1
|
Bredesen DE, Ross MK, Ross S. Sustained Cognitive Improvement in Alzheimer's Disease Patients Following a Precision Medicine Protocol: Case Series. Biomedicines 2024; 12:1776. [PMID: 39200239 PMCID: PMC11351722 DOI: 10.3390/biomedicines12081776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Arguably, the most important parameter in treating cognitive decline associated with Alzheimer's disease is the length of time in which improvement, if achieved at all, is sustained. However, monotherapies such as donepezil and memantine are associated with a more rapid decline than no treatment in patients over multi-year follow-ups. Furthermore, anti-amyloid antibody treatment, which at best simply slows decline, is associated with accelerated cerebral atrophy, resulting in earlier dementia-associated brain volumes for those treated at the MCI stage than untreated patients. In contrast, a precision medicine approach, in which the multiple potential drivers of cognitive decline are identified for each patient and then targeted with a personalized protocol (such as ReCODE), has led to documented improvements in patients with cognitive decline, but long-term follow-up (>5 years) has not been reported previously. Therefore, here, we report sustained cognitive improvement, in some cases for over a decade, in patients treated with a precision medicine protocol-something that has not been reported in patients treated with anti-cholinesterase, glutamate receptor inhibitory, anti-amyloid, or other therapeutic methods. These case studies warrant long-term cohort studies to determine how frequently such sustained cognitive improvements occur in patients treated with precision medicine protocols.
Collapse
Affiliation(s)
- Dale E. Bredesen
- Precision Brain Health Program, Pacific Brain Health Center, Pacific Neuroscience Institute, Santa Monica, CA 90404, USA
| | - Mary Kay Ross
- Institute for Personalized Medicine, Savannah, GA 31406, USA; (M.K.R.); (S.R.)
| | - Stephen Ross
- Institute for Personalized Medicine, Savannah, GA 31406, USA; (M.K.R.); (S.R.)
| |
Collapse
|
2
|
Giorelli M, Accavone D, De Liso A. Is Alzheimer's disease an individual-centered disease? Hypotheses from the atomic levels up to mathematical models for biological systems. Front Neurol 2024; 15:1352261. [PMID: 38487323 PMCID: PMC10938591 DOI: 10.3389/fneur.2024.1352261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Affiliation(s)
- Maurizio Giorelli
- Operative Unit of Neurology, Azienda Sanitaria Locale Barletta-Andria-Trani (ASL BT), Barletta, Italy
| | | | | |
Collapse
|
3
|
Johnson RJ, Tolan DR, Bredesen D, Nagel M, Sánchez-Lozada LG, Fini M, Burtis S, Lanaspa MA, Perlmutter D. Could Alzheimer's disease be a maladaptation of an evolutionary survival pathway mediated by intracerebral fructose and uric acid metabolism? Am J Clin Nutr 2023; 117:455-466. [PMID: 36774227 PMCID: PMC10196606 DOI: 10.1016/j.ajcnut.2023.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
An important aspect of survival is to assure enough food, water, and oxygen. Here, we describe a recently discovered response that favors survival in times of scarcity, and it is initiated by either ingestion or production of fructose. Unlike glucose, which is a source for immediate energy needs, fructose metabolism results in an orchestrated response to encourage food and water intake, reduce resting metabolism, stimulate fat and glycogen accumulation, and induce insulin resistance as a means to reduce metabolism and preserve glucose supply for the brain. How this survival mechanism affects brain metabolism, which in a resting human amounts to 20% of the overall energy demand, is only beginning to be understood. Here, we review and extend a previous hypothesis that this survival mechanism has a major role in the development of Alzheimer's disease and may account for many of the early features, including cerebral glucose hypometabolism, mitochondrial dysfunction, and neuroinflammation. We propose that the pathway can be engaged in multiple ways, including diets high in sugar, high glycemic carbohydrates, and salt. In summary, we propose that Alzheimer's disease may be the consequence of a maladaptation to an evolutionary-based survival pathway and what had served to enhance survival acutely becomes injurious when engaged for extensive periods. Although more studies are needed on the role of fructose metabolism and its metabolite, uric acid, in Alzheimer's disease, we suggest that both dietary and pharmacologic trials to reduce fructose exposure or block fructose metabolism should be performed to determine whether there is potential benefit in the prevention, management, or treatment of this disease.
