1
|
He F, Li M, Zhao H, Zhao H, Meng X, Zhang Y, Tang Y, Huang H, Li J, Xie H, Wang B. Pd Icosahedral Nanoparticles Promote Skin Wound Healing by Enhancing SP1-HBEGF Axis-Mediated Keratinocytes Proliferation. Int J Nanomedicine 2025; 20:3067-3081. [PMID: 40093544 PMCID: PMC11910915 DOI: 10.2147/ijn.s499289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Impaired wound healing leads to compromised cutaneous barrier and dysfunction, which still remains a challenging problem. However, safe and efficient materials and treatments for promoting wound healing are still lacking. Metal nanoparticles especially palladium nanoparticles (Pd NPs) have attracted tremendous interests in medical application in recent years, due to its unique physicochemical properties and biological inertness. Thereinto, Pd icosahedra nanoparticles (Pd Icos NPs) and Pd octahedra nanoparticles (Pd Oct NPs) have superior catalytic activity compared to other shapes but the application in skin wound healing have not been studied and reported. Methods Pd Oct NPs and Pd Icos NPs were synthesized by seed-mediated growth method and one-step synthesis method and characterized by series physical chemical assays. The acute full-thickness skin excision wound mouse model was used to access the wound healing potential and screen out the effective materials-Pd Icos NPs. Next evaluate the biotoxicity and safety of Pd Icos NPs and both in HaCaT cells and in vivo. Further examine related molecules expression by RT-qPCR and WB in HaCaT cells and wound tissues with Pd Icos treatment. Then knockout the related molecules both in HaCaT cells and in vivo to validate the molecular mechanism of these molecules in the phenotype of wound healing promoted by Pd Icos NPs. Results Pd Icos NPs with surface and tensile strain rather than Pd Oct NPs can promote skin wound healing. Pd Icos NPs upregulates the expression of HBEGF by promoting the production of transcription factor SP1, and contributes to keratinocytes proliferation and accelerating acute full-thickness skin wound healing. Discussion Pd Icos NPs represent an effective and safe material for skin wound healing, suggesting a potential novel therapeutic strategy.
Collapse
Affiliation(s)
- Fanping He
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Department of Plastic and Reconstructive Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People’s Republic of China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Mengfan Li
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, People’s Republic of China
| | - Han Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - He Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Xin Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Yan Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Hongwen Huang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, People’s Republic of China
- Shenzhen Research Institute of Hunan University, Shenzhen, Guangdong, 518055, People’s Republic of China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Ben Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| |
Collapse
|
2
|
Lavín-López MDP, Torres-Torresano M, García-Cuesta EM, Soler-Palacios B, Griera M, Martínez-Rovira M, Martínez-Rovira JA, Rodríguez-Puyol D, de Frutos S. A Graphene-Based Bioactive Product with a Non-Immunological Impact on Mononuclear Cell Populations from Healthy Volunteers. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1945. [PMID: 39683333 DOI: 10.3390/nano14231945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
We previously described GMC, a graphene-based nanomaterial obtained from carbon nanofibers (CNFs), to be biologically compatible and functional for therapeutic purposes. GMC can reduce triglycerides' content in vitro and in vivo and has other potential bio-functional effects on systemic cells and the potential utility to be used in living systems. Here, immunoreactivity was evaluated by adding GMC in suspension at the biologically functional concentrations, ranging from 10 to 60 µg/mL, for one or several days, to cultured lymphocytes (T, B, NK), either in basal or under stimulating conditions, and monocytes that were derived under culture conditions to pro-inflammatory (GM-MØ) or anti-inflammatory (M-MØ) macrophages. All stirpes were obtained from human peripheral mononuclear cells (PBMCs) from anonymized healthy donors. The viability (necrosis, apoptosis) and immunological activity of each progeny was analyzed using either flow cytometry and/or other analytical determinations. A concentration of 10 to 60 µg/mL GMC did not affect lymphocytes' viability, either in basal or active conditions, during one or more days of treatment. The viability and expression of the inflammatory interleukin IL-1β in the monocyte cell line THP-1 were not affected. Treatments with 10 or 20 µg/mL GMC on GM-MØ or M-MØ during or after their differentiation process promoted phagocytosis, but their viability and the release of the inflammatory marker activin A by GM-MØ were not affected. A concentration of 60 µg/mL GMC slightly increased macrophages' death and activity in some culture conditions. The present work demonstrates that GMC is safe or has minimal immunological activity when used in suspension at low concentrations for pre-clinical or clinical settings. Its biocompatibility will depend on the dose, formulation or way of administration and opens up the possibility to consider GMC or other CNF-based biomaterials for innovative therapeutic strategies.
