1
|
Zhang J, Liu L, Lao Z, Lei L, Xu H, Wang X, Lin N, Guo X, Yang J, Tang L. Multi-omics perspective on Huoluo Xiaoling Pellet: key bioactive compounds and related mechanisms for the treatment of knee osteoarthritis. JOURNAL OF ETHNOPHARMACOLOGY 2025:119761. [PMID: 40210178 DOI: 10.1016/j.jep.2025.119761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/31/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Knee osteoarthritis (KOA) is a prevalent chronic knee joint disease, occurring mainly in the elderly and obese populations. In traditional Chinese medicine (TCM) theory, KOA is categorized as "knee bi" and "bi syndrome," primarily caused by external factors such as wind, cold, and dampness, as well as internal deficiencies. The treatment with Chinese herbal medicine focuses on dispelling wind, cold, and dampness, as well as promoting blood circulation and removing blood stasis. Huoluo Xiaoling Pellet (HXP), derived from Zhang Xichun's "The Records of Traditional Chinese and Western Medicine in Combination " during the Qing Dynasty, was known for its effects of activating blood circulation to remove stasis and alleviating pain by unblocking the collaterals, mainly used for treating conditions with stagnation of qi and blood. It has been included in the "Ancient Classic Prescriptions" by the National Administration of Traditional Chinese Medicine. However, the pharmacodynamic compounds, specific actions, and mechanisms of HXP on KOA have not yet been elucidated. AIM OF STUDY Through qualitative and quantitative analysis, combined with multi-omics technology and network pharmacology, the key bioactive compounds and related mechanisms of HXP in improving knee osteoarthritis were explored. METHODS UHPLC-Q-Orbitrap-MS and HPLC were used to analyze the chemical composition of HXP, chemometric analyses was used for quality control. The therapeutic effect of HXP was evaluated by Anterior Cruciate Ligament Transaction (ACLT)-induced KOA mouse model, and proteomics and lipid metabolomics were combined with network pharmacology and molecular docking techniques to explore for the key bioactive compounds and mechanisms RESULTS: Identified 53 compounds in HXP, with Salvianolic acid B as a key quality marker and potential active compound for KOA. HXP reduced pain, protected chondrocytes, reduced oxidative stress, and improved bone parameters. The combined multi-omics analysis indicates that the protein targets of SHIP1, PTPRC, the cytochrome P450 enzyme family including Cyp1a2, Cyp2c29, Cyp2c50, Cyp2c544, as well as the JAK2/STAT3 pathway, play crucial roles in the improvement of KOA. CONCLUSION Our results demonstrated that HXP was an effective drug to improve the development of KOA. Among them, Salvianolic acid B, the most abundant compound in HXP and the best computer simulation result, may be the key monomer compound of HXP for KOA treatment. The results of the visualisation analysis further contributed to our understanding of HXP treatment of KOA in terms of changes in SHIP1, PTPRC proteins and cytochrome P450 enzyme family. This is associated with the SHIP1/PI3K/AKT and JAK2/STAT3 pathways, as well as arachidonic acid metabolism and immune regulation.
Collapse
Affiliation(s)
- Jingyi Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Institute of Traditional Chinese Medicine Intersection and Transformation, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Preparations / Guangdong Provincial Technical Engineering Laboratory of Traditional Chinese Medicine Preparations, Guangzhou 510515, China
| | - Lanbo Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Institute of Traditional Chinese Medicine Intersection and Transformation, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Preparations / Guangdong Provincial Technical Engineering Laboratory of Traditional Chinese Medicine Preparations, Guangzhou 510515, China
| | - Ziying Lao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Institute of Traditional Chinese Medicine Intersection and Transformation, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Preparations / Guangdong Provincial Technical Engineering Laboratory of Traditional Chinese Medicine Preparations, Guangzhou 510515, China
| | - Li Lei
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Institute of Traditional Chinese Medicine Intersection and Transformation, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Preparations / Guangdong Provincial Technical Engineering Laboratory of Traditional Chinese Medicine Preparations, Guangzhou 510515, China
| | - Hui Xu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen 518100, China
| | - Xiwen Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Institute of Traditional Chinese Medicine Intersection and Transformation, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Preparations / Guangdong Provincial Technical Engineering Laboratory of Traditional Chinese Medicine Preparations, Guangzhou 510515, China
| | - Nianzhen Lin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Institute of Traditional Chinese Medicine Intersection and Transformation, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Preparations / Guangdong Provincial Technical Engineering Laboratory of Traditional Chinese Medicine Preparations, Guangzhou 510515, China
| | - Xiaowen Guo
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China.
