1
|
Diban F, Di Fermo P, Di Lodovico S, Petrini M, Pilato S, Fontana A, Pinti M, Di Giulio M, Lence E, González-Bello C, Cellini L, D'Ercole S. Methylglyoxal Alone or Combined with Light-Emitting Diodes/Complex Electromagnetic Fields Represent an Effective Response to Microbial Chronic Wound Infections. Antibiotics (Basel) 2025; 14:396. [PMID: 40298537 DOI: 10.3390/antibiotics14040396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Background: antimicrobial resistance represents a critical issue leading to delayed wound healing; hence, it is necessary to develop novel strategies to address this phenomenon. Objectives: this study aimed to explore the antimicrobial/anti-virulence action of Methylglyoxal-MGO alone or combined with novel technologies such as Light-Emitting Diodes-LED and Complex Magnetic Fields-CMFs against resistant clinical strains isolated from chronic wounds. Methods: characterized planktonic Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans isolates were used. Antimicrobial activity was evaluated by measuring optical density, Colony Forming Units-CFU, and synergy between MGO/LED or CMFs. Cellular membrane permeability by propidium iodide fluorescence and fluidity by Laurdan generalized polarization measurements were performed. P. aeruginosa motility was tested using the soft agar method. A docking study was performed to evaluate the possible interaction between MGO and urease in P. aeruginosa. Results: single/combined treatments showed significant antimicrobial activity. Major CFU reduction was detected after CMFs/MGO+CMFs application on C. albicans. Treatments exhibited significant changes in membrane permeability and fluidity. The treatments decreased P. aeruginosa motility with a major reduction after LED application. Docking analysis showed that MGO could bind with P. aeruginosa urease leading to defective folding and functional alterations. Conclusions: the results suggest that these treatments could represent promising and green therapeutic solutions against resistant isolates from chronic wounds.
Collapse
Affiliation(s)
- Firas Diban
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Paola Di Fermo
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Silvia Di Lodovico
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Serena Pilato
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Antonella Fontana
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Morena Pinti
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Mara Di Giulio
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Luigina Cellini
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Simonetta D'Ercole
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
2
|
Allkja J, Roudbary M, Alves AMV, Černáková L, Rodrigues CF. Biomaterials with antifungal strategies to fight oral infections. Crit Rev Biotechnol 2024; 44:1151-1163. [PMID: 37587010 DOI: 10.1080/07388551.2023.2236784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 08/18/2023]
Abstract
Oral fungal infections pose a threat to human health and increase the economic burden of oral diseases by prolonging and complicating treatment. A cost-effective strategy is to try to prevent these infections from happening in the first place. With this purpose, biomaterials with antifungal properties are a crucial element to overcome fungal infections in the oral cavity. In this review, we go through different kinds of biomaterials and coatings that can be used to functionalize them. We also review their potential as a therapeutic approach in addition to prophylaxis, by going through traditional and alternative antifungal compounds, e.g., essential oils, that could be incorporated in them, to enhance their efficacy against fungal pathogens. We aim to highlight the potential of these technologies and propose questions that need to be addressed in prospective research. Finally, we intend to concatenate the key aspects and technologies on the use of biomaterials in oral health, to create an easy to find summary of the current state-of-the-art for researchers in the field.
Collapse
Affiliation(s)
- Jontana Allkja
- Faculty of Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Porto, Portugal
- Faculty of Engineering, ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Porto, Portugal
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Oral Sciences Research Group, Glasgow Dental School, University of Glasgow, Glasgow, UK
| | - Maryam Roudbary
- Sydney Infectious Disease Institute, University of Sydney, Sydney, Australia
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Anelise Maria Vasconcelos Alves
- Faculty of Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Porto, Portugal
- Faculty of Engineering, ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Porto, Portugal
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Lusophony, Redenção, Brazil
| | - Lucia Černáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Célia Fortuna Rodrigues
- Faculty of Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Porto, Portugal
- Faculty of Engineering, ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Porto, Portugal
- 1H-TOXRUN - One Health Toxicology Research Unit, Cooperativa de Ensino Superior Politécnico e Universitário - CESPU, Gandra PRD, Portugal
| |
Collapse
|
3
|
Di Lodovico S, Petrini M, D'Amico E, Di Fermo P, Diban F, D'Arcangelo S, Piattelli A, Cellini L, Iezzi G, Di Giulio M, D'Ercole S. Complex magnetic fields represent an eco-sustainable technology to counteract the resistant Candida albicans growth without affecting the human gingival fibroblasts. Sci Rep 2023; 13:22067. [PMID: 38086849 PMCID: PMC10716184 DOI: 10.1038/s41598-023-49323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Novel technologies such as complex magnetic fields-CMFs represent an eco-sustainable proposal to counteract the infection associated to resistant microorganisms. The aim of this study was to evaluate the effect of two CMF programs (STRESS, ANTIBACTERIAL) against clinical antifungal resistant C. albicans also evaluating their uneffectiveness on gingival fibroblasts (hGFs). The STRESS program was more efficacious on C. albicans biofilm with up to 64.37% ± 10.80 of biomass and up to 99.19% ± 0.06 CFU/ml reductions in respect to the control also inducing an alteration of lipidic structure of the membrane. The MTT assay showed no CMFs negative effects on the viability of hGFs with a major ROS production with the ANTIBACTERIAL program at 3 and 24 h. For the wound healing assay, STRESS program showed the best effect in terms of the rate migration at 24 h, showing statistical significance of p < 0.0001. The toluidine-blue staining observations showed the typical morphology of cells and the presence of elongated and spindle-shaped with cytoplasmic extensions and lamellipodia was observed by SEM. The ANTIBACTERIAL program statistically increased the production of collagen with respect to control and STRESS program (p < 0.0001). CMFs showed a relevant anti-virulence action against C. albicans, no cytotoxicity effects and a high hGFs migration rate. The results of this study suggest that CMFs could represent a novel eco-sustainable strategy to counteract the resistant yeast biofilm infections.