Collapse
Affiliation(s)
| | - Mónica Torres-Torresano
- Department of Immunology and Oncology, National Center for Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | - Eva María García-Cuesta
- Department of Immunology and Oncology, National Center for Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | - Blanca Soler-Palacios
- Department of Immunology and Oncology, National Center for Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | | | | | | | - Diego Rodríguez-Puyol
- Department of Medicine, Universidad de Alcalá, Nephrology Service at Hospital Príncipe de Asturias, Instituto Ramon y Cajal de Investigación Sanitaria, Fundación Renal Iñigo Álvarez de Toledo, 28871 Alcalá de Henares, Spain
| | - Sergio de Frutos
- Department of Systems Biology, Universidad de Alcalá, Instituto Ramon y Cajal de Investigación Sanitaria, Fundación Renal Iñigo Álvarez de Toledo, 28871 Alcalá de Henares, Spain
| |
Collapse
|
3
|
Assis M, L Breitenbach G, Martí M, Sánchez-Safont E, Alfaro-Peyró A, Cabedo L, Garcia-Verdugo E, Andrés J, Serrano-Aroca Á. Synergistic Integration of α-Ag 2WO 4 into PLA/PBAT for the Development of Electrospun Membranes: Advancing Structural Integrity and Antimicrobial Efficacy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63404-63418. [PMID: 39509654 DOI: 10.1021/acsami.4c16618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The rising resistance of various pathogens and the demand for materials that prevent infections drive the need to develop broad-spectrum antimicrobial membranes capable of combating a range of microorganisms, thereby enhancing safety in biomedical and industrial applications. Herein, we introduce a simple and efficient technique to engineer membranes composed of polylactic acid (PLA) and polybutylene adipate terephthalate (PBAT) biopolymers and α-Ag2WO4 particles using an electrospinning technique. The corresponding structural, thermal, mechanical, and antimicrobial properties were characterized. X-ray diffraction (XRD) patterns confirmed the integration of crystalline α-Ag2WO4 within the polymer matrix. Scanning electron microscopy (SEM) and Raman confocal microscopy revealed uniformly dispersed α-Ag2WO4 particles in the electrospun fibers, influencing their diameter and surface roughness. Thermal analysis indicated adjustments in the thermal stability and crystallinity of the composites with an increasing α-Ag2WO4 content. Dynamic mechanical analysis (DMA) highlighted variations in storage modulus and glass transition temperatures due to interactions between α-Ag2WO4 and polymer chains, with tensile tests showing an increase in elastic modulus and ultimate tensile strength as the α-Ag2WO4 content increased. Antimicrobial assessments revealed that PLA/PBAT membranes with α-Ag2WO4 showed pronounced antibacterial activity, forming inhibition halos across all samples against Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and Mycobacterium smegmatis (a surrogate for Mycobacterium tuberculosis). These membranes also exhibited potent antiviral activity against bacteriophage phi 6, a surrogate for SARS-CoV-2, suggesting potential applications in combating infections caused by enveloped viruses. The antimicrobial activities are attributed to the generation of reactive oxygen species (ROS) and the controlled release of Ag+ ions. This work underscores the multifaceted capabilities of α-Ag2WO4-enhanced PLA/PBAT membranes in combating bacterial and viral growth, where both durability and microbial resistance are critical. Taken together, our findings provide a solution for obtaining advanced materials to be applied in a wide range of industrial applications, such as filtration systems, food preservation, antimicrobial coatings, protective textiles, and cleaning products.