| | - Jiashun Yang
- The Seventh Affiliated Hospital, Southern Medical University, Foshan 528244, China.
| | - Ling Tang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Institute of Traditional Chinese Medicine Intersection and Transformation, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Preparations / Guangdong Provincial Technical Engineering Laboratory of Traditional Chinese Medicine Preparations, Guangzhou 510515, China; Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China.
| |
Collapse
|
2
|
Beheshtkhoo N, Jadidi Kouhbanani MA, Daghighi SM, Shakouri Nikjeh M, Esmaeili Z, Khosravani M, Adabi M. Effect of oral resveratrol-loaded nanoliposomes on hyperlipidemia via toll-like receptor 3 and TIR domain-containing adaptor inducing interferon-β protein expression in an animal model. J Liposome Res 2025:1-27. [PMID: 40098438 DOI: 10.1080/08982104.2025.2476529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/20/2025] [Accepted: 03/02/2025] [Indexed: 03/19/2025]
Abstract
Hyperlipidemia, a critical risk factor for various health conditions, necessitates innovative therapeutic strategies. Investigating the effectiveness of liposomal formulations in managing hyperlipidemia is essential. Resveratrol (RES)-loaded nanoliposomes present a promising new approach for hyperlipidemia treatment. In this study, we investigated the anti-hyperlipidemic potential of RES-loaded nanoliposomes in high-fat diet (HFD)-fed rats. The nanoliposomes were prepared using a thin-film hydration method. According to transmission electron microscopy (TEM) and dynamic light scattering (DLS) results, the mean size of prepared RES-loaded nanoliposomes were about 42 nm and 68 nm, respectively, with a zeta potential of -65.6 mV. The entrapment efficiency and loading content were 83.78% and 14.25%, respectively. Additionally, the RES-loaded nanoliposomes exhibited controlled release kinetics compared to the free RES form. Moreover, in a hyperlipidemic rat model induced by an HFD, orally administered RES-loaded nanoliposomes significantly reduced total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), and triglycerides (TG), while concurrently increasing high-density lipoprotein cholesterol (HDL-C) levels. Additionally, liver damage induced by HFD was alleviated by RES-loaded nanoliposomes. The expression levels of Toll-like receptor 3 (TLR3) and TIR domain-containing adaptor-inducing interferon-β (TRIF) were assessed using fluorescence immunohistochemistry. Notably, RES-loaded nanoliposomes significantly reduced the expression of these protein. The effect of RES-loaded nanoliposomes was measured on body weight of HFD rats, demonstrting RES-loaded nanoliposomes hold promise for weight management. These findings underscore the potential of RES-loaded nanoliposomes as a safe and effective therapeutic option for hyperlipidemia.
Collapse
Affiliation(s)
- Nasrin Beheshtkhoo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Jadidi Kouhbanani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mojtaba Daghighi
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shakouri Nikjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Khosravani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Wang R, Wang Z, Zhang M, Zhong D, Zhou M. Application of photosensitive microalgae in targeted tumor therapy. Adv Drug Deliv Rev 2025; 219:115519. [PMID: 39955076 DOI: 10.1016/j.addr.2025.115519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/02/2025] [Accepted: 01/18/2025] [Indexed: 02/17/2025]
Abstract
Microalgae present a novel and multifaceted approach to cancer therapy by modulating the tumor-associated microbiome (TAM) and the tumor microenvironment (TME). Through their ability to restore gut microbiota balance, reduce inflammation, and enhance immune responses, microalgae contribute to improved cancer treatment outcomes. As photosynthetic microorganisms, microalgae exhibit inherent anti-tumor, antioxidant, and immune-regulating properties, making them valuable in photodynamic therapy and tumor imaging due to their capacity to generate reactive oxygen species. Additionally, microalgae serve as effective drug delivery vehicles, leveraging their biocompatibility and unique structural properties to target the TME more precisely. Microalgae-based microrobots further expand their therapeutic potential by autonomously navigating complex biological environments, offering a promising future for precision-targeted cancer treatments. We position microalgae as a multifunctional agent capable of modulating TAM, offering novel strategies to enhance TME and improve the efficacy of cancer therapies.
