1
|
Patil SM, Daram A, Kunda NK. 3D spheroid model reveals enhanced efficacy of mannose-decorated nanoparticles for TB treatment. Nanomedicine (Lond) 2025; 20:777-789. [PMID: 40099656 PMCID: PMC11988228 DOI: 10.1080/17435889.2025.2478806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/10/2025] [Indexed: 03/20/2025] Open
Abstract
AIMS Tuberculosis (TB), caused by Mycobacterium tuberculosis remains a significant global health challenge aggravated by drug-resistant strains and prolonged treatment regimens. Innovative strategies to enhance treatment efficacy, improve patient adherence, and reduce adverse effects are urgently required. METHODS We explored a combination therapy using bedaquiline and pretomanid encapsulated in polymeric nanoparticles (pNPs). Further, active targeting was achieved through mannose-decorated nanoparticles (Man-pNPs) for macrophage-specific delivery. The drug-loaded pNPs and Man-pNPs were spray-dried into dry powder particles to improve drug solubility and enable local lung delivery via inhalation. Man-pNPs were prepared to target macrophages, wherein TB bacteria reside. RESULTS Formulations exhibited high drug loading and excellent aerosolization performance (MMAD 1-5 µm, FPF > 75%) for pNPs and Man-pNPs. Man-pNPs formulation enhanced macrophage targeting via receptor-mediated endocytosis and phagocytosis, improving bacterial inhibition. Man-pNPs demonstrated similar MIC in vitro and enhanced intracellular M.tb inhibition compared to free drug combination and pNPs. In addition, a TB spheroid model was developed for formulation screening, mimicking granulomas' physiological conditions. Man-pNPs formulation showed superior intracellular bacterial inhibition in TB spheroid model compared to free drug combination and pNPs. CONCLUSION This research underscores the potential of combination therapy, particulate-based inhaled drug delivery, and active targeting to advance efficient and patient-friendly TB treatments.
Collapse
Affiliation(s)
- Suyash M. Patil
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Apoorva Daram
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Nitesh K. Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| |
Collapse
|
2
|
De Martinis ECP, Alves VF, Pereira MG, Andrade LN, Abichabki N, Abramova A, Dannborg M, Bengtsson-Palme J. Applying 3D cultures and high-throughput technologies to study host-pathogen interactions. Front Immunol 2025; 16:1488699. [PMID: 40051624 PMCID: PMC11882522 DOI: 10.3389/fimmu.2025.1488699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/04/2025] [Indexed: 03/09/2025] Open
Abstract
Recent advances in cell culturing and DNA sequencing have dramatically altered the field of human microbiome research. Three-dimensional (3D) cell culture is an important tool in cell biology, in cancer research, and for studying host-microbe interactions, as it mimics the in vivo characteristics of the host environment in an in vitro system, providing reliable and reproducible models. This work provides an overview of the main 3D culture techniques applied to study interactions between host cells and pathogenic microorganisms, how these systems can be integrated with high-throughput molecular methods, and how multi-species model systems may pave the way forward to pinpoint interactions among host, beneficial microbes and pathogens.