Collapse
Affiliation(s)
- Marcelo Assis
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir (UCV), Valencia 46001, Spain
| | - Gabriela L Breitenbach
- Department of Inorganic and Organic Chemistry, Universitat Jaume I (UJI), Castelló de la Plana 12071, Spain
| | - Miguel Martí
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir (UCV), Valencia 46001, Spain
| | - Estefanía Sánchez-Safont
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Castelló de la Plana 12071, Spain
| | - Adrian Alfaro-Peyró
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir (UCV), Valencia 46001, Spain
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Castelló de la Plana 12071, Spain
| | - Eduardo Garcia-Verdugo
- Department of Inorganic and Organic Chemistry, Universitat Jaume I (UJI), Castelló de la Plana 12071, Spain
| | - Juan Andrés
- Department of Physical and Analytical Chemistry, Universitat Jaume I (UJI), Castelló de la Plana 12071, Spain
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir (UCV), Valencia 46001, Spain
| |
Collapse
|
4
|
Bakhshi A, Naghib SM, Rabiee N. Antibacterial and Antiviral Nanofibrous Membranes. ACS SYMPOSIUM SERIES 2024:47-88. [DOI: 10.1021/bk-2024-1472.ch002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Ali Bakhshi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Narmak, Tehran,16846-13114, Iran
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Narmak, Tehran,16846-13114, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia 6150, Australia
| |
Collapse
|
5
|
Fateh ST, Aghaii AH, Aminzade Z, Shahriari E, Roohpour N, Koosha F, Dezfuli AS. Inorganic nanoparticle-cored dendrimers for biomedical applications: A review. Heliyon 2024; 10:e29726. [PMID: 38694058 PMCID: PMC11061704 DOI: 10.1016/j.heliyon.2024.e29726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Hybrid nanostructures exhibit a synergistic combination of features derived from their individual components, showcasing novel characteristics resulting from their distinctive structure and chemical/physical properties. Surface modifiers play a pivotal role in shaping INPs' primary attributes, influencing their physicochemical properties, stability, and functional applications. Among these modifiers, dendrimers have gained attention as highly effective multifunctional agents for INPs, owing to their unique structural qualities, dendritic effects, and physicochemical properties. Dendrimers can be seamlessly integrated with diverse inorganic nanostructures, including metal NPs, carbon nanostructures, silica NPs, and QDs. Two viable approaches to achieving this integration involve either growing or grafting dendrimers, resulting in inorganic nanostructure-cored dendrimers. The initial step involves functionalizing the nanostructures' surface, followed by the generation of dendrimers through stepwise growth or attachment of pre-synthesized dendrimer branches. This hybridization imparts superior qualities to the resulting structure, including biocompatibility, solubility, high cargo loading capacity, and substantial functionalization potential. Combining the unique properties of dendrimers with those of the inorganic nanostructure cores creates a multifunctional system suitable for diverse applications such as theranostics, bio-sensing, component isolation, chemotherapy, and cargo-carrying applications. This review summarizes the recent developments, with a specific focus on the last five years, within the realm of dendrimers. It delves into their role as modifiers of INPs and explores the potential applications of INP-cored dendrimers in the biomedical applications.
Collapse
Affiliation(s)
- Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Ronash Technology Pars Company(AMINBIC), Tehran, Iran
| | - Amir Hossein Aghaii
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
- Ronash Technology Pars Company(AMINBIC), Tehran, Iran
| | - Zahra Aminzade
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Shahriari
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Fereshteh Koosha
- Department of Radiology Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
6
|
Wang X, Huang S, Peng Q. Metal Ion-Doped Hydroxyapatite-Based Materials for Bone Defect Restoration. Bioengineering (Basel) 2023; 10:1367. [PMID: 38135958 PMCID: PMC10741145 DOI: 10.3390/bioengineering10121367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Hydroxyapatite (HA)-based materials are widely used in the bone defect restoration field due to their stable physical properties, good biocompatibility, and bone induction potential. To further improve their performance with extra functions such as antibacterial activity, various kinds of metal ion-doped HA-based materials have been proposed and synthesized. This paper offered a comprehensive review of metal ion-doped HA-based materials for bone defect restoration based on the introduction of the physicochemical characteristics of HA followed by the synthesis methods, properties, and applications of different kinds of metal ion (Ag+, Zn2+, Mg2+, Sr2+, Sm3+, and Ce3+)-doped HA-based materials. In addition, the underlying challenges for bone defect restoration using these materials and potential solutions were discussed.
Collapse
Affiliation(s)
- Xuan Wang
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China;
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Shan Huang
- Changsha Health Vocational College, Changsha 410100, China;
| | - Qian Peng
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China;
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| |
Collapse
|
7
|
Salesa B, Ferrús-Manzano P, Tuñón-Molina A, Cano-Vicent A, Assis M, Andrés J, Serrano-Aroca Á. Study of biological properties of gold nanoparticles: Low toxicity, no proliferative activity, no ability to induce cell gene expression and no antiviral activity. Chem Biol Interact 2023; 382:110646. [PMID: 37506996 DOI: 10.1016/j.cbi.2023.110646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Gold nanoparticles (AuNPs) are a fundamental building block of many applications across nanotechnology as they have excellent biosafety which make them promising for a broad range of biomedical applications. Here we explore their in vivo toxicity, cytotoxicity and proliferative capacity in human keratinocyte HaCaT cells, their ability to induce gene expression and their antiviral properties against a surrogate of SARS-CoV-2. These nanoparticles were characterized by transmission electron microscopy, dynamic light scattering and zeta potential. The results showed that these AuNPs with sizes ranging from 10 to 60 nm are non-toxic in vivo at any concentration up to 800 μg/mL. However, AuNP cytotoxicity in human HaCaT cells is time-dependent, so that concentrations of up to 300 μg/mL did not show any in vitro toxic effect at 3, 12 and 24 h, although higher concentrations were found to have some significant toxic activity, especially at 24 h. No significant proliferative activity was observed when using low AuNP concentrations (10, 20 and 40 μg/mL), while the AuNP antiviral tests indicated low or insignificant antiviral activity. Surprisingly, none of the 13 analyzed genes had their expressions modified after 24 h's exposure to AuNPs. Therefore, the results show that AuNPs are highly stable inactive materials and thus very promising for biomedical and clinical applications demanding this type of materials.