Collapse
Affiliation(s)
- Ruoxi Wang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310029, China; Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China; Zhejiang University-Ordos City Etuoke Banner Joint Research Center, Haining 314400, China
| | - Zhouyue Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Min Zhang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Danni Zhong
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Min Zhou
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310029, China; Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China; Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China; Zhejiang University-Ordos City Etuoke Banner Joint Research Center, Haining 314400, China.
| |
Collapse
|
4
|
Fan YQ, Wang H, Wang PP, Shi ZY, Wang Y, Xu J. The non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio as a predictive indicator of CKD risk in NAFLD patients: NHANES 2017-2020. Front Nutr 2024; 11:1501494. [PMID: 39777076 PMCID: PMC11703712 DOI: 10.3389/fnut.2024.1501494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) and chronic kidney disease (CKD) are both closely related to dyslipidemia. However, the relationship between dyslipidemia in patients with NAFLD and CKD is not yet clear. The non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio (NHHR) is an innovative and comprehensive lipid index. The purpose of this study was to investigate the correlation between NHHR and CKD risk in NAFLD patients with or without fibrosis. Methods This study used data from the National Health and Nutrition Examination Survey (NHANES) from 2017 to 2020 for analysis, including a total of 4,041 subjects diagnosed with NAFLD. Among the NAFLD subjects, 3,315 individuals without liver fibrosis and 726 individuals with fibrosis. Weighted multivariate linear regression, weighted logistic regression, restricted cubic spline (RCS) curves, and subgroup analysis were used to evaluate the correlation between NHHR and CKD in patients with NAFLD. Results Our findings indicate that in NAFLD subjects without liver fibrosis, the highest tertile of NHHR, as compared to the lowest tertile, was inversely related to glomerular filtration rate (eGFR) (β: -2.14, 95% CI: -3.97, -0.32, p < 0.05) and positively related to CKD (OR: 1.67, 95% CI: 1.12, 2.49, p < 0.05). No significant associations were observed between NHHR and eGFR, urinary albumin to creatinine ratio (ACR) in NAFLD subjects with liver fibrosis. The RCS revealed a linear relationship between NHHR and ACR, CKD in NAFLD subjects without liver fibrosis, while a U-shaped relationship was observed between NHHR and ACR, CKD in NAFLD subjects with liver fibrosis. Conclusion In patients with non-fibrotic NAFLD, a significantly elevated NHHR is closely associated with an increased risk of CKD and shows a linear relationship with CKD. In patients with fibrotic NAFLD, NHHR shows a U-shaped relationship with CKD. LD, Our findings underscore the practical utility of NHHR as a biomarker for early risk stratification of CKD in patients with NAFLD.
Collapse
Affiliation(s)
- Yong-Qiang Fan
- Liver Transplantation Center, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hao Wang
- Liver Transplantation Center, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Pei-Pei Wang
- Department of Respiratory, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhi-Yong Shi
- Liver Transplantation Center, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Wang
- Liver Transplantation Center, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jun Xu
- Liver Transplantation Center, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Xu W, Zhu Y, Wang S, Liu J, Li H. From Adipose to Ailing Kidneys: The Role of Lipid Metabolism in Obesity-Related Chronic Kidney Disease. Antioxidants (Basel) 2024; 13:1540. [PMID: 39765868 PMCID: PMC11727289 DOI: 10.3390/antiox13121540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/01/2024] [Accepted: 12/13/2024] [Indexed: 01/03/2025] Open
Abstract
Obesity has emerged as a significant public health crisis, closely linked to the pathogenesis and progression of chronic kidney disease (CKD). This review explores the intricate relationship between obesity-induced lipid metabolism disorders and renal health. We discuss how excessive free fatty acids (FFAs) lead to lipid accumulation in renal tissues, resulting in cellular lipotoxicity, oxidative stress, and inflammation, ultimately contributing to renal injury. Key molecular mechanisms, including the roles of transcriptional regulators like PPARs and SREBP-1, are examined for their implications in lipid metabolism dysregulation. The review also highlights the impact of glomerular and tubular lipid overload on kidney pathology, emphasizing the roles of podocytes and tubular cells in maintaining kidney function. Various therapeutic strategies targeting lipid metabolism, including pharmacological agents such as statins and SGLT2 inhibitors, as well as lifestyle modifications, are discussed for their potential to mitigate CKD progression in obese individuals. Future research directions are suggested to better understand the mechanisms linking lipid metabolism to kidney disease and to develop personalized therapeutic approaches. Ultimately, addressing obesity-related lipid metabolism disorders may enhance kidney health and improve outcomes for individuals suffering from CKD.