Collapse
Affiliation(s)
- Silvia Di Lodovico
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Morena Petrini
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Emira D'Amico
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Paola Di Fermo
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Firas Diban
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Sara D'Arcangelo
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International, University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131, Rome, Italy
- Facultad de Medicina, UCAM Universidad Catolica San Antonio de Murcia, 30107, Murcia, Spain
| | - Luigina Cellini
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Giovanna Iezzi
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Mara Di Giulio
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Simonetta D'Ercole
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy.
| |
Collapse
|
4
|
Sztafrowski D, Muraszko J, Jasiura A, Bryk P, Urbanek AK, Krasowska A. The alternating 50 Hz magnetic field depending on the hydrophobicity of the strain affects the viability, filamentation and sensitivity to drugs of Candida albicans. PLoS One 2023; 18:e0291438. [PMID: 37796949 PMCID: PMC10553255 DOI: 10.1371/journal.pone.0291438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/26/2023] [Indexed: 10/07/2023] Open
Abstract
In recent decades, Candida albicans have been the main etiological agent of life-threatening invasive infections, characterized by various mechanisms of resistance to commonly used antifungals. One of the strategies to fight Candida infections may be the use of an electromagnetic field. In this study, we examined the influence of the alternating magnetic field of 50 Hz on the cells of C. albicans. We checked the impact of the alternating magnetic field of 50 Hz on the viability, filamentation and sensitivity to fluconazole and amphotericin B of two, differing in hydrophobicity, strains of C. albicans, CAF2-1 and CAF 4-2. Our results indicate that using the alternating magnetic field of 50 Hz reduces the growth of C. albicans. Interestingly, it presents a stronger effect on the hydrophobic strain CAF4-2 than on the hydrophilic CAF2-1. The applied electromagnetic field also affects the permeabilization of the cell membrane. However, it does not inhibit the transformation from yeast to hyphal forms. AMF is more effective in combination with fluconazole rather than amphotericin B. Our findings confirm the hypothesis that the application of the alternating magnetic field of 50 Hz in antifungal therapy may arise as a new option to support the treatment of Candida infections.
Collapse
Affiliation(s)
- Dariusz Sztafrowski
- Faculty of Electrical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Jakub Muraszko
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Adam Jasiura
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Patrycja Bryk
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Aneta K. Urbanek
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Anna Krasowska
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
5
|
Di Lodovico S, Dotta TC, Cellini L, Iezzi G, D’Ercole S, Petrini M. The Antibacterial and Antifungal Capacity of Eight Commercially Available Types of Mouthwash against Oral Microorganisms: An In Vitro Study. Antibiotics (Basel) 2023; 12:antibiotics12040675. [PMID: 37107037 PMCID: PMC10135288 DOI: 10.3390/antibiotics12040675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
This work aimed to evaluate and compare the antimicrobial actions and effects over time of eight types of mouthwash, based on the impact of chlorhexidine on the main microorganisms that are responsible for oral diseases: Enterococcus faecalis, Pseudomonas aeruginosa, and Candida albicans. The mouthwashes’ antimicrobial action was determined in terms of their minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration (MBC/MFC), and time-kill curves at different contact times (10 s, 30 s, 60 s, 5 min, 15 min, 30 min, and 60 min), against selected oral microorganisms. All the mouthwashes showed a notable effect against C. albicans (MICs ranging from 0.02% to 0.09%), and higher MIC values were recorded with P. aeruginosa (1.56% to >50%). In general, the mouthwashes showed similar antimicrobial effects at reduced contact times (10, 30, and 60 s) against all the tested microorganisms, except with P. aeruginosa, for which the most significant effect was observed with a long time (15, 30, and 60 min). The results demonstrate significant differences in the antimicrobial actions of the tested mouthwashes, although all contained chlorhexidine and most of them also contained cetylpyridinium chloride. The relevant antimicrobial effects of all the tested mouthwashes, and those with the best higher antimicrobial action, were recorded by A—GUM® PAROEX®A and B—GUM® PAROEX®, considering their effects against the resistant microorganisms and their MIC values.