Collapse
Affiliation(s)
- Beatriz Salesa
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001, Valencia, Spain
| | - Patricia Ferrús-Manzano
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001, Valencia, Spain
| | - Alberto Tuñón-Molina
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001, Valencia, Spain
| | - Alba Cano-Vicent
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001, Valencia, Spain
| | - Marcelo Assis
- Department of Physical and Analytical Chemistry, University Jaume I (UJI), 12071, Castellon, Spain
| | - Juan Andrés
- Department of Physical and Analytical Chemistry, University Jaume I (UJI), 12071, Castellon, Spain
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001, Valencia, Spain.
| |
Collapse
|
8
|
Tang T, Liu Y, Wang P, Xiang Y, Liu L, Xiao S, Wang G. Carbon quantum dots as a nitric oxide donor can promote wound healing of deep partial-thickness burns in rats. Eur J Pharm Sci 2023; 183:106394. [PMID: 36740102 DOI: 10.1016/j.ejps.2023.106394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/01/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
INTRODUCTION In this study, a new carbon quantum dots-NO (CQDs-NO) that is based on spermidine trihydrochloride and can be used as a nitric oxide donor was prepared using a two-step hyperthermia-intermittent ultrasonic method, after which its healing effect on deep partial-thickness burn wounds was tested in rats. MATERIALS AND METHODS CQDs-NO were prepared by a two-step hyperthermia-intermittent ultrasonic method. NO-released rate and biocompatibility of CQDs-NO were tested. The biological functions of CQDs-NO were measured by scratch assay, Western blotting, histology, and transcriptome sequencing. RESULTS CQDs-NO with a concentration of 1 μg/mL and 5 μg/mL showed no cytotoxicity. CQDs-NO could release NO when co-cultured with cells or glutathione peroxidase. We also found that CQDs-NO promotes the biological processes such as angiogenesis, cell-substrate adhesion, extracellular matrix organization, cell migration, and wound healing in human umbilical vein endothelial cells (HUVEC). Additionally, CQDs-NO promoted wound healing of deep partial-thickness burn by enhancing vascularization, matrix deposition, as well as regulating the inflammatory reactions of wounds. CONCLUSIONS CQDs-NO could be used as an alternative method for deep partial-thickness burn healing.
Collapse
Affiliation(s)
- Tao Tang
- Burn Institute of PLA, Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, China
| | - Yingying Liu
- Burn Institute of PLA, Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, China
| | - Peng Wang
- Department of Burns and Plastic Surgery Linfen Central Hospital, Linfen, Shanxi, 041000, China
| | - Yang Xiang
- Burn Institute of PLA, Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, China
| | - Lei Liu
- Department of Plastic Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Shichu Xiao
- Burn Institute of PLA, Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, China.
| | - Guangyi Wang
- Burn Institute of PLA, Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, China.
