanisms of this microvascular disorder are largely unclear. Recently, growing evidence suggests that epigenetic mechanisms can be responsible for gene deregulation leading to the alteration of key processes in the development and progression of DR, in addition to the widely recognized pathological mechanisms. It is noteworthy that seemingly unending epigenetic modifications, caused by a prolonged period of hyperglycemia, may be a prominent factor that leads to metabolic memory, and brings epigenetic entities such as non-coding RNA into the equation. Consequently, further investigation is necessary to truly understand this mechanism. Exosomes are responsible for carrying signals from cells close to the vasculature that are participating in abnormal signal transduction to faraway organs and cells by sailing through the bloodstream. These signs indicate metabolic disorders. With the aid of their encased structure, they can store diverse signaling molecules, which then can be dispersed into the blood, urine, and tears. Herein, we summarized various non-coding RNAs (ncRNAs) that are related to DR pathogenesis. Moreover, we highlighted the role of exosomal ncRNAs in this disease.
Collapse
Affiliation(s)
- Yuhong Zhong
- Endocrinology Department, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610000, Sichuan, China
| | - Juan Xia
- Endocrinology Department, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610000, Sichuan, China
| | - Li Liao
- Department of Respiratory and Critical Care Medicine 3, Sichuan Academy of Medical Sciences Sichuan Provincial People's Hospital, Chengdu 610000, Sichuan, China.
| | - Mohammad Reza Momeni
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
2
|
Sun WJ, An XD, Zhang YH, Zhao XF, Sun YT, Yang CQ, Kang XM, Jiang LL, Ji HY, Lian FM. The ideal treatment timing for diabetic retinopathy: the molecular pathological mechanisms underlying early-stage diabetic retinopathy are a matter of concern. Front Endocrinol (Lausanne) 2023; 14:1270145. [PMID: 38027131 PMCID: PMC10680169 DOI: 10.3389/fendo.2023.1270145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetic retinopathy (DR) is a prevalent complication of diabetes, significantly impacting patients' quality of life due to vision loss. No pharmacological therapies are currently approved for DR, excepted the drugs to treat diabetic macular edema such as the anti-VEGF agents or steroids administered by intraocular route. Advancements in research have highlighted the crucial role of early intervention in DR for halting or delaying disease progression. This holds immense significance in enhancing patients' quality of life and alleviating the societal burden associated with medical care costs. The non-proliferative stage represents the early phase of DR. In comparison to the proliferative stage, pathological changes primarily manifest as microangiomas and hemorrhages, while at the cellular level, there is a loss of pericytes, neuronal cell death, and disruption of components and functionality within the retinal neuronal vascular unit encompassing pericytes and neurons. Both neurodegenerative and microvascular abnormalities manifest in the early stages of DR. Therefore, our focus lies on the non-proliferative stage of DR and we have initially summarized the mechanisms involved in its development, including pathways such as polyols, that revolve around the pathological changes occurring during this early stage. We also integrate cutting-edge mechanisms, including leukocyte adhesion, neutrophil extracellular traps, multiple RNA regulation, microorganisms, cell death (ferroptosis and pyroptosis), and other related mechanisms. The current status of drug therapy for early-stage DR is also discussed to provide insights for the development of pharmaceutical interventions targeting the early treatment of DR.
