1
|
Flores-López M, Herrera-Imbroda J, Requena-Ocaña N, García-Marchena N, Araos P, Verheul-Campos J, Ruiz JJ, Pastor A, de la Torre R, Bordallo A, Pavón-Morón FJ, Rodríguez de Fonseca F, Serrano A. Exploratory study on plasma Acylglycerol and Acylethanolamide dysregulation in substance use and attention-deficit/hyperactivity disorder: Implications for novel biomarkers in dual diagnosis. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111350. [PMID: 40188983 DOI: 10.1016/j.pnpbp.2025.111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/28/2025] [Accepted: 03/30/2025] [Indexed: 04/11/2025]
Abstract
Substance use disorder (SUD) is a major global public health challenge, frequently co-occurring with psychiatric conditions such as attention-deficit/hyperactivity disorder (ADHD). Endocannabinoid system (ECS) dysregulation has been implicated in both SUD and ADHD, but the interplay between these conditions remains poorly understood. This study investigates plasma concentrations of endocannabinoid-congeners in individuals with SUD, with and without comorbid ADHD, to identify potential biomarkers. This exploratory study included 469 participants divided into three groups: (1) healthy controls (n = 136), (2) patients with SUD without ADHD (n = 267), and (3) patients with SUD and comorbid ADHD (n = 66). Plasma concentrations of 12 endocannabinoid-related molecules, including acylglycerols (2-AG, 2-LG, 2-OG) and acylethanolamides (AEA, DEA, DHEA, DGLEA, LEA, OEA, PEA, POEA, and SEA), were quantified using high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS). A multinomial Elastic Net regression model was applied to assess their biomarker potential. Patients with SUD exhibited significantly lower plasma concentrations of 2-AG and 2-LG compared to controls, while most acylethanolamides were elevated, except for POEA and SEA. ADHD comorbidity was associated with lower concentrations of 2-AG, 2-LG, AEA, DGLEA, DHEA, and SEA, while PEA was elevated. Machine learning analysis identified AEA, OEA, PEA, and SEA as key biomarkers, achieving an accuracy of 72.1 % and an ROC-AUC of 0.77. This study suggests distinct ECS alterations in SUD and comorbid ADHD, highlighting endocannabinoid-congeners as potential biomarkers. Future research should validate these findings in larger cohorts and explore ECS-targeted therapeutic interventions for dual-diagnosis populations.
Collapse
Affiliation(s)
- María Flores-López
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina - IBIMA Plataforma BIONAND, 29590 Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Jesús Herrera-Imbroda
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina - IBIMA Plataforma BIONAND, 29590 Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Nerea Requena-Ocaña
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina - IBIMA Plataforma BIONAND, 29590 Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Nuria García-Marchena
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Pozuelo de Alarcón, Spain
| | - Pedro Araos
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain
| | - Julia Verheul-Campos
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina - IBIMA Plataforma BIONAND, 29590 Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Juan Jesús Ruiz
- Centro Provincial de Drogodependencias de Málaga, Diputación Provincial de Málaga, 29010 Málaga, Spain
| | - Antoni Pastor
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rafael de la Torre
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Antonio Bordallo
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Francisco Javier Pavón-Morón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina - IBIMA Plataforma BIONAND, 29590 Málaga, Spain; Unidad Clínica Área del Corazón, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina - IBIMA Plataforma BIONAND, 29590 Málaga, Spain; Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain; Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), 29010 Malaga, Spain.
| | - Antonia Serrano
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina - IBIMA Plataforma BIONAND, 29590 Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| |
Collapse
|
2
|
Bie X, Zhang M, Wang Q, Wang Y. An unraveled mystery: What's the role of brain sphingolipids in neurodegenerative and psychiatric disorders. Neurobiol Dis 2025; 207:106852. [PMID: 39986545 DOI: 10.1016/j.nbd.2025.106852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025] Open
Abstract
Sphingolipids are a class of lipids highly expressed in brain, especially in the myelin sheath of white matter. In recent years, with the development of lipidomics, the role of brain sphingolipids in neurological disorders have raised lots of interests due to their function in neuronal signal transduction and survival. Although not thoroughly investigated, some previous studies have indicated that sphingolipids homeostasis are closely linked to the etiology and development of some neurological disorders. For example, disrupted sphingolipids level have been found in clinic patients with neurological disorders, such as neurodegeneration and psychiatric disorders. Conversely, intervention of sphingolipids metabolism by modulating activity of related enzymes also could result in pathological deficits identified in neurological disorders. Moreover, the alteration of sphingolipids catabolic pathway in the brain could be partly represented in cerebrospinal fluid and blood tissues, which show diagnostic potential for neurological disorders. Therefore, our review aims to summarize and discuss the known contents of bioactive sphingolipid metabolism with their related studies in neurodegenerative and psychiatric disorders, to help understand the potential mechanism underlying sphingolipid regulation of neural function and provide possible directions for further study. The new perspectives in this promising field will open up new therapeutic options for neurological disorders.