Collapse
Affiliation(s)
| | | | - Marita Gimenez Pereira
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leonardo Neves Andrade
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nathália Abichabki
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
| | - Anna Abramova
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
| | - Mirjam Dannborg
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Johan Bengtsson-Palme
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Chen B, Pathak R, Subekti A, Cheng X, Singh S, Ostermeyer-Fay AG, Hannun YA, Luberto C, Canals D. Critical Evaluation of Sphingolipids Detection by MALDI-MSI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.636486. [PMID: 39975012 PMCID: PMC11838543 DOI: 10.1101/2025.02.04.636486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The increasing interest in the role of sphingolipids in (patho)physiology has led to the demand for visualization of these lipids within tissue samples (both from animal models and patient specimens) using techniques such as matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). While increasingly adopted, detection of sphingolipids with MALDI-MSI is challenging due to: i) the significant structural variations of sphingolipid molecules, ii) the potential breakdown of the more complex molecules into structurally simpler species which may confound the analysis, and iii) the great difference in levels among sphingolipid classes and subspecies, with the low-abundant ones often being close to the detection limit. In this study, we adopted a multi-pronged approach to establish a robust pipeline for the detection of sphingolipids by MALDI-MSI and to establish best practices and limitations of this technology. First, we evaluated the more commonly adopted methods [2,5-Dihydroxyacetophenon (DHA) or 2,5-Dihydroxybenzoic acid (DHB) matrix in positive ion mode and 1,5-Diaminonaphthalene (DAN) matrix in negative ion mode] using MALDI-MS on reference standards. These standards were used at ratios similar to their relative levels in biological samples to evaluate signal artifacts originating from fragmentation of more complex sphingolipids and impacting low level species. Next, by applying the most appropriate protocol for each sphingolipid class, MALDI-MSI signals were validated in cell culture by modulating specific sphingolipid species using sphingolipid enzymes and inhibitors. Finally, the optimized parameters were utilized on breast cancer tissue from the PyMT mouse model. We report the optimal signal for sphingomyelin (SM) and, for the first time, Sph in DHB positive ion mode (in cells and PyMT tissue), and the validated detection of ceramides and glycosphingolipids in DAN negative ion mode. We document the extensive fragmentation of SM into sphingosine-1-phosphate (S1P) and even more so into ceramide-1-phosphate (C1P) using DAN in negative ion mode and its effect in generating an artifactual C1P tissue signal; we also report the lack of detectable signal for S1P and C1P in biological samples (cells and tissue) using the more suitable DHB positive ion mode protocol.
Collapse
|
4
|
Guo J, Qiu Y, Hu C, Cao Y, Li D, Du Y. Enhancing Antituberculosis Treatment Nanoparticles Encapsulated with Catalase and Levofloxacin Under Ultrasound Stimulation: A 3D Spheroid Study. Mol Pharm 2025; 22:747-759. [PMID: 39772621 DOI: 10.1021/acs.molpharmaceut.4c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (MTB). Tuberculous granuloma is the central and key pathological structure of tuberculosis and is characterized by tissue hypoxia and ineffective drug delivery. To address these issues, this study fabricated a composite nanoparticle loaded with catalase (CAT) and levofloxacin (LEV) (CAT@LEV-NPs) and then combined it with ultrasound (US) to investigate the bactericidal effect and underlying mechanisms using TB spheroids. The TB spheroids were constructed using attenuated Bacillus Calmette-Guérin (BCG) instead of MTB to facilitate operation under general experimental conditions. This study examined the physical properties and oxygen production efficiency of CAT@LEV-NPs. Subsequently, we treated TB spheroids with nanoparticles alone or in combination with US and found that ultrasound significantly increased drug permeability and activated CAT@LEV-NPs to produce a large number of reactive oxygen species (ROS). The combined treatment showed excellent antibacterial effects, resulting in more severe damage to the bacterial structure than other treatments. Additionally, the combined treatment induced a higher M1 polarization of macrophages, increased the apoptosis rate, and improved the anoxic microenvironment in TB spheroids. These factors may be closely related to the enhanced bactericidal effects of combined treatment. In conclusion, our study suggests that US combined with CAT@LEV-NPs could serve as a novel, noninvasive, safe, and effective treatment modality for intractable MTB infections.
Collapse
Affiliation(s)
- Jiajun Guo
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yan Qiu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Can Hu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yuchao Cao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Dairong Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yonghong Du
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
5
|
Gómez-Mercader A, Monzón-Atienza L, Montero D, Bravo J, Acosta F. Fish Cell Spheroids, a Promising In Vitro Model to Mimic In Vivo Research: A Review. Cells 2024; 13:1818. [PMID: 39513924 PMCID: PMC11544930 DOI: 10.3390/cells13211818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
In vitro cell culture systems serve as instrumental platforms for probing biological phenomena and elucidating intricate cellular mechanisms. These systems afford researchers the opportunity to scrutinize cellular responses within a regulated environment, thereby circumventing the ethical and logistical challenges associated with in vivo experimentation. Three-dimensional (3D) cell cultures have emerged as a viable alternative to mimic in vivo environments. Within this context, spheroids are recognized as one of the most straightforward and efficacious models, presenting a promising substitute for conventional monolayer cultures. The application of 3D cultures of fish cells remains limited, focusing mainly on physiological and morphological characterization studies. However, given the capacity of spheroids to emulate in vivo conditions, researchers are exploring diverse applications of these 3D cultures. These include eco-toxicology, immunology, drug screening, endocrinology, and metabolism studies, employing a variety of cell types such as fibroblasts, hepatocytes, embryonic cells, gonadal cells, gastrointestinal cells, and pituitary cells. This review provides a succinct overview, concentrating on the most frequently employed methods for generating fish cell spheroids and their applications to date. The aim is to compile and highlight the significant contributions of these methods to the field and their potential for future research.