Collapse
Affiliation(s)
- Wenchao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuting Zhu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Siyuan Wang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
6
|
Wang Q, Zhang Y, Lu R, Zhao Q, Gao Y. The multiple mechanisms and therapeutic significance of rutin in metabolic dysfunction-associated fatty liver disease (MAFLD). Fitoterapia 2024; 178:106178. [PMID: 39153555 DOI: 10.1016/j.fitote.2024.106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
The global incidence of metabolic dysfunction-associated fatty liver disease (MAFLD) has been steadily increasing, making it a leading chronic liver disease. MAFLD refers to a metabolic syndrome linked with type 2 diabetes mellitus, obesity. However, its pathophysiology is complex, there are currently no effective and approved medicines for therapy. Rutin, a naturally occurring polyphenolic flavonoid, is widely distributed in fruits, vegetables, and other plants. It exhibits a plethora of bioactive properties, such as antioxidant, anticancer, and anti-inflammatory and neuroprotective activities, making it an extremely promising phytochemical. Rutin has shown great potential in the treatment of a wide variety of metabolic diseases and received considerable attention in recent years. Fortuitously, various research studies have validated rutin's extensive biological functions in treating metabolic disorders. Despite the fact that the exact pathophysiological mechanisms through which rutin has a hepatoprotective effect on MAFLD are still not fully elucidated. This review comprehensively outlines rutin's multifaceted preventive and therapeutic effects in MAFLD, including the modulation of lipid metabolism, reduction of insulin resistance, diminution of inflammation and oxidative stress, combatting of obesity, and influence on intestinal flora. This paper details the known molecular targets and pathways of rutin in MAFLD pathogenesis. It endeavored to provide new ideas for treating MAFLD and accelerating its translation from bench to bedside.
Collapse
Affiliation(s)
- Qianzhuo Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yingjuan Zhang
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China
| | - Ruiling Lu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Qingwen Zhao
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China.
| | - Yue Gao
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China.
| |
Collapse
|
7
|
Fan X, Hu X, Cong P, Wang X, Song Y, Liu Y, Wang X, Meng N, Xue C, Xu J. Combined UPLC-QqQ-MS/MS and AP-MALDI Mass Spectrometry Imaging Method for Phospholipidomics in Obese Mouse Kidneys: Alleviation by Feeding Sea Cucumber Phospholipids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16312-16322. [PMID: 38985073 DOI: 10.1021/acs.jafc.4c02692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Sea cucumber phospholipids have ameliorative effects on various diseases related to lipid metabolism. However, it is unclear whether it can ameliorate obesity-associated glomerulopathy (ORG) induced by a high-fat diet (HFD). The present study applied UPLC-QqQ-MS/MS and atmospheric pressure matrix-assisted laser desorption ionization mass spectrometry imaging (AP-MALDI MSI) to investigate the effects of sea cucumber phospholipids, including plasmalogen PlsEtn and plasmanylcholine PakCho, on phospholipid profiles in the HFD-induced ORG mouse kidney. Quantitative analysis of 135 phospholipids revealed that PlsEtn and PakCho significantly modulated phospholipid levels. Notably, PlsEtn modulated kidney overall phospholipids better than PakCho. Imaging the "space-content" of 9 phospholipids indicated that HFD significantly increased phospholipid content within the renal cortex. Furthermore, PlsEtn and PakCho significantly decreased the expression of transport-related proteins CD36, while elevating the expression of fatty acid β-oxidation-related protein PPAR-α in the renal cortex. In conclusion, sea cucumber phospholipids reduced renal lipid accumulation, ameliorated renal damage, effectively regulated the content and distribution of renal phospholipids, and improved phospholipid homeostasis, exerting an anti-OGR effect.