Collapse
Affiliation(s)
- Xintian Bie
- Basic School of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 260071, China
| | - Maoxing Zhang
- Basic School of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 260071, China
| | - Qingyu Wang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Ying Wang
- Basic School of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 260071, China.
| |
Collapse
|
3
|
Güleç A, Türkoğlu S, Kocabaş R. The relationship between sphingomyelin and ceramide levels and soft neurological signs in ADHD. J Neural Transm (Vienna) 2025; 132:157-168. [PMID: 39249516 DOI: 10.1007/s00702-024-02831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
Attention deficit hyperactivity disorder (ADHD), characterized by attention deficit, hyperactivity, and impulsivity, has recently been associated with lipid metabolism. In particular, the roles of sphingomyelin, ceramide, andgalactosylceramidase in the pathophysiology of ADHD are being investigated. This study aims to explore the relationship between sphingolipid metabolism markers and soft neurological signs (SNS) in children diagnosed with ADHD who are not undergoing medication treatment. A cross-sectional analysis was conducted on 41 children and adolescents aged 7-12 years diagnosed with ADHD and 39 neurotypically developing controls. Plasma levels of ceramide, sphingomyelin, and galactosylceramidase were measuredusing Enzyme-Linked Immunosorbent Assay (ELISA). SNS were assessed using the Physical and Neurological Examination for Soft Signs (PANESS). Statistical analyses included Student's t-tests, Mann-Whitney U tests, and Multivariate Analysis ofCovariance (MANCOVA), along with logistic regression analysis. Plasma levels of ceramide and sphingomyelin in children with ADHD showed significant differences compared to the neurotypically developing control group; however, there were no significant differences in galactosylceramidase levels between the two groups. Positive correlations were found between plasma levels of ceramide and sphingomyelin and the PANESS subscales F1 (Total Gait and Station) and F3 (Total Dysrhythmia). Additionally, logistic regression analysis indicated that high ceramide levels were positively associated with ADHD. This study underscores a significant association between alterations in sphingolipid metabolism (specifically increased levels of ceramide and sphingomyelin) and the presence of SNS in children with ADHD. These findings elucidate the potential role of sphingolipid metabolism in the pathophysiology of ADHD and provide suggestions for future therapeutic research targeting sphingolipid metabolism in the treatment of ADHD.
Collapse
Affiliation(s)
- Ahmet Güleç
- Department of Child and Adolescent Psychiatry, 209th Sk. No:26, 10100 Altıeylül/Balıkesir -Balıkesir Ataturk City Hospital, Gaziosmanpasa, Turkey.
| | - Serhat Türkoğlu
- Department of Child and Adolescent Psychiatry, Selcuk University Faculty of Medicine, Selçuk University Rectorate, Alaeddin Keykubat Campus, Academia District, New Istanbul Street No: 369, Selçuklu-Konya, Postal Code: 42130, Turkey
| | - Ramazan Kocabaş
- Department of Biochemistry, Selcuk University Faculty of Medicine, Selcuk University, Selçuk University Rectorate, Alaeddin Keykubat Campus, Academia District, New Istanbul Street No: 369, Selçuklu-Konya, Postal Code: 42130, Turkey
| |
Collapse
|
4
|
Fischer C, Thomas D, Gurke R, Tegeder I. Brain region specific regulation of anandamide (down) and sphingosine-1-phosphate (up) in association with anxiety (AEA) and resilience (S1P) in a mouse model of chronic unpredictable mild stress. Pflugers Arch 2024; 476:1863-1880. [PMID: 39177699 PMCID: PMC11582197 DOI: 10.1007/s00424-024-03012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Chronic unpredictable and unavoidable stress is associated with mental health problems such as depression and anxiety, whereas cycles of stress and stress relief strengthen resilience. It has been suggested that increased breakdown of brain endocannabinoids (eCB) promotes a feeling of adversity. To assess the impact of stress on bioactive lipid homeostasis, we analyzed eCB, sphingolipids, and ceramides in seven brain regions and plasma in a mouse model of chronic unpredictable mild stress. Chronic unpredictable mild stress (CUMS) was associated with low levels of anandamide in hippocampus and prefrontal cortex in association with indicators of anxiety (elevated plus maze). Oppositely, CUMS caused elevated levels of sphingosine-1-phosphate (S1P d18:1) and sphinganine-1-phosphate (S1P d18:0) in the midbrain and thalamus, which was associated with readouts of increased stress resilience, i.e., marble burying and struggling in the tail suspension tests. In the periphery, elevated plasma levels of ceramides revealed similarities with human major depression and suggested unfavorable effects of stress on metabolism, but plasma lipids were not associated with body weight, sucrose consumption, or behavioral features of depression or anxiety. The observed brain site-specific lipid changes suggest that the forebrain succumbs to adverse stress effects while the midbrain takes up defensive adjustments.