Collapse
Affiliation(s)
- Wen-Jie Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue-Dong An
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue-Hong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue-Fei Zhao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Ting Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Cun-Qing Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Min Kang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Lin-Lin Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Hang-Yu Ji
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feng-Mei Lian
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Pham DL, Niemi A, Blank R, Lomenzo G, Tham J, Ko ML, Ko GYP. Peptide Lv Promotes Trafficking and Membrane Insertion of K Ca3.1 through the MEK1-ERK and PI3K-Akt Signaling Pathways. Cells 2023; 12:1651. [PMID: 37371121 PMCID: PMC10296961 DOI: 10.3390/cells12121651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Peptide Lv is a small endogenous secretory peptide that is proangiogenic through hyperpolarizing vascular endothelial cells (ECs) by enhancing the current densities of KCa3.1 channels. However, it is unclear how peptide Lv enhances these currents. One way to enhance the current densities of ion channels is to promote its trafficking and insertion into the plasma membrane. We hypothesized that peptide Lv-elicited KCa3.1 augmentation occurs through activating the mitogen-activated protein kinase kinase 1 (MEK1)-extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)-protein kinase B (Akt) signaling pathways, which are known to mediate ion channel trafficking and membrane insertion in neurons. To test this hypothesis, we employed patch-clamp electrophysiological recordings and cell-surface biotinylation assays on ECs treated with peptide Lv and pharmaceutical inhibitors of ERK and Akt. Blocking ERK or Akt activation diminished peptide Lv-elicited EC hyperpolarization and increase in KCa3.1 current densities. Blocking PI3K or Akt activation decreased the level of plasma membrane-bound, but not the total amount of KCa3.1 protein in ECs. Therefore, the peptide Lv-elicited EC hyperpolarization and KCa3.1 augmentation occurred in part through channel trafficking and insertion mediated by MEK1-ERK and PI3K-Akt activation. These results demonstrate the molecular mechanisms of how peptide Lv promotes EC-mediated angiogenesis.
Collapse
Affiliation(s)
- Dylan L. Pham
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (D.L.P.); (A.N.); (R.B.); (G.L.); (J.T.); (M.L.K.)
| | - Autumn Niemi
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (D.L.P.); (A.N.); (R.B.); (G.L.); (J.T.); (M.L.K.)
| | - Ria Blank
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (D.L.P.); (A.N.); (R.B.); (G.L.); (J.T.); (M.L.K.)
| | - Gabriella Lomenzo
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (D.L.P.); (A.N.); (R.B.); (G.L.); (J.T.); (M.L.K.)
| | - Jenivi Tham
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (D.L.P.); (A.N.); (R.B.); (G.L.); (J.T.); (M.L.K.)
| | - Michael L. Ko
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (D.L.P.); (A.N.); (R.B.); (G.L.); (J.T.); (M.L.K.)
- Department of Biology, Division of Natural and Physical Sciences, Blinn College, Bryan, TX 77802, USA
| | - Gladys Y.-P. Ko
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (D.L.P.); (A.N.); (R.B.); (G.L.); (J.T.); (M.L.K.)
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
4
|
Sergi D, Zauli E, Casciano F, Secchiero P, Zauli G, Fields M, Melloni E. Palmitic Acid Induced a Long-Lasting Lipotoxic Insult in Human Retinal Pigment Epithelial Cells, which Is Partially Counteracted by TRAIL. Antioxidants (Basel) 2022; 11:antiox11122340. [PMID: 36552548 PMCID: PMC9774631 DOI: 10.3390/antiox11122340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Hyperglycaemia and increased circulating saturated fatty acids are key metabolic features of type 2 diabetes mellitus (T2DM) that contribute to diabetic retinopathy pathogenesis. Contrarily, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has been shown to improve or prevent T2DM. This study aimed at investigating the effect of TRAIL in an in vitro model of human retinal pigment epithelium: the ARPE-19 cell line, treated with palmitic acid (PA) in the presence of high glucose concentration. PA caused a drop in cellular metabolic activity and cell viability as well as an increase in apoptosis rates, which were paralleled by an upregulation of reactive oxygen species (ROS) generation as well as mitochondrial fragmentation. Despite ARPE-19 cells expressing TRAIL-R2 at the cell surface, TRAIL failed to counteract the cytotoxic effects of PA. However, when TRAIL was used alongside PA and then removed or used alone following PA challenge, it partially attenuated PA-induced lipotoxicity. This effect of TRAIL appeared to rely upon the modulation of inflammation and ROS production. Thus, TRAIL exerted a trophic effect on ARPE-19 cells, which became evident only when the lipotoxic insult was removed. Nevertheless, whether recombinant TRAIL might have a therapeutic potential for the treatment of diabetic retinopathy requires further investigation.