Collapse
Affiliation(s)
- Xiaowei Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Xinxin Hu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Peixu Cong
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Xincen Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
- Institute of Nutrition and Health, Qingdao University, Qingdao, Shandong 266073, China
| | - Yu Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Yanjun Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Xiaoxu Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Nan Meng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
- Qingdao Marine Science and Technology Center, Qingdao, Shandong 266235, China
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| |
Collapse
|
8
|
Lee LE, Doke T, Mukhi D, Susztak K. The key role of altered tubule cell lipid metabolism in kidney disease development. Kidney Int 2024; 106:24-34. [PMID: 38614389 PMCID: PMC11193624 DOI: 10.1016/j.kint.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 04/15/2024]
Abstract
Kidney epithelial cells have very high energy requirements, which are largely met by fatty acid oxidation. Complex changes in lipid metabolism are observed in patients with kidney disease. Defects in fatty acid oxidation and increased lipid uptake, especially in the context of hyperlipidemia and proteinuria, contribute to this excess lipid build-up and exacerbate kidney disease development. Recent studies have also highlighted the role of increased de novo lipogenesis in kidney fibrosis. The defect in fatty acid oxidation causes energy starvation. Increased lipid uptake, synthesis, and lower fatty acid oxidation can cause toxic lipid build-up, reactive oxygen species generation, and mitochondrial damage. A better understanding of these metabolic processes may open new treatment avenues for kidney diseases by targeting lipid metabolism.
Collapse
Affiliation(s)
- Lauren E Lee
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Tomohito Doke
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dhanunjay Mukhi
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
9
|
Ali MM, Parveen S, Williams V, Dons R, Uwaifo GI. Cardiometabolic comorbidities and complications of obesity and chronic kidney disease (CKD). J Clin Transl Endocrinol 2024; 36:100341. [PMID: 38616864 PMCID: PMC11015524 DOI: 10.1016/j.jcte.2024.100341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
Obesity and chronic kidney disease are two ongoing progressive clinical pandemics of major public health and clinical care significance. Because of their growing prevalence, chronic indolent course and consequent complications both these conditions place significant burden on the health care delivery system especially in developed countries like the United States. Beyond the chance coexistence of both of these conditions in the same patient based on high prevalence it is now apparent that obesity is associated with and likely has a direct causal role in the onset, progression and severity of chronic kidney disease. The causes and underlying pathophysiology of this are myriad, complicated and multi-faceted. In this review, continuing the theme of this special edition of the journal on " The Cross roads between Endocrinology and Nephrology" we review the epidemiology of obesity related chronic kidney disease (ORCKD), and its various underlying causes and pathophysiology. In addition, we delve into the consequent comorbidities and complications associated with ORCKD with particular emphasis on the cardio metabolic consequences and then review the current body of evidence for available strategies for chronic kidney disease modulation in ORCKD as well as the potential unique role of weight reduction and management strategies in its improvement and risk reduction.