Collapse
Affiliation(s)
- Caroline Fischer
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Dominique Thomas
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Robert Gurke
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Irmgard Tegeder
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| |
Collapse
|
5
|
Hahnefeld L, Hackel J, Trautmann S, Angioni C, Schreiber Y, Gurke R, Thomas D, Wicker S, Geisslinger G, Tegeder I. Healthy plasma lipidomic signatures depend on sex, age, body mass index, and contraceptives but not perceived stress. Am J Physiol Cell Physiol 2024; 327:C1462-C1480. [PMID: 39437447 DOI: 10.1152/ajpcell.00630.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Perceived stress is thought to contribute to the pathogenesis of metabolic, vascular, mental, and immune diseases, with different susceptibilities in women and men. The present study investigated if and how perceived stress and/or demographic variables, including sex, age, body mass index, regular prescription drugs, occasional analgesics, or dietary supplements, manifested in plasma lipidomic profiles obtained by targeted and untargeted mass spectrometry analyses. The study included 217 healthy women and 108 healthy men, aged 18-68 yr, who were recruited in a 2:1 female:male ratio to account for women with/without contraceptives. As expected, dehydroepiandrosterone sulfate (DHEAS) and ceramides were higher in men than women, and DHEAS decreased with age, whereas ceramides increased. Contrary to expectations, neither DHEAS nor ceramides were associated with perceived stress [Perceived Stress Questionnaire with 30 questions (PSQ30 questionnaire)], which was, however, associated with BMI in men but not in women. None of the lipid species or classes showed a similar "age × sex × BMI" interaction, but the endocannabinoid palmitoylethanolamide (PEA) correlated with body mass index (BMI) and hypertension. Independent of perceived stress, lysophosphatidylcholines (LPCs) were lower in women than men, whereas LPC metabolites, lysophosphatidic acids (LPAs), were higher in women. The LPA:LPC ratio was particularly high in women using oral contraceptives, suggesting a strong hormone-induced extracellular conversion of LPCs to LPAs, which is catalyzed by the phospholipase D, autotaxin. The results reveal complex sex differences in perceived stress and lipidomic profiles, the latter being exacerbated by contraceptive use, but perceived stress and lipids were not directly correlated.NEW & NOTEWORTHY Perceived stress (PSQ questionnaire) depends on the interaction of "sex × age × BMI." Plasma lipid profiles depend on sex and age. Natural sex differences are exacerbated by the use of contraceptives. Perceived stress is not correlated with specific plasma lipids or lipidomic profiles. Women have high LPA:LPC ratios in association with high levels of autotaxin.
Collapse
Affiliation(s)
- Lisa Hahnefeld
- Faculty of Medicine, Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Juliane Hackel
- Faculty of Medicine, Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sandra Trautmann
- Faculty of Medicine, Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Carlo Angioni
- Faculty of Medicine, Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Robert Gurke
- Faculty of Medicine, Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Dominique Thomas
- Faculty of Medicine, Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Sabine Wicker
- Goethe-University Frankfurt, University Hospital, Occupational Health Service, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Faculty of Medicine, Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Irmgard Tegeder
- Faculty of Medicine, Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Zorkina Y, Ushakova V, Ochneva A, Tsurina A, Abramova O, Savenkova V, Goncharova A, Alekseenko I, Morozova I, Riabinina D, Kostyuk G, Morozova A. Lipids in Psychiatric Disorders: Functional and Potential Diagnostic Role as Blood Biomarkers. Metabolites 2024; 14:80. [PMID: 38392971 PMCID: PMC10890164 DOI: 10.3390/metabo14020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 02/25/2024] Open
Abstract
Lipids are a crucial component of the human brain, serving important structural and functional roles. They are involved in cell function, myelination of neuronal projections, neurotransmission, neural plasticity, energy metabolism, and neuroinflammation. Despite their significance, the role of lipids in the development of mental disorders has not been well understood. This review focused on the potential use of lipids as blood biomarkers for common mental illnesses, such as major depressive disorder, anxiety disorders, bipolar disorder, and schizophrenia. This review also discussed the impact of commonly used psychiatric medications, such as neuroleptics and antidepressants, on lipid metabolism. The obtained data suggested that lipid biomarkers could be useful for diagnosing psychiatric diseases, but further research is needed to better understand the associations between blood lipids and mental disorders and to identify specific biomarker combinations for each disease.