Collapse
Affiliation(s)
- Richard J Johnson
- Department of Medicine, Rocky Mountain VA Medical Center, Aurora, CO, USA; Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| | - Dean R Tolan
- Biology Department, Boston University, Boston, MA, USA
| | - Dale Bredesen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Maria Nagel
- Department of Neurology, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Laura G Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, Mexico City, Mexico
| | - Mehdi Fini
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | | | - Miguel A Lanaspa
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | | |
Collapse
|
4
|
Rao RV, Subramaniam KG, Gregory J, Bredesen AL, Coward C, Okada S, Kelly L, Bredesen DE. Rationale for a Multi-Factorial Approach for the Reversal of Cognitive Decline in Alzheimer's Disease and MCI: A Review. Int J Mol Sci 2023; 24:ijms24021659. [PMID: 36675177 PMCID: PMC9865291 DOI: 10.3390/ijms24021659] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a multifactorial, progressive, neurodegenerative disease typically characterized by memory loss, personality changes, and a decline in overall cognitive function. Usually manifesting in individuals over the age of 60, this is the most prevalent type of dementia and remains the fifth leading cause of death among Americans aged 65 and older. While the development of effective treatment and prevention for AD is a major healthcare goal, unfortunately, therapeutic approaches to date have yet to find a treatment plan that produces long-term cognitive improvement. Drugs that may be able to slow down the progression rate of AD are being introduced to the market; however, there has been no previous solution for preventing or reversing the disease-associated cognitive decline. Recent studies have identified several factors that contribute to the progression and severity of the disease: diet, lifestyle, stress, sleep, nutrient deficiencies, mental health, socialization, and toxins. Thus, increasing evidence supports dietary and other lifestyle changes as potentially effective ways to prevent, slow, or reverse AD progression. Studies also have demonstrated that a personalized, multi-therapeutic approach is needed to improve metabolic abnormalities and AD-associated cognitive decline. These studies suggest the effects of abnormalities, such as insulin resistance, chronic inflammation, hypovitaminosis D, hormonal deficiencies, and hyperhomocysteinemia, in the AD process. Therefore a personalized, multi-therapeutic program based on an individual's genetics and biochemistry may be preferable over a single-drug/mono-therapeutic approach. This article reviews these multi-therapeutic strategies that identify and attenuate all the risk factors specific to each affected individual. This article systematically reviews studies that have incorporated multiple strategies that target numerous factors simultaneously to reverse or treat cognitive decline. We included high-quality clinical trials and observational studies that focused on the cognitive effects of programs comprising lifestyle, physical, and mental activity, as well as nutritional aspects. Articles from PubMed Central, Scopus, and Google Scholar databases were collected, and abstracts were reviewed for relevance to the subject matter. Epidemiological, pathological, toxicological, genetic, and biochemical studies have all concluded that AD represents a complex network insufficiency. The research studies explored in this manuscript confirm the need for a multifactorial approach to target the various risk factors of AD. A single-drug approach may delay the progression of memory loss but, to date, has not prevented or reversed it. Diet, physical activity, sleep, stress, and environment all contribute to the progression of the disease, and, therefore, a multi-factorial optimization of network support and function offers a rational therapeutic strategy. Thus, a multi-therapeutic program that simultaneously targets multiple factors underlying the AD network may be more effective than a mono-therapeutic approach.
Collapse
Affiliation(s)
- Rammohan V. Rao
- Apollo Health, Burlingame, CA 94011, USA
- Correspondence: (R.V.R.); (D.E.B.)
| | | | | | | | | | - Sho Okada
- Apollo Health, Burlingame, CA 94011, USA
| | | | - Dale E. Bredesen
- Apollo Health, Burlingame, CA 94011, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90024, USA
- Correspondence: (R.V.R.); (D.E.B.)
| |
Collapse
|
5
|
Sandison H, Callan NG, Rao RV, Phipps J, Bradley R. Observed Improvement in Cognition During a Personalized Lifestyle Intervention in People with Cognitive Decline. J Alzheimers Dis 2023; 94:993-1004. [PMID: 37355891 PMCID: PMC10473097 DOI: 10.3233/jad-230004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic condition marked by progressive objective cognitive impairment (OCI). No monotherapy has substantially altered disease progression, suggesting the disease is multifactorial and may require a multimodal therapeutic approach. OBJECTIVE We sought to determine if cognitive function in a sample with OCI would change in response to a multimodal, individualized care plan based on potential contributors to cognitive decline (e.g., nutritional status, infection, etc.). METHODS Participants (n = 34) were recruited from the San Diego, CA area. The multimodal intervention included lifestyle changes (i.e., movement, diet, and stress management), nutraceutical support, and medications. It was delivered pragmatically over four clinical visits, and outcome measures were gathered at four study visits, occurring at baseline, one, three, and six months (primary endpoint). Study participants received weekly phone calls for nutrition support throughout study participation. Outcome measures included the Cambridge Brain Sciences (CBS) battery, and the Montreal Cognitive Assessment (MoCA). RESULTS At 6 months, mean MoCA scores improved from 19.6±3.1 to 21.7±6.2 (p = 0.013). Significant improvement was observed in mean scores of the CBS memory domain [25.2 (SD 23.3) to 35.8 (SD 26.9); p < 0.01] and CBS overall composite cognition score [24.5 (SD 16.1) to 29.7 (SD 20.5); p = 0.02]. All CBS domains improved. CONCLUSION Multiple measures of cognitive function improved after six months of intervention. Our results support the feasibility and impact of a multimodal, individualized treatment approach to OCI, warranting further research.