Collapse
Affiliation(s)
- Mariam M. Ali
- Southern Illinois School of Medicine, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, 751 North Rutledge Street, Moy Building, Suite 1700, Springfield, Il 62702, United States
| | - Sanober Parveen
- Southern Illinois School of Medicine, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, 751 North Rutledge Street, Moy Building, Suite 1700, Springfield, Il 62702, United States
| | - Vanessa Williams
- Southern Illinois School of Medicine, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, 751 North Rutledge Street, Moy Building, Suite 1700, Springfield, Il 62702, United States
| | - Robert Dons
- Southern Illinois School of Medicine, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, 751 North Rutledge Street, Moy Building, Suite 1700, Springfield, Il 62702, United States
| | - Gabriel I. Uwaifo
- Section of Endocrinology, Dept of Medicine, SIU School of Medicine, 751 N Rutledge St, Moy Building, Suite 1700, Room #1813, Springfield, Il 62702, United States
| |
Collapse
|
10
|
Keyghobadi H, Bozorgpoursavadjani H, Koohpeyma F, Mohammadipoor N, Nemati M, Dehghani F, Jamhiri I, Keighobadi G, Dastghaib S. Therapeutic potential of Lactobacillus casei and Chlorella vulgaris in high-fat diet-induced non-alcoholic fatty liver disease (NAFLD)-associated kidney damages: a stereological study. Mol Biol Rep 2024; 51:613. [PMID: 38704764 DOI: 10.1007/s11033-024-09542-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND The non-alcoholic fatty liver disease (NAFLD) is prevalent in as many as 25% of adults who are afflicted with metabolic syndrome. Oxidative stress plays a significant role in the pathophysiology of hepatic and renal injury associated with NAFLD. Therefore, probiotics such as Lactobacillus casei (LBC) and the microalga Chlorella vulgaris (CV) may be beneficial in alleviating kidney injury related to NAFLD. MATERIALS AND METHODS This animal study utilized 30 C57BL/6 mice, which were evenly distributed into five groups: the control group, the NAFLD group, the NAFLD + CV group, the NAFLD + LBC group, and the NAFLD + CV + LBC group. A high-fat diet (HFD) was administered to induce NAFLD for six weeks. The treatments with CV and LBC were continued for an additional 35 days. Biochemical parameters, total antioxidant capacity (TAC), and the expression of kidney damage marker genes (KIM 1 and NGAL) in serum and kidney tissue were determined, respectively. A stereological analysis was conducted to observe the structural changes in kidney tissues. RESULTS A liver histopathological examination confirmed the successful induction of NAFLD. Biochemical investigations revealed that the NAFLD group exhibited increased ALT and AST levels, significantly reduced in the therapy groups (p < 0.001). The gene expression levels of KIM-1 and NGAL were elevated in NAFLD but were significantly reduced by CV and LBC therapies (p < 0.001). Stereological examinations revealed reduced kidney size, volume, and tissue composition in the NAFLD group, with significant improvements observed in the treated groups (p < 0.001). CONCLUSION This study highlights the potential therapeutic efficacy of C. vulgaris and L. casei in mitigating kidney damage caused by NAFLD. These findings provide valuable insights for developing novel treatment approaches for managing NAFLD and its associated complications.
Collapse
Affiliation(s)
- Haniyeh Keyghobadi
- Department of Biology, Zarghan Branch, Islamic Azad University, Zarghan, Iran
| | | | - Farhad Koohpeyma
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nazanin Mohammadipoor
- Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Marzieh Nemati
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farshad Dehghani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Jamhiri
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Zhang L, Wang J, Xu T, Luo Y, Cai Z, Jiang Y, Jin T, Bao H, Wang Y. Bicyclol alleviates obesity-induced renal injury by inhibiting JNK and NF-κB-mediated inflammation. Int Immunopharmacol 2024; 129:111609. [PMID: 38364742 DOI: 10.1016/j.intimp.2024.111609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/26/2023] [Accepted: 01/26/2024] [Indexed: 02/18/2024]
Abstract
Obesity is recognized as a major risk factor for chronic kidney disease (CKD), which is accompanied by increased renal lipid build-up, fibrosis, inflammation, apoptosis and pyroptosis. Bicyclol (BIC), a Chinese marketed hepatoprotective drug, has shown excellent anti-inflammatory, anti-fibrosis, anti-apoptotic, and lipid regulation effects in different animal models. In this study, we explored the role and mechanism of BIC in high-fat diet (HFD)-induced obesity-related nephropathy. Mice were fed with HFD for 24 weeks to develop obesity-related nephropathy, while mice in the BIC administration group were treated with BIC (50 mg/kg or 100 mg/kg, once every two days) at the last 12 weeks. We found that BIC treatment relieved the impairment of kidney structure and renal dysfunction caused by HFD. In addition, we found that BIC mitigated HFD-induced renal fibrosis, inflammation, apoptosis and pyroptosis by inhibiting JNK and NF-κB pathways. SV40-MES-13 cells treated with palmitate (PA) were used as the in vitro model. Our data show that BIC pre-administration relieved cellular damage caused by PA through suppressing JNK and NF-κB signaling pathways. In conclusion, we demonstrated that BIC attenuated obesity-induced renal injury by inhibiting chronic inflammation, fibrosis, apoptosis and pyroptosis via targeting JNK and NF-κB pathways. Our data suggested that BIC could be potentially used to prevent obesity-associated nephropathy, which warrants future investigation.