Collapse
Affiliation(s)
- Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Valeria Ushakova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Aleksandra Ochneva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Anna Tsurina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Valeria Savenkova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Anna Goncharova
- Moscow Center for Healthcare Innovations, 123473 Moscow, Russia;
| | - Irina Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academi of Science, 142290 Moscow, Russia
- Russia Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 2, Kurchatov Square, 123182 Moscow, Russia
| | - Irina Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Daria Riabinina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| |
Collapse
|
7
|
Jadranin M, Avramović N, Miladinović Z, Gavrilović A, Tasic L, Tešević V, Mandić B. Untargeted Lipidomics Study of Bipolar Disorder Patients in Serbia. Int J Mol Sci 2023; 24:16025. [PMID: 38003221 PMCID: PMC10671390 DOI: 10.3390/ijms242216025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
The Lipidomic profiles of serum samples from patients with bipolar disorder (BD) and healthy controls (C) were explored and compared. The sample cohort included 31 BD patients and 31 control individuals. An untargeted lipidomics study applying liquid chromatography (LC) coupled with high-resolution mass spectrometry (HRMS) was conducted to achieve the lipid profiles. Multivariate statistical analyses (principal component analysis and partial least squares discriminant analysis) were performed, and fifty-six differential lipids were confirmed in BD and controls. Our results pointed to alterations in lipid metabolism, including pathways of glycerophospholipids, sphingolipids, glycerolipids, and sterol lipids, in BD patient sera. This study emphasized the role of lipid pathways in BD, and comprehensive research using the LC-HRMS platform is necessary for future application in the diagnosis and improvement of BD treatments.
Collapse
Affiliation(s)
- Milka Jadranin
- University of Belgrade—Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Nataša Avramović
- University of Belgrade—Faculty of Medicine, Institute of Medical Chemistry, Višegradska 26, 11000 Belgrade, Serbia
| | - Zoran Miladinović
- Institute of General and Physical Chemistry, Studentski trg 12–16, 11158 Belgrade, Serbia;
| | - Aleksandra Gavrilović
- Special Hospital for Psychiatric Diseases “Kovin”, Cara Lazara 253, 26220 Kovin, Serbia;
| | - Ljubica Tasic
- Institute of Chemistry, Organic Chemistry Department, State University of Campinas, Campinas 13083-970, Sao Paulo, Brazil;
| | - Vele Tešević
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia;
| | - Boris Mandić
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia;
| |
Collapse
|
8
|
Vogel A, Ueberbach T, Wilken-Schmitz A, Hahnefeld L, Franck L, Weyer MP, Jungenitz T, Schmid T, Buchmann G, Freudenberg F, Brandes RP, Gurke R, Schwarzacher SW, Geisslinger G, Mittmann T, Tegeder I. Repetitive and compulsive behavior after Early-Life-Pain associated with reduced long-chain sphingolipid species. Cell Biosci 2023; 13:155. [PMID: 37635256 PMCID: PMC10463951 DOI: 10.1186/s13578-023-01106-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/13/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Pain in early life may impact on development and risk of chronic pain. We developed an optogenetic Cre/loxP mouse model of "early-life-pain" (ELP) using mice with transgenic expression of channelrhodopsin-2 (ChR2) under control of the Advillin (Avil) promoter, which drives expression of transgenes predominantly in isolectin B4 positive non-peptidergic nociceptors in postnatal mice. Avil-ChR2 (Cre +) and ChR2-flfl control mice were exposed to blue light in a chamber once daily from P1-P5 together with their Cre-negative mother. RESULTS ELP caused cortical hyperexcitability at P8-9 as assessed via multi-electrode array recordings that coincided with reduced expression of synaptic genes (RNAseq) including Grin2b, neurexins, piccolo and voltage gated calcium and sodium channels. Young adult (8-16 wks) Avil-ChR2 mice presented with nociceptive hypersensitivity upon heat or mechanical stimulation, which did not resolve up until one year of age. The persistent hypersensitivy to nociceptive stimuli was reflected by increased calcium fluxes in primary sensory neurons of aged mice (1 year) upon capsaicin stimulation. Avil-ChR2 mice behaved like controls in maze tests of anxiety, social interaction, and spatial memory but IntelliCage behavioral studies revealed repetitive nosepokes and corner visits and compulsive lickings. Compulsiveness at the behavioral level was associated with a reduction of sphingomyelin species in brain and plasma lipidomic studies. Behavioral studies were done with female mice. CONCLUSION The results suggest that ELP may predispose to chronic "pain" and compulsive psychopathology in part mediated by alterations of sphingolipid metabolism, which have been previously described in the context of addiction and psychiatric diseases.