Collapse
Affiliation(s)
| | - Nini G.L. Callan
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR, USA
| | | | - John Phipps
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR, USA
| | - Ryan Bradley
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR, USA
- Herbert Wertheim School of Public Health and Human Longevity Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
Bredesen DE, Toups K, Hathaway A, Gordon D, Chung H, Raji C, Boyd A, Hill BD, Hausman-Cohen S, Attarha M, Chwa WJ, Kurakin A, Jarrett M. Precision Medicine Approach to Alzheimer's Disease: Rationale and Implications. J Alzheimers Dis 2023; 96:429-437. [PMID: 37807782 PMCID: PMC10741308 DOI: 10.3233/jad-230467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 10/10/2023]
Abstract
The neurodegenerative disease field has enjoyed extremely limited success in the development of effective therapeutics. One potential reason is the lack of disease models that yield accurate predictions and optimal therapeutic targets. Standard clinical trials have pre-determined a single treatment modality, which may be unrelated to the primary drivers of neurodegeneration. Recent proof-of-concept clinical trials using a precision medicine approach suggest a new model of Alzheimer's disease (AD) as a chronic innate encephalitis that creates a network insufficiency. Identifying and addressing the multiple potential contributors to cognitive decline for each patient may represent a more effective strategy. Here we review the rationale for a precision medicine approach in prevention and treatment of cognitive decline associated with AD. Results and implications from recent proof-of-concept clinical trials are presented. Randomized controlled trials, with much larger patient numbers, are likely to be significant to establishing precision medicine protocols as a standard of care for prevention and treatment of cognitive decline. Furthermore, combining this approach with the pharmaceutical approach offers the potential for enhanced outcomes. However, incorporating precision medicine approaches into everyday evaluation and care, as well as future clinical trials, would require fundamental changes in trial design, IRB considerations, funding considerations, laboratory evaluation, personalized treatment plans, treatment teams, and ultimately in reimbursement guidelines. Nonetheless, precision medicine approaches to AD, based on a novel model of AD pathophysiology, offer promise that has not been realized to date with monotherapeutic approaches.
Collapse
Affiliation(s)
- Dale E. Bredesen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Kat Toups
- Bay Area Wellness, Walnut Creek, CA, USA
| | | | | | | | - Cyrus Raji
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alan Boyd
- CNS Vital Signs, Morrisville, NC, USA
| | - Benjamin D. Hill
- Department of Psychology, University of South Alabama, Mobile, AL, USA
| | | | | | - Won Jong Chwa
- Department of Radiology, St. Louis University, St. Louis, MO, USA
| | - Alexei Kurakin
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
7
|
Roach JC, Hara J, Fridman D, Lovejoy JC, Jade K, Heim L, Romansik R, Swietlikowski A, Phillips S, Rapozo MK, Shay MA, Fischer D, Funk C, Dill L, Brant‐Zawadzki M, Hood L, Shankle WR. The Coaching for Cognition in Alzheimer's (COCOA) trial: Study design. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12318. [PMID: 35910672 PMCID: PMC9322829 DOI: 10.1002/trc2.12318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 11/15/2022]
Abstract
Comprehensive treatment of Alzheimer's disease (AD) requires not only pharmacologic treatment but also management of existing medical conditions and lifestyle modifications including diet, cognitive training, and exercise. We present the design and methodology for the Coaching for Cognition in Alzheimer's (COCOA) trial. AD and other dementias result from the interplay of multiple interacting dysfunctional biological systems. Monotherapies have had limited success. More interventional studies are needed to test the effectiveness of multimodal multi-domain therapies for dementia prevention and treatment. Multimodal therapies use multiple interventions to address multiple systemic causes and potentiators of cognitive decline and functional loss; they can be personalized, as different sets of etiologies and systems responsive to therapy may be present in different individuals. COCOA is designed to test the hypothesis that coached multimodal interventions beneficially alter the trajectory of cognitive decline for individuals on the spectrum of AD and related dementias (ADRD). COCOA is a two-arm prospective randomized controlled trial (RCT). COCOA collects psychometric, clinical, lifestyle, genomic, proteomic, metabolomic, and microbiome data at multiple timepoints across 2 years for each participant. These data enable systems biology analyses. One arm receives standard of care and generic healthy aging recommendations. The other arm receives standard of care and personalized data-driven remote coaching. The primary outcome measure is the Memory Performance Index (MPI), a measure of cognition. The MPI is a summary statistic of the MCI Screen (MCIS). Secondary outcome measures include the Functional Assessment Staging Test (FAST), a measure of function. COCOA began enrollment in January 2018. We hypothesize that multimodal interventions will ameliorate cognitive decline and that data-driven health coaching will increase compliance, assist in personalizing multimodal interventions, and improve outcomes for patients, particularly for those in the early stages of the AD spectrum. Highlights The Coaching for Cognition in Alzheimer's (COCOA) trial tests personalized multimodal lifestyle interventions for Alzheimer's disease and related dementias.Dense longitudinal molecular data will be useful for future studies.Increased use of Hill's criteria in analyses may advance knowledge generation.Remote coaching may be an effective intervention.Because lifestyle interventions are inexpensive, they may be particularly valuable in reducing global socioeconomic disparities in dementia care.