| |
Collapse
|
9
|
Li Y, Xu Z, Wang J, Pei X, Chen J, Wan Q. Alginate-based biomaterial-mediated regulation of macrophages in bone tissue engineering. Int J Biol Macromol 2023; 230:123246. [PMID: 36649862 DOI: 10.1016/j.ijbiomac.2023.123246] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/06/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Many studies in the bone tissue engineering field have focused on the interactions between materials and bone marrow stem cells. With the development of osteoimmunology, the immune cells' essential role in biomaterial-mediated osteogenesis has increasingly been recognized. As a promising therapeutic candidate for bone defects due to their prominent biocompatibility, tuneability, and versatility, it is necessary to develop alginate-based biomaterials that can regulate immune cells, especially macrophages. Moreover, modified alginate-based biomaterials may facilitate better regulation of macrophage phenotypes by the newly endowed physicochemical properties, including stiffness, porosity, hydrophilicity, and electrical properties. This review summarizes the role of macrophages in bone regeneration and the recent research progress related to the effects of alginate-based biomaterials on macrophages applied in bone tissue engineering. This review also emphasizes the strategies adopted by material design to regulate macrophage phenotypes, the corresponding macrophage responses, and their contribution to osteogenesis.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhengyi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Valachová K, Švík K, Jurčík R, Ondruška Ľ, Biró C, Šoltés L. Enhanced healing of skin wounds in ischemic rabbits using chitosan/hyaluronan/edaravone composite membranes: effects of laponite, carbon and silver-plated carbon nanofiber fillers. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-022-02553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Paras, Yadav K, Kumar P, Teja DR, Chakraborty S, Chakraborty M, Mohapatra SS, Sahoo A, Chou MMC, Liang CT, Hang DR. A Review on Low-Dimensional Nanomaterials: Nanofabrication, Characterization and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:160. [PMID: 36616070 PMCID: PMC9824826 DOI: 10.3390/nano13010160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 09/02/2023]
Abstract
The development of modern cutting-edge technology relies heavily on the huge success and advancement of nanotechnology, in which nanomaterials and nanostructures provide the indispensable material cornerstone. Owing to their nanoscale dimensions with possible quantum limit, nanomaterials and nanostructures possess a high surface-to-volume ratio, rich surface/interface effects, and distinct physical and chemical properties compared with their bulk counterparts, leading to the remarkably expanded horizons of their applications. Depending on their degree of spatial quantization, low-dimensional nanomaterials are generally categorized into nanoparticles (0D); nanorods, nanowires, and nanobelts (1D); and atomically thin layered materials (2D). This review article provides a comprehensive guide to low-dimensional nanomaterials and nanostructures. It begins with the classification of nanomaterials, followed by an inclusive account of nanofabrication and characterization. Both top-down and bottom-up fabrication approaches are discussed in detail. Next, various significant applications of low-dimensional nanomaterials are discussed, such as photonics, sensors, catalysis, energy storage, diverse coatings, and various bioapplications. This article would serve as a quick and facile guide for scientists and engineers working in the field of nanotechnology and nanomaterials.
Collapse
Affiliation(s)
- Paras
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Kushal Yadav
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Prashant Kumar
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Dharmasanam Ravi Teja
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Sudipto Chakraborty
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Monojit Chakraborty
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | | | - Abanti Sahoo
- Department of Chemical Engineering, National Institute of Technology, Rourkela 769008, India
| | - Mitch M. C. Chou
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chi-Te Liang
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Taiwan Consortium of Emergent Crystalline Materials, National Taiwan University, Taipei 10617, Taiwan
| | - Da-Ren Hang
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
12
|
Serrano-Aroca Á, Cano-Vicent A, Sabater i Serra R, El-Tanani M, Aljabali A, Tambuwala MM, Mishra YK. Scaffolds in the microbial resistant era: Fabrication, materials, properties and tissue engineering applications. Mater Today Bio 2022; 16:100412. [PMID: 36097597 PMCID: PMC9463390 DOI: 10.1016/j.mtbio.2022.100412] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022] Open
Abstract
Due to microbial infections dramatically affect cell survival and increase the risk of implant failure, scaffolds produced with antimicrobial materials are now much more likely to be successful. Multidrug-resistant infections without suitable prevention strategies are increasing at an alarming rate. The ability of cells to organize, develop, differentiate, produce a functioning extracellular matrix (ECM) and create new functional tissue can all be controlled by careful control of the extracellular microenvironment. This review covers the present state of advanced strategies to develop scaffolds with antimicrobial properties for bone, oral tissue, skin, muscle, nerve, trachea, cardiac and other tissue engineering applications. The review focuses on the development of antimicrobial scaffolds against bacteria and fungi using a wide range of materials, including polymers, biopolymers, glass, ceramics and antimicrobials agents such as antibiotics, antiseptics, antimicrobial polymers, peptides, metals, carbon nanomaterials, combinatorial strategies, and includes discussions on the antimicrobial mechanisms involved in these antimicrobial approaches. The toxicological aspects of these advanced scaffolds are also analyzed to ensure future technological transfer to clinics. The main antimicrobial methods of characterizing scaffolds' antimicrobial and antibiofilm properties are described. The production methods of these porous supports, such as electrospinning, phase separation, gas foaming, the porogen method, polymerization in solution, fiber mesh coating, self-assembly, membrane lamination, freeze drying, 3D printing and bioprinting, among others, are also included in this article. These important advances in antimicrobial materials-based scaffolds for regenerative medicine offer many new promising avenues to the material design and tissue-engineering communities.