Collapse
Affiliation(s)
- Lingxi Zhang
- Department of Endocrinology, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiong Wang
- Department of Endocrinology, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Tingxin Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yue Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhaohong Cai
- Department of Endocrinology, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China
| | - Yongsheng Jiang
- Joint Research Center on Medicine, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China
| | - Tianyang Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hongdan Bao
- Department of Endocrinology, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China.
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Joint Research Center on Medicine, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China.
| |
Collapse
|
12
|
Yao C, Dai S, Wang C, Fu K, Wu R, Zhao X, Yao Y, Li Y. Luteolin as a potential hepatoprotective drug: Molecular mechanisms and treatment strategies. Biomed Pharmacother 2023; 167:115464. [PMID: 37713990 DOI: 10.1016/j.biopha.2023.115464] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
Luteolin is a flavonoid widely present in various traditional Chinese medicines. In recent years, luteolin has received more attention due to its impressive liver protective effect, such as metabolic associated fatty liver disease, hepatic fibrosis and hepatoma. This article summarizes the pharmacological effects, pharmacokinetic characteristics, and toxicity of luteolin against liver diseases, and provides prospect. The results indicate that luteolin improves liver lesions through various mechanisms, including inhibiting inflammatory factors, reducing oxidative stress, regulating lipid balance, slowing down excessive aggregation of extracellular matrix, inducing apoptosis and autophagy of liver cancer cells. Pharmacokinetics research manifested that due to metabolic effects, the bioavailability of luteolin is relatively low. It is worth noting that appropriate modification, new delivery systems, and derivatives can enhance its bioavailability. Although many studies have shown that the toxicity of luteolin is minimal, strict toxicity experiments are still needed to evaluate its safety and promote its reasonable development. In addition, this study also discussed the clinical applications related to luteolin, indicating that it is a key component of commonly used liver protective drugs in clinical practice. In view of its excellent pharmacological effects, luteolin is expected to become a potential drug for the treatment of various liver diseases.
Collapse
Affiliation(s)
- Chenhao Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuxin Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
13
|
Mokhtari I, Mokhtari C, Moumou M, Harnafi M, Milenkovic D, Amrani S, Hakmaoui A, Harnafi H. Polyphenol-rich extract from loquat fruit peel prevents hyperlipidemia and hepato-nephrotoxicity in mice: in vivo study and in silico prediction of possible mechanisms involving identified polyphenols and/or their circulating metabolites. Food Funct 2023; 14:7489-7505. [PMID: 37498560 DOI: 10.1039/d3fo01992f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Hyperlipidemia is the most well-known cause of metabolic complications and tissue toxicity such as liver steatosis, atherosclerosis and obesity. This study aims to evaluate the preventive effect of loquat fruit peel extract (PE) against tyloxapol-induced hyperlipidemia and related tissue lipotoxicity in mice. The in vivo study was conducted on mice injected daily with tyloxapol at 100 mg per kg B.W. and treated simultaneously with the PE at concentrations of 100 and 200 mg kg-1 or fenofibrate for 28 days. Plasma and tissue lipid biochemical analyses were undertaken using enzymatic methods. The antioxidative stress was revealed by measuring the malondialdehyde content and activities of superoxide dismutase and catalase as well as the scavenging activity against lipoperoxyl radicals. The PE significantly prevented oxidative stress and restored lipid metabolism, plasma glucose, body weight, organ relative mass and biomarkers of hepato-nephrotoxicity as well as the histological structure of the liver and kidneys. It contains five major polyphenols, namely, ferulic acid, caffeic acid, neochlorogenic acid, chlorogenic acid and quercetin. According to molecular docking analysis, these compounds and their circulating metabolites could interact with major proteins implicated in lipid metabolism and oxidative stress. Overall, the study suggests that PE could prevent hyperlipidemia and related