Collapse
|
6
|
Playing with Biophysics: How a Symphony of Different Electromagnetic Fields Acts to Reduce the Inflammation in Diabetic Derived Cells. Int J Mol Sci 2023; 24:ijms24021754. [PMID: 36675268 PMCID: PMC9861282 DOI: 10.3390/ijms24021754] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/02/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Several factors, such as ischemia, infection and skin injury impair the wound healing process. One common pathway in all these processes is related to the reactive oxygen species (ROS), whose production plays a vital role in wound healing. In this view, several strategies have been developed to stimulate the activation of the antioxidative system, thereby reducing the damage related to oxidative stress and improving wound healing. For this purpose, complex magnetic fields (CMFs) are used in this work on fibroblast and monocyte cultures derived from diabetic patients in order to evaluate their influence on the ROS production and related wound healing properties. Biocompatibility, cytotoxicity, mitochondrial ROS production and gene expression have been evaluated. The results confirm the complete biocompatibility of the treatment and the lack of side effects on cell physiology following the ISO standard indication. Moreover, the results confirm that the CMF treatment induced a reduction in the ROS production, an increase in the macrophage M2 anti-inflammatory phenotype through the activation of miRNA 5591, a reduction in inflammatory cytokines, such as interleukin-1 (IL-1) and IL-6, an increase in anti-inflammatory ones, such as IL-10 and IL-12 and an increase in the markers related to improved wound healing such as collagen type I and integrins. In conclusion, our findings encourage the use of CMFs for the treatment of diabetic foot.
Collapse
|
7
|
Pierfelice TV, D’Amico E, Petrini M, Pandolfi A, D’Arcangelo C, Di Pietro N, Piattelli A, Iezzi G. The Effects of 5% 5-Aminolevulinic Acid Gel and Red Light (ALAD-PDT) on Human Fibroblasts and Osteoblasts. Gels 2022; 8:gels8080491. [PMID: 36005091 PMCID: PMC9407194 DOI: 10.3390/gels8080491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/23/2022] Open
Abstract
This study aimed to evaluate the effects of a new photodynamic protocol (ALAD-PDT), consisting of 5% 5-aminolevulinic acid-gel and 630 nm-LED, already used for antibacterial effects in the treatment of periodontitis, on human gingival fibroblasts (HGF) and primary human osteoblasts (HOB). HGF and HOB were incubated with different ALAD concentrations for 45 min, and subsequently irradiated with 630 nm-LED for 7 min. Firstly, the cytotoxicity at 24 h and proliferation at 48 and 72 h were assessed. Then the intracellular content of the protoporphyrin IX (PpIX) of the ROS and the superoxide dismutase (SOD) activity were investigated at different times. Each result was compared with untreated and unirradiated cells as the control. Viable and metabolic active cells were revealed at any concentrations of ALAD-PDT, but only 100-ALAD-PDT significantly enhanced the proliferation rate. The PpIX fluorescence significantly increased after the addition of 100-ALAD, and decreased after the irradiation. Higher ROS generation was detected at 10 min in HGF, and at 30 min in HOB. The activity of the SOD enzyme augmented at 30 min in both cell types. In conclusion, ALAD-PDT not only showed no cytotoxic effects, but had pro-proliferative effects on HGF and HOB, probably via ROS generation.
Collapse
Affiliation(s)
- Tania Vanessa Pierfelice
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Emira D’Amico
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: ; Tel.: +39-0871-355-4083
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Camillo D’Arcangelo
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
- Dental School, University of Belgrade, 11000 Belgrade, Serbia
- Fondazione Villa Serena per la Ricerca, 65013 Città Sant’Angelo, Italy
- Casa di Cura Villa Serena del Dott. L. Petruzzi, 65013 Città Sant’Angelo, Italy
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
8
|
A Novel 3D Titanium Surface Produced by Selective Laser Sintering to Counteract Streptococcus oralis Biofilm Formation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The topography of implant surfaces influences the interaction relationship between material and bacteria. The aim of this work was to characterize a novel 3D titanium surface, produced using Selective Laser Sintering (SLS), and to compare the bacterial interaction with machined and double acid etching (DAE) discs. The surface was characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), and Energy Dispersive X-ray Spectrometry (EDX). The wettability was measured using the sessile method. The microbiological investigation consisted in the cultivation of a bacterial pioneer, Streptococcus oralis, on titanium surfaces, previously covered by human saliva in order to form the acquired pellicle. Then, colony forming units (CFUs), biofilm biomass quantification, analyses of viable and dead cells, and SEM observation were determined after 24 h of S. oralis biofilm formation on the different discs. A significantly higher nano-roughness with respect to the other two groups characterized the novel 3D surface, but the wettability was similar to that of machined samples. The microbiological assays demonstrated that the 3D discs reported significantly lower values of CFUs and biofilm biomass with respect to machined surfaces; however, no significant differences were found with the DAE surfaces. The live/dead staining confirmed the lower percentage of living cells on DAE and 3D surfaces compared with the machined. This novel 3D surface produced by SLS presented a high antiadhesive and antibiofilm activity.
Collapse
|