Collapse
Affiliation(s)
- Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001, Valencia, Spain
| | - Alba Cano-Vicent
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001, Valencia, Spain
| | - Roser Sabater i Serra
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022, València, Spain
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - AlaaAA. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, 21163, Jordan
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, BT52 1SA, UK
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| |
Collapse
|
13
|
Wu J, Zhu Z, Liu W, Zhang Y, Kang Y, Liu J, Hu C, Wang R, Zhang M, Chen L, Shao L. How Nanoparticles Open the Paracellular Route of Biological Barriers: Mechanisms, Applications, and Prospects. ACS NANO 2022; 16:15627-15652. [PMID: 36121682 DOI: 10.1021/acsnano.2c05317] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biological barriers are essential physiological protective systems and obstacles to drug delivery. Nanoparticles (NPs) can access the paracellular route of biological barriers, either causing adverse health impacts on humans or producing therapeutic opportunities. This Review introduces the structural and functional influences of NPs on the key components that govern the paracellular route, mainly tight junctions, adherens junctions, and cytoskeletons. Furthermore, we evaluate their interaction mechanisms and address the influencing factors that determine the ability of NPs to open the paracellular route, which provides a better knowledge of how NPs can open the paracellular route in a safer and more controllable way. Finally, we summarize limitations in the research models and methodologies of the existing research in the field and provide future research direction. This Review demonstrates the in-depth causes for the reversible opening or destruction of the integrity of barriers generated by NPs; more importantly, it contributes insights into the design of NP-based medications to boost paracellular drug delivery efficiency.
Collapse
Affiliation(s)
- Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| | - Zhenjun Zhu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chen Hu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ruolan Wang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Manjin Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| |
Collapse
|
14
|
Wu Z, Chan B, Low J, Chu JJH, Hey HWD, Tay A. Microbial resistance to nanotechnologies: An important but understudied consideration using antimicrobial nanotechnologies in orthopaedic implants. Bioact Mater 2022; 16:249-270. [PMID: 35415290 PMCID: PMC8965851 DOI: 10.1016/j.bioactmat.2022.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
Microbial resistance to current antibiotics therapies is a major cause of implant failure and adverse clinical outcomes in orthopaedic surgery. Recent developments in advanced antimicrobial nanotechnologies provide numerous opportunities to effective remove resistant bacteria and prevent resistance from occurring through unique mechanisms. With tunable physicochemical properties, nanomaterials can be designed to be bactericidal, antifouling, immunomodulating, and capable of delivering antibacterial compounds to the infection region with spatiotemporal accuracy. Despite its substantial advancement, an important, but under-explored area, is potential microbial resistance to nanomaterials and how this can impact the clinical use of antimicrobial nanotechnologies. This review aims to provide a better understanding of nanomaterial-associated microbial resistance to accelerate bench-to-bedside translations of emerging nanotechnologies for effective control of implant associated infections.
Collapse
Affiliation(s)
- Zhuoran Wu
- Institute of Health Innovation & Technology, National University of Singapore, 117599, Singapore
| | - Brian Chan
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Jessalyn Low
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Justin Jang Hann Chu
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117547, Singapore
- Institute of Molecular and Cell Biology, 35 Agency for Science, Technology and Research, 138673, Singapore
| | - Hwee Weng Dennis Hey
- National University Health System, National University of Singapore, 119228, Singapore
| | - Andy Tay
- Institute of Health Innovation & Technology, National University of Singapore, 117599, Singapore
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Tissue Engineering Programme, National University of Singapore, 117510, Singapore
| |
Collapse
|
15
|
Recent Advances in Silver Nanoparticles Containing Nanofibers for Chronic Wound Management. Polymers (Basel) 2022; 14:polym14193994. [PMID: 36235942 PMCID: PMC9571512 DOI: 10.3390/polym14193994] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Infections are the primary cause of death from burns and diabetic wounds. The clinical difficulty of treating wound infections with conventional antibiotics has progressively increased and reached a critical level, necessitating a paradigm change for enhanced chronic wound care. The most prevalent bacterium linked with these infections is Staphylococcus aureus, and the advent of community-associated methicillin-resistant Staphylococcus aureus has posed a substantial therapeutic challenge. Most existing wound dressings are ineffective and suffer from constraints such as insufficient antibacterial activity, toxicity, failure to supply enough moisture to the wound, and poor mechanical performance. Using ineffective wound dressings might prolong the healing process of a wound. To meet this requirement, nanoscale scaffolds with their desirable qualities, which include the potential to distribute bioactive agents, a large surface area, enhanced mechanical capabilities, the ability to imitate the extracellular matrix (ECM), and high porosity, have attracted considerable interest. The incorporation of nanoparticles into nanofiber scaffolds constitutes a novel approach to “nanoparticle dressing” that has acquired significant popularity for wound healing. Due to their remarkable antibacterial capabilities, silver nanoparticles are attractive materials for wound healing. This review focuses on the therapeutic applications of nanofiber wound dressings containing Ag-NPs and their potential to revolutionize wound healing.