Collapse
Affiliation(s)
- Alexandra Vogel
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Timo Ueberbach
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Annett Wilken-Schmitz
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596, Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596, Frankfurt, Germany
| | - Luisa Franck
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Marc-Philipp Weyer
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Tassilo Jungenitz
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University, Frankfurt, Germany
- Partner Site Frankfurt, German Cancer Consortium (DKTK), Frankfurt, Germany
| | - Giulia Buchmann
- Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Florian Freudenberg
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University Hospital, Frankfurt, Germany
| | - Ralf P Brandes
- Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596, Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596, Frankfurt, Germany
| | - Stephan W Schwarzacher
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596, Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596, Frankfurt, Germany
| | - Thomas Mittmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany.
| |
Collapse
|
9
|
Martín-Hernández D, Muñoz-López M, Tendilla-Beltrán H, Caso JR, García-Bueno B, Menchén L, Leza JC. Immune System and Brain/Intestinal Barrier Functions in Psychiatric Diseases: Is Sphingosine-1-Phosphate at the Helm? Int J Mol Sci 2023; 24:12634. [PMID: 37628815 PMCID: PMC10454107 DOI: 10.3390/ijms241612634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Over the past few decades, extensive research has shed light on immune alterations and the significance of dysfunctional biological barriers in psychiatric disorders. The leaky gut phenomenon, intimately linked to the integrity of both brain and intestinal barriers, may play a crucial role in the origin of peripheral and central inflammation in these pathologies. Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates both the immune response and the permeability of biological barriers. Notably, S1P-based drugs, such as fingolimod and ozanimod, have received approval for treating multiple sclerosis, an autoimmune disease of the central nervous system (CNS), and ulcerative colitis, an inflammatory condition of the colon, respectively. Although the precise mechanisms of action are still under investigation, the effectiveness of S1P-based drugs in treating these pathologies sparks a debate on extending their use in psychiatry. This comprehensive review aims to delve into the molecular mechanisms through which S1P modulates the immune system and brain/intestinal barrier functions. Furthermore, it will specifically focus on psychiatric diseases, with the primary objective of uncovering the potential of innovative therapies based on S1P signaling.
Collapse
Affiliation(s)
- David Martín-Hernández
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Marina Muñoz-López
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Hiram Tendilla-Beltrán
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), 72570 Puebla, Mexico;
| | - Javier R. Caso
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Borja García-Bueno
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Luis Menchén
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Departamento de Medicina, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III (CIBEREHD, ISCIII), 28029 Madrid, Spain
| | - Juan C. Leza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| |
Collapse
|
10
|
Bradshaw HB, Johnson CT. Measuring the Content of Endocannabinoid-Like Compounds in Biological Fluids: A Critical Overview of Sample Preparation Methodologies. Methods Mol Biol 2023; 2576:21-40. [PMID: 36152175 PMCID: PMC10845095 DOI: 10.1007/978-1-0716-2728-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Different mass spectrometric techniques have been used over the past decade to quantify endocannabinoids (eCBs) and related lipids. Even with the level of molecular fingerprinting accuracy of an instrument like the most advanced triple quadrupole mass spectrometer, if one is not getting the most optimized sample to the detector in a way that this improved technology can be of use, then advancements can be stymied. Here, our focus is on review and discussion of sample preparation methodologies used to isolate the eCB anandamide and its close congeners N-acyl ethanolamines and structural congeners (i.e., lipo amino acids, lipoamines, N-acyl amides) in biological fluids. Most of our focus will be on the analysis of these lipids in plasma/serum, but we will also discuss how the same techniques can be used for the analysis of saliva and breast milk.