Collapse
|
6
|
Kumar R, Kolloli A, Singh P, Shi L, Kupz A, Subbian S. The innate memory response of macrophages to Mycobacterium tuberculosis is shaped by the nature of the antigenic stimuli. Microbiol Spectr 2024; 12:e0047324. [PMID: 38980014 PMCID: PMC11302266 DOI: 10.1128/spectrum.00473-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Innate immune cells, such as macrophages, mount an immune response upon exposure to antigens and pathogens. Emerging evidence shows that macrophages exposed to an antigen can generate a "memory-like" response (a.k.a. trained immunity), which confers a non-specific and enhanced response upon subsequent stimulation with a second antigen/microbe. This trained immunity has been implicated in the enhanced response of macrophages against several invading pathogens. However, the association between the nature of the antigen and the corresponding immune correlate of elicited trained immunity is not fully understood. Similarly, the response of macrophages trained and restimulated with homologous stimulants to subsequent infection by pathogenic Mycobacterium tuberculosis (Mtb) remains unexplored. Here, we report the immune and metabolic profiles of trained immunity in human THP-1-derived macrophages after homologous training and restimulation with BCG, LPS, purified protein Derivative (PPD), heat-killed Mtb strains HN878 (hk-HN), and CDC1551 (hk-CDC). Furthermore, the impact of training on the autophagic and antimicrobial responses of macrophages with or without subsequent infection by clinical Mtb isolates HN878 and CDC1551 was evaluated. Results show that repeated stimulation of macrophages with different antigens displays distinct pro-inflammatory, metabolic, antimicrobial, and autophagy induction profiles. These macrophages also induce a differential antimicrobial response upon infection with clinical Mtb HN878 and CDC1551 isolates. A significantly reduced intracellular bacterial load was noted in the stimulated macrophages, which was augmented by the addition of rapamycin, an autophagy inducer. These observations suggest that the nature of the antigen and the mode of stimulation shape the magnitude and breadth of macrophage innate memory response, which impacts subsequent response to Mtb infection. IMPORTANCE Trained immunity (a.k.a. innate memory response) is a novel concept that has been rapidly emerging as a mechanism underpinning the non-specific immunity of innate immune cells, such as macrophages. However, the association between the nature of the stimuli and the corresponding immune correlate of trained immunity is not fully understood. Similarly, the kinetics of immunological and metabolic characteristics of macrophages upon "training" by the same antigen as primary and secondary stimuli (homologous stimulation) are not fully characterized. Furthermore, the ability of antigens such as purified protein derivative (PPD) and heat-killed-Mtb to induce trained immunity remains unknown. Similarly, the response of macrophages primed and trained by homologous stimulants to subsequent infection by pathogenic Mtb is yet to be reported. In this study, we evaluated the hypothesis that the nature of the stimuli impacts the depth and breadth of trained immunity in macrophages, which differentially affects their response to Mtb infection.