Collapse
|
16
|
Hurtado A, Aljabali AAA, Mishra V, Tambuwala MM, Serrano-Aroca Á. Alginate: Enhancement Strategies for Advanced Applications. Int J Mol Sci 2022; 23:4486. [PMID: 35562876 PMCID: PMC9102972 DOI: 10.3390/ijms23094486] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 02/06/2023] Open
Abstract
Alginate is an excellent biodegradable and renewable material that is already used for a broad range of industrial applications, including advanced fields, such as biomedicine and bioengineering, due to its excellent biodegradable and biocompatible properties. This biopolymer can be produced from brown algae or a microorganism culture. This review presents the principles, chemical structures, gelation properties, chemical interactions, production, sterilization, purification, types, and alginate-based hydrogels developed so far. We present all of the advanced strategies used to remarkably enhance this biopolymer's physicochemical and biological characteristics in various forms, such as injectable gels, fibers, films, hydrogels, and scaffolds. Thus, we present here all of the material engineering enhancement approaches achieved so far in this biopolymer in terms of mechanical reinforcement, thermal and electrical performance, wettability, water sorption and diffusion, antimicrobial activity, in vivo and in vitro biological behavior, including toxicity, cell adhesion, proliferation, and differentiation, immunological response, biodegradation, porosity, and its use as scaffolds for tissue engineering applications. These improvements to overcome the drawbacks of the alginate biopolymer could exponentially increase the significant number of alginate applications that go from the paper industry to the bioprinting of organs.
Collapse
Affiliation(s)
- Alejandro Hurtado
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK;
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| |
Collapse
|
17
|
Bogas AC, Henrique Rodrigues S, Gonçalves MO, De Assis M, Longo E, Paiva De Sousa C. Endophytic Microorganisms From the Tropics as Biofactories for the Synthesis of Metal-Based Nanoparticles: Healthcare Applications. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.823236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nanoparticles (NPs) have gained great attention in recent years due to their extensive and innovative applications in the field of medicine. However, conventional physicochemical approaches for the synthesis of NPs may be limited and costly, and the reaction by-products are potentially toxic for human health and the environment. Bio-mediated synthesis of NPs exploiting microorganisms as nanofactories has emerged as an alternative to traditional methods, as it provides economic and environmental benefits. Tropical ecosystems harbor a high diversity of endophytes, which have a diverse array of metabolic pathways that confer habitat adaptation and survival and that can be used to produce novel bioactive compounds with a variety of biological properties. Endophytic bacteria and fungi cultivated under optimum conditions have potential for use in biogenic synthesis of NPs with different characteristics and desired activities for medical applications, such as antimicrobial, antitumoral, antioxidant and anti-inflammatory properties. The bio-mediated synthesis of metal-based NPs can be favored because endophytic microorganisms may tolerate and/or adsorb metals and produce enzymes used as reducing agents. To our knowledge, this is the first review that brings together exclusively current research highlighting on the potential of endophytic bacteria and fungi isolated from native plants or adapted to tropical ecosystems and tropical macroalgae as nanofactories for the synthesis of NPs of silver, gold, copper, iron, zinc and other most studied metals, in addition to showing their potential use in human health.
Collapse
|
18
|
Birkett M, Dover L, Cherian Lukose C, Wasy Zia A, Tambuwala MM, Serrano-Aroca Á. Recent Advances in Metal-Based Antimicrobial Coatings for High-Touch Surfaces. Int J Mol Sci 2022; 23:1162. [PMID: 35163084 PMCID: PMC8835042 DOI: 10.3390/ijms23031162] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
International interest in metal-based antimicrobial coatings to control the spread of bacteria, fungi, and viruses via high contact human touch surfaces are growing at an exponential rate. This interest recently reached an all-time high with the outbreak of the deadly COVID-19 disease, which has already claimed the lives of more than 5 million people worldwide. This global pandemic has highlighted the major role that antimicrobial coatings can play in controlling the spread of deadly viruses such as SARS-CoV-2 and scientists and engineers are now working harder than ever to develop the next generation of antimicrobial materials. This article begins with a review of three discrete microorganism-killing phenomena of contact-killing surfaces, nanoprotrusions, and superhydrophobic surfaces. The antimicrobial properties of metals such as copper (Cu), silver (Ag), and zinc (Zn) are reviewed along with the effects of combining them with titanium dioxide (TiO2) to create a binary or ternary contact-killing surface coatings. The self-cleaning and bacterial resistance of purely structural superhydrophobic surfaces and the potential of physical surface nanoprotrusions to damage microbial cells are then considered. The article then gives a detailed discussion on recent advances in attempting to combine these individual phenomena to create super-antimicrobial metal-based coatings with binary or ternary killing potential against a broad range of microorganisms, including SARS-CoV-2, for high-touch surface applications such as hand rails, door plates, and water fittings on public transport and in healthcare, care home and leisure settings as well as personal protective equipment commonly used in hospitals and in the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Martin Birkett
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (C.C.L.); (A.W.Z.)
| | - Lynn Dover
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK;
| | - Cecil Cherian Lukose
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (C.C.L.); (A.W.Z.)
| | - Abdul Wasy Zia
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (C.C.L.); (A.W.Z.)