Collapse
Affiliation(s)
| | - Junko Hara
- Pickup Family Neurosciences InstituteHoag Memorial Hospital PresbyterianNewport BeachCaliforniaUSA
| | - Deborah Fridman
- Hoag Center for Research and EducationHoag Memorial Hospital PresbyterianNewport BeachCaliforniaUSA
| | | | | | - Laura Heim
- Hoag Center for Research and EducationHoag Memorial Hospital PresbyterianNewport BeachCaliforniaUSA
| | - Rachel Romansik
- Hoag Center for Research and EducationHoag Memorial Hospital PresbyterianNewport BeachCaliforniaUSA
| | - Adrienne Swietlikowski
- Hoag Center for Research and EducationHoag Memorial Hospital PresbyterianNewport BeachCaliforniaUSA
| | - Sheree Phillips
- Hoag Center for Research and EducationHoag Memorial Hospital PresbyterianNewport BeachCaliforniaUSA
| | | | | | - Dan Fischer
- Institute for Systems BiologySeattleWashingtonUSA
- Oregon Health & Science UniversityPortlandOregonUSA
| | - Cory Funk
- Institute for Systems BiologySeattleWashingtonUSA
| | - Lauren Dill
- Pickup Family Neurosciences InstituteHoag Memorial Hospital PresbyterianNewport BeachCaliforniaUSA
- VA Long Beach Healthcare SystemLong BeachCaliforniaUSA
| | - Michael Brant‐Zawadzki
- Pickup Family Neurosciences InstituteHoag Memorial Hospital PresbyterianNewport BeachCaliforniaUSA
| | - Leroy Hood
- Institute for Systems BiologySeattleWashingtonUSA
- Providence St. Joseph HealthRentonWashingtonUSA
| | - William R. Shankle
- Pickup Family Neurosciences InstituteHoag Memorial Hospital PresbyterianNewport BeachCaliforniaUSA
- Department of Cognitive SciencesUniversity of CaliforniaIrvineCaliforniaUSA
- Shankle ClinicNewport BeachCaliforniaUSA
- EMBIC CorporationNewport BeachCaliforniaUSA
| |
Collapse
|
8
|
Utilizing Genomically Targeted Molecular Data to Improve Patient-Specific Outcomes in Autism Spectrum Disorder. Int J Mol Sci 2022; 23:ijms23042167. [PMID: 35216282 PMCID: PMC8879068 DOI: 10.3390/ijms23042167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Molecular biology combined with genomics can be a powerful tool for developing potential intervention strategies for improving outcomes in children with autism spectrum disorders (ASD). Monogenic etiologies rarely cause autism. Instead, ASD is more frequently due to many polygenic contributing factors interacting with each other, combined with the epigenetic effects of diet, lifestyle, and environment. One limitation of genomics has been identifying ways of responding to each identified gene variant to translate the information to something clinically useful. This paper will illustrate how understanding the function of a gene and the effects of a reported variant on a molecular level can be used to develop actionable and targeted potential interventions for a gene variant or combinations of variants. For illustrative purposes, this communication highlights a specific genomic variant, SHANK3. The steps involved in developing molecularly genomically targeted actionable interventions will be demonstrated. Cases will be shared to support the efficacy of this strategy and to show how clinicians utilized these targeted interventions to improve ASD-related symptoms significantly. The presented approach demonstrates the utility of genomics as a part of clinical decision-making.
Collapse
|