Collapse
Affiliation(s)
- Ranjeet Kumar
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Afsal Kolloli
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Pooja Singh
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Lanbo Shi
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns & Townsville, Queensland, Australia
| | - Selvakumar Subbian
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
7
|
Xue W, Wang J, Hou Y, Wu D, Wang H, Jia Q, Jiang Q, Wang Y, Song C, Wang Y, Zhu Z, Tian L. Lung decellularized matrix-derived 3D spheroids: Exploring silicosis through the impact of the Nrf2/Bax pathway on myofibroblast dynamics. Heliyon 2024; 10:e33585. [PMID: 39040273 PMCID: PMC11261893 DOI: 10.1016/j.heliyon.2024.e33585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Silicosis is an occupational respiratory disease caused by long-term inhalation of high concentrations of free silica particles. Studies suggest that oxidative stress is a crucial initiator of silicosis fibrosis, and previous studies have linked the antioxidative stress transcription factor known as Nrf2 to fibrosis antagonism. Myofibroblasts play a pivotal role in tissue damage repair due to oxidative stress. Unlike physiological repair, myofibroblasts in fibrosis exhibit an apoptosis-resistant phenotype, continuously synthesising and secreting significant amounts of collagen and other extracellular matrices, which could be a direct cause of silicosis fibrosis. However, the relationship and mechanism of action between oxidative stress and myofibroblast apoptosis resistance remain unclear. In this study, a new 3D cell culture model using mice lung decellularised matrix particles and fibroblasts was developed, simulating the changes in myofibroblasts during the development of silicotic nodules. Western Blot results indicate that silica stimulation leads to increased collagen deposition and decreased apoptosis-related protein Bax and oxidative stress-related protein Nrf2 in the 3D spheroid model. Immunofluorescence experiments reveal co-localisation in their expression. In Nrf2 overexpressing spheroids, Bax exhibits significant upregulation. In the Nrf2 knockout spheroids, Bax is also significantly downregulated; after intervention with Bax inhibitors, a significant downregulation of Bax-induced apoptosis was also detected in the Nrf2-overexpressed spheroids. In contrast, Bax-induced apoptosis showed a significant upregulation trend in Nrf2-overexpressed spheroids after intervention with Bax agonists. The results demonstrate that the spheroid model can mimic the development process of silicotic nodules, and silica stimulation leads to an apoptosis-resistant phenotype in myofibroblasts in the model, acting through the Nrf2/Bax pathway. This research establishes a new methodology for silicosis study, identifies therapeutic targets for silicosis, and opens new avenues for studying the mechanisms of silicosis fibrosis.
Collapse
Affiliation(s)
- Wenming Xue
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jiaxin Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yao Hou
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Di Wu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Hongwei Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Qiyue Jia
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Qiyue Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Chenzhao Song
- Department of Pathology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Yifei Wang
- Experimental Teaching Center of Public Heatlh and Preventive Medicine, School of Public Health, Capital Medical University, China
| | - Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
8
|
Mahieu L, Van Moll L, De Vooght L, Delputte P, Cos P. In vitro modelling of bacterial pneumonia: a comparative analysis of widely applied complex cell culture models. FEMS Microbiol Rev 2024; 48:fuae007. [PMID: 38409952 PMCID: PMC10913945 DOI: 10.1093/femsre/fuae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 02/28/2024] Open
Abstract
Bacterial pneumonia greatly contributes to the disease burden and mortality of lower respiratory tract infections among all age groups and risk profiles. Therefore, laboratory modelling of bacterial pneumonia remains important for elucidating the complex host-pathogen interactions and to determine drug efficacy and toxicity. In vitro cell culture enables for the creation of high-throughput, specific disease models in a tightly controlled environment. Advanced human cell culture models specifically, can bridge the research gap between the classical two-dimensional cell models and animal models. This review provides an overview of the current status of the development of complex cellular in vitro models to study bacterial pneumonia infections, with a focus on air-liquid interface models, spheroid, organoid, and lung-on-a-chip models. For the wide scale, comparative literature search, we selected six clinically highly relevant bacteria (Pseudomonas aeruginosa, Mycoplasma pneumoniae, Haemophilus influenzae, Mycobacterium tuberculosis, Streptococcus pneumoniae, and Staphylococcus aureus). We reviewed the cell lines that are commonly used, as well as trends and discrepancies in the methodology, ranging from cell infection parameters to assay read-outs. We also highlighted the importance of model validation and data transparency in guiding the research field towards more complex infection models.