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, UK;
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| |
Collapse
|
19
|
Rivera-Briso AL, Aparicio-Collado JL, Serra RSI, Serrano-Aroca Á. Graphene Oxide versus Carbon Nanofibers in Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Films: Degradation in Simulated Intestinal Environments. Polymers (Basel) 2022; 14:348. [PMID: 35054756 PMCID: PMC8781968 DOI: 10.3390/polym14020348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/14/2022] Open
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a microbial biodegradable polymer with a broad range of promising industrial applications. The effect of incorporation of low amounts (1% w/w) of carbon nanomaterials (CBNs) such as 1D carbon nanofibers (CNFs) or 2D graphene oxide (GO) nanosheets into the PHBV polymer matrix affects its degradation properties, as it is reported here for the first time. The study was performed in simulated gut conditions using two different media: an acidic aqueous medium (pH 6) and Gifu anaerobic medium. The results of this study showed that the incorporation of low amounts of filamentous 1D hydrophobic CNFs significantly increased the degradability of the hydrophobic PHBV after 3 months in simulated intestinal conditions as confirmed by weight loss (~20.5% w/w in acidic medium) and electron microscopy. We can attribute these results to the fact that the long hydrophobic carbon nanochannels created in the PHBV matrix with the incorporation of the CNFs allowed the degradation medium to penetrate at ultrafast diffusion speed increasing the area exposed to degradation. However, the hydrogen bonds formed between the 2D hydrophilic GO nanosheets and the hydrophobic PHBV polymer chains produced a homogeneous composite structure that exhibits lower degradation (weight loss of ~4.5% w/w after three months in acidic aqueous medium). Moreover, the water molecules present in both degradation media can be linked to the hydroxyl (-OH) and carboxyl (-COOH) groups present on the basal planes and at the edges of the GO nanosheets, reducing their degradation potential.
Collapse
Affiliation(s)
- Ariagna L. Rivera-Briso
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - José Luis Aparicio-Collado
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Roser Sabater i Serra
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain;
- CIBER-BBN, Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine, 46022 Valencia, Spain
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| |
Collapse
|
20
|
Graphene Nanoplatelets: In Vivo and In Vitro Toxicity, Cell Proliferative Activity, and Cell Gene Expression. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020720] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multi-layer graphene (2–10 layers), also called graphene nanoplatelets (GNPs), is a carbon-based nanomaterial (CBN) type with excellent properties desirable for many biomedical applications. Despite the promising advantages reported of GNPs, nanoscale materials may also present a potential hazard to humans. Therefore, in this study, the in vivo toxicity of these nanomaterials at a wide range of concentrations from 12.5 to 500 µg/mL was evaluated in the Caenorhabditis elegans model for 24 h (acute toxicity) and 72 h (chronic toxicity). Furthermore, their in vitro toxicity (from 0 to 10 µg/mL for 12 and 24 h), proliferative activity at 72 and 96 h, and their effect on the expression of thirteen genes in human keratinocytes HaCaT cells were studied. The physico-chemical and morphological aspects of the GNPs used in this study were analyzed by Raman scattering spectroscopy, electron microscopy, zeta potential as a function of pH, and particle size measurements by dynamic light scattering. The results of this study showed that GNPs showed in vivo non-toxic concentrations of 25 and 12.5 µg/mL for 24 h, and at 12.5 µg/mL for 72 h. Moreover, GNPs present time-dependent cytotoxicity (EC50 of 1.142 µg/mL and 0.760 µg/mL at 12 h and 24 h, respectively) and significant proliferative activity at the non-toxic concentrations of 0.005 and 0.01 μg/mL in the HaCaT cell line. The gene expression study showed that this multi-layer-graphene is capable of up-regulating six of the thirteen genes of human keratinocytes (SOD1, CAT, TGFB1, FN1, CDH1, and FBN), two more genes than other CBNs in their oxidized form such as multi-layer graphene oxide. Therefore, all these results reinforce the promising use of these CBNs in biomedical fields such as wound healing and skin tissue engineering.
Collapse
|