Collapse
Affiliation(s)
- Heather B Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
| | - Clare T Johnson
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| |
Collapse
|
11
|
Molecular Alterations of the Endocannabinoid System in Psychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094764. [PMID: 35563156 PMCID: PMC9104141 DOI: 10.3390/ijms23094764] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023] Open
Abstract
The therapeutic benefits of the current medications for patients with psychiatric disorders contrast with a great variety of adverse effects. The endocannabinoid system (ECS) components have gained high interest as potential new targets for treating psychiatry diseases because of their neuromodulator role, which is essential to understanding the regulation of many brain functions. This article reviewed the molecular alterations in ECS occurring in different psychiatric conditions. The methods used to identify alterations in the ECS were also described. We used a translational approach. The animal models reproducing some behavioral and/or neurochemical aspects of psychiatric disorders and the molecular alterations in clinical studies in post-mortem brain tissue or peripheral tissues were analyzed. This article reviewed the most relevant ECS changes in prevalent psychiatric diseases such as mood disorders, schizophrenia, autism, attentional deficit, eating disorders (ED), and addiction. The review concludes that clinical research studies are urgently needed for two different purposes: (1) To identify alterations of the ECS components potentially useful as new biomarkers relating to a specific disease or condition, and (2) to design new therapeutic targets based on the specific alterations found to improve the pharmacological treatment in psychiatry.
Collapse
|
12
|
Hahnefeld L, Vogel A, Gurke R, Geisslinger G, Schäfer MKE, Tegeder I. Phosphatidylethanolamine Deficiency and Triglyceride Overload in Perilesional Cortex Contribute to Non-Goal-Directed Hyperactivity after Traumatic Brain Injury in Mice. Biomedicines 2022; 10:biomedicines10040914. [PMID: 35453664 PMCID: PMC9033131 DOI: 10.3390/biomedicines10040914] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 12/10/2022] Open
Abstract
Traumatic brain injury (TBI) is often complicated by long-lasting disabilities, including headache, fatigue, insomnia, hyperactivity, and cognitive deficits. In a previous study in mice, we showed that persistent non-goal-directed hyperactivity is a characteristic post-TBI behavior that was associated with low levels of endocannabinoids in the perilesional cortex. We now analyzed lipidome patterns in the brain and plasma in TBI versus sham mice in association with key behavioral parameters and endocannabinoids. Lipidome profiles in the plasma and subcortical ipsilateral and contralateral brain were astonishingly equal in sham and TBI mice, but the ipsilateral perilesional cortex revealed a strong increase in neutral lipids represented by 30 species of triacylglycerols (TGs) of different chain lengths and saturation. The accumulation of TG was localized predominantly to perilesional border cells as revealed by Oil Red O staining. In addition, hexosylceramides (HexCer) and phosphatidylethanolamines (PE and ether-linked PE-O) were reduced. They are precursors of gangliosides and endocannabinoids, respectively. High TG, low HexCer, and low PE/PE-O showed a linear association with non-goal-directed nighttime hyperactivity but not with the loss of avoidance memory. The analyses suggest that TG overload and HexCer and PE deficiencies contributed to behavioral dimensions of post-TBI psychopathology.
Collapse
Affiliation(s)
- Lisa Hahnefeld
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, 60590 Frankfurt, Germany; (L.H.); (A.V.); (R.G.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596 Frankfurt, Germany
| | - Alexandra Vogel
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, 60590 Frankfurt, Germany; (L.H.); (A.V.); (R.G.); (G.G.)
| | - Robert Gurke
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, 60590 Frankfurt, Germany; (L.H.); (A.V.); (R.G.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596 Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, 60590 Frankfurt, Germany; (L.H.); (A.V.); (R.G.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596 Frankfurt, Germany
| | - Michael K. E. Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, 60590 Frankfurt, Germany; (L.H.); (A.V.); (R.G.); (G.G.)
- Correspondence:
| |
Collapse
|
13
|
Kosel M, Perroud N. Neurodevelopmental Disorders: From Pathophysiology to Novel Therapeutic Approaches. Biomedicines 2022; 10:biomedicines10030623. [PMID: 35327425 PMCID: PMC8945040 DOI: 10.3390/biomedicines10030623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/18/2022] [Indexed: 12/10/2022] Open
|
14
|
Sphingolipid control of cognitive functions in health and disease. Prog Lipid Res 2022; 86:101162. [DOI: 10.1016/j.plipres.2022.101162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 12/14/2022]
|