Collapse
Affiliation(s)
- Laure Mahieu
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Laurence Van Moll
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Linda De Vooght
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
9
|
郭 佳, 邱 燕, 胡 璨, 李 岱, 杜 永. [Characterization of a 3-dimensional tuberculosis spheroid model constructed using human monocytic THP-1 cells and Bacillus Calmette-Guerin]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:2095-2102. [PMID: 38189396 PMCID: PMC10774115 DOI: 10.12122/j.issn.1673-4254.2023.12.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVE To establish a 3-dimensional tuberculosis spheroid model for studying the formation and characteristics of tuberculous granuloma in vivo. METHODS Human myeloid leukemia mononuclear THP-1 cells and Bacillus Calmette-Guerin (BCG) were mixed in a 3D cell culture plate and co-cultured in the presence of PMA for 3 days. The growth of the spheroid was examined every 24 h, and the distribution of bacteria, cell survival rate, transformation of the monocytes into macrophages, and penetration of fluorescently labeled nanoparticles into the cell spheroids and tuberculosis spheroids were observed using confocal laser scanning microscopy. The BCG and cell architecture within the 3D tuberculosis spheroid was observed using transmission electron microscopy. Image-iTTM red hypoxia probe, H2O2 test kit, and a waterproof pen PH meter were used to detect the differences in the microenvironment between BCG-infected and non-infected 3D tuberculous spheroids. The utility of this 3D tuberculous spheroids for assessing antibiotic effects of rifampicin and levofloxacin was evaluated by plate colony counting. RESULTS In the cell-bacterial suspensions, stable 3-D tuberculous spheroids (50-200 μm) occurred slowly, in which the cells adhered tightly with numerous bacteria in the center, and necrotic cells and monocytederived macrophages were seen within the spheroids. Drug penetration was difficult in the 3D tuberculous spheroids as compared with the non-infected cell spheroids. Transmission electron microscopy revealed the presence of cell necrosis and a large number of BCG in the macrophages in the tuberculous spheroids. The tuberculosis spheroid had a more hypoxic microenvironment than the non-infected cell spheroids with higher H2O2 content and nearly a neutral PH. The tuberculous spheroid model was capable of evaluating the efficacy of anti-tuberculosis drugs, and among them rifampicin showed a stronger antibacterial effect. CONCLUSION The 3-D tuberculous spheroid model established in this study provides a useful platform for studies of tuberculous granuloma.
Collapse
Affiliation(s)
- 佳俊 郭
- 重庆医科大学生物医学工程学院,重庆 400016School of Biomedical Engineering, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- 重庆医科大学超声医学工程国家重点实验室,重庆 400016State Key Laboratory of Ultrasound Medical Engineering, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - 燕 邱
- 重庆医科大学生物医学工程学院,重庆 400016School of Biomedical Engineering, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- 重庆医科大学超声医学工程国家重点实验室,重庆 400016State Key Laboratory of Ultrasound Medical Engineering, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - 璨 胡
- 重庆医科大学生物医学工程学院,重庆 400016School of Biomedical Engineering, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- 重庆医科大学超声医学工程国家重点实验室,重庆 400016State Key Laboratory of Ultrasound Medical Engineering, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - 岱容 李
- 重庆医科大学附属第一医院呼吸与危重症医学科,重庆 400016Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - 永洪 杜
- 重庆医科大学生物医学工程学院,重庆 400016School of Biomedical Engineering, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- 重庆医科大学超声医学工程国家重点实验室,重庆 400016State Key Laboratory of Ultrasound Medical Engineering, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
10
|
Grilli F, Hassan EM, Variola F, Zou S. Harnessing graphene oxide nanocarriers for siRNA delivery in a 3D spheroid model of lung cancer. Biomater Sci 2023; 11:6635-6649. [PMID: 37609774 DOI: 10.1039/d3bm00732d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Gene therapy has been recently proposed as an effective strategy for cancer treatment. A significant body of literature proved the effectiveness of nanocarriers to deliver therapeutic agents to 2D tumour models, which are simple but not always representative of the in vivo reality. In this study, we analyze the efficiency of 3D spheroids combined with a minimally modified graphene oxide (GO)-based nanocarrier for siRNA delivery as a new system for cell transfection. Small interfering RNA (siRNA) targeting cluster of differentiation 47 (CD47; CD47_siRNA) was used as an anti-tumour therapeutic agent to silence the genes expressing CD47. This is a surface marker able to send a "don't eat me" signal to macrophages to prevent their phagocytosis. Also, we report the analysis of different GO formulations, in terms of size (small: about 100 nm; large: >650 nm) and functionalization (unmodified or modified with polyethylene glycol (PEG) and the dendrimer PAMAM), aiming to establish the efficiency of unmodified GO as a nanocarrier for the transfection of A549 lung cancer spheroids. Small modified GO (smGO) showed the highest transfection efficiency values (>90%) in 3D models. Interestingly, small unmodified GO (sGO) was found to be promising for transfection, with efficiency values >80% using a higher siRNA ratio (i.e., 3 : 1). These results demonstrated the higher efficiency of spheroids compared to 2D models for transfection, and the high potential of unmodified GO to carry siRNA, providing a promising new in vitro model system for the analysis of anticancer gene therapies.
Collapse
Affiliation(s)
- Francesca Grilli
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada.
- Department of Mechanical Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, ON K1N 6N5, Canada
| | - Eman M Hassan
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada.
| | - Fabio Variola
- Department of Mechanical Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, ON K1N 6N5, Canada
| | - Shan Zou
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada.
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
11
|
Aiello A, Najafi-Fard S, Goletti D. Initial immune response after exposure to Mycobacterium tuberculosis or to SARS-COV-2: similarities and differences. Front Immunol 2023; 14:1244556. [PMID: 37662901 PMCID: PMC10470049 DOI: 10.3389/fimmu.2023.1244556] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) and Coronavirus disease-2019 (COVID-19), whose etiologic agent is severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), are currently the two deadliest infectious diseases in humans, which together have caused about more than 11 million deaths worldwide in the past 3 years. TB and COVID-19 share several aspects including the droplet- and aerosol-borne transmissibility, the lungs as primary target, some symptoms, and diagnostic tools. However, these two infectious diseases differ in other aspects as their incubation period, immune cells involved, persistence and the immunopathological response. In this review, we highlight the similarities and differences between TB and COVID-19 focusing on the innate and adaptive immune response induced after the exposure to Mtb and SARS-CoV-2 and the pathological pathways linking the two infections. Moreover, we provide a brief overview of the immune response in case of TB-COVID-19 co-infection highlighting the similarities and differences of each individual infection. A comprehensive understanding of the immune response involved in TB and COVID-19 is of utmost importance for the design of effective therapeutic strategies and vaccines for both diseases.
Collapse
Affiliation(s)
| | | | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
12
|
Griffin KH, Fok SW, Kent Leach J. Strategies to capitalize on cell spheroid therapeutic potential for tissue repair and disease modeling. NPJ Regen Med 2022; 7:70. [PMID: 36494368 PMCID: PMC9734656 DOI: 10.1038/s41536-022-00266-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Cell therapies offer a tailorable, personalized treatment for use in tissue engineering to address defects arising from trauma, inefficient wound repair, or congenital malformation. However, most cell therapies have achieved limited success to date. Typically injected in solution as monodispersed cells, transplanted cells exhibit rapid cell death or insufficient retention at the site, thereby limiting their intended effects to only a few days. Spheroids, which are dense, three-dimensional (3D) aggregates of cells, enhance the beneficial effects of cell therapies by increasing and prolonging cell-cell and cell-matrix signaling. The use of spheroids is currently under investigation for many cell types. Among cells under evaluation, spheroids formed of mesenchymal stromal cells (MSCs) are particularly promising. MSC spheroids not only exhibit increased cell survival and retained differentiation, but they also secrete a potent secretome that promotes angiogenesis, reduces inflammation, and attracts endogenous host cells to promote tissue regeneration and repair. However, the clinical translation of spheroids has lagged behind promising preclinical outcomes due to hurdles in their formation, instruction, and use that have yet to be overcome. This review will describe the current state of preclinical spheroid research and highlight two key examples of spheroid use in clinically relevant disease modeling. It will highlight techniques used to instruct the phenotype and function of spheroids, describe current limitations to their use, and offer suggestions for the effective translation of cell spheroids for therapeutic treatments.
Collapse
Affiliation(s)
- Katherine H Griffin
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, 95817, USA
- School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Shierly W Fok
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, 95817, USA
| | - J Kent Leach
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, 95817, USA.
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|