Collapse
Affiliation(s)
- Domenico Sergi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
- Interdepartmental Research Center for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, 44121 Ferrara, Italy
- Correspondence:
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- King Khaled Eye Specialistic Hospital, Riyadh 11462, Saudi Arabia
| | - Matteo Fields
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Elisabetta Melloni
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
5
|
MicroRNA-150 (miR-150) and Diabetic Retinopathy: Is miR-150 Only a Biomarker or Does It Contribute to Disease Progression? Int J Mol Sci 2022; 23:ijms232012099. [PMID: 36292956 PMCID: PMC9603433 DOI: 10.3390/ijms232012099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetic retinopathy (DR) is a chronic disease associated with diabetes mellitus and is a leading cause of visual impairment among the working population in the US. Clinically, DR has been diagnosed and treated as a vascular complication, but it adversely impacts both neural retina and retinal vasculature. Degeneration of retinal neurons and microvasculature manifests in the diabetic retina and early stages of DR. Retinal photoreceptors undergo apoptosis shortly after the onset of diabetes, which contributes to the retinal dysfunction and microvascular complications leading to vision impairment. Chronic inflammation is a hallmark of diabetes and a contributor to cell apoptosis, and retinal photoreceptors are a major source of intraocular inflammation that contributes to vascular abnormalities in diabetes. As the levels of microRNAs (miRs) are changed in the plasma and vitreous of diabetic patients, miRs have been suggested as biomarkers to determine the progression of diabetic ocular diseases, including DR. However, few miRs have been thoroughly investigated as contributors to the pathogenesis of DR. Among these miRs, miR-150 is downregulated in diabetic patients and is an endogenous suppressor of inflammation, apoptosis, and pathological angiogenesis. In this review, how miR-150 and its downstream targets contribute to diabetes-associated retinal degeneration and pathological angiogenesis in DR are discussed. Currently, there is no effective treatment to stop or reverse diabetes-caused neural and vascular degeneration in the retina. Understanding the molecular mechanism of the pathogenesis of DR may shed light for the future development of more effective treatments for DR and other diabetes-associated ocular diseases.
Collapse
|
6
|
Gorbatyuk OS, Pitale PM, Saltykova IV, Dorofeeva IB, Zhylkibayev AA, Athar M, Fuchs PA, Samuels BC, Gorbatyuk MS. A Novel Tree Shrew Model of Diabetic Retinopathy. Front Endocrinol (Lausanne) 2021; 12:799711. [PMID: 35046899 PMCID: PMC8762304 DOI: 10.3389/fendo.2021.799711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/10/2021] [Indexed: 01/03/2023] Open
Abstract
Existing animal models with rod-dominant retinas have shown that hyperglycemia injures neurons, but it is not yet clearly understood how blue cone photoreceptors and retinal ganglion cells (RGCs) deteriorate in patients because of compromised insulin tolerance. In contrast, northern tree shrews (Tupaia Belangeri), one of the closest living relatives of primates, have a cone-dominant retina with short wave sensitivity (SWS) and long wave sensitivity (LWS) cones. Therefore, we injected animals with a single streptozotocin dose (175 mg/kg i.p.) to investigate whether sustained hyperglycemia models the features of human diabetic retinopathy (DR). We used the photopic electroretinogram (ERG) to measure the amplitudes of A and B waves and the photopic negative responses (PhNR) to evaluate cone and RGC function. Retinal flat mounts were prepared for immunohistochemical analysis to count the numbers of neurons with antibodies against cone opsins and RGC specific BRN3a proteins. The levels of the proteins TRIB3, ISR-1, and p-AKT/p-mTOR were measured with western blot. The results demonstrated that tree shrews manifested sustained hyperglycemia leading to a slight but significant loss of SWS cones (12%) and RGCs (20%) 16 weeks after streptozotocin injection. The loss of BRN3a-positive RGCs was also reflected by a 30% decline in BRN3a protein expression. These were accompanied by reduced ERG amplitudes and PhNRs. Importantly, the diabetic retinas demonstrated increased expression of TRIB3 and level of p-AKT/p-mTOR axis but reduced level of IRS-1 protein. Therefore, a new non-primate model of DR with SWS cone and RGC dysfunction lays the foundation to better understand retinal pathophysiology at the molecular level and opens an avenue for improving the research on the treatment of human eye diseases.
Collapse
Affiliation(s)
- Oleg S Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Priyamvada M Pitale
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Irina V Saltykova
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Iuliia B Dorofeeva
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Assylbek A Zhylkibayev
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mohammad Athar
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Preston A Fuchs
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Brian C Samuels
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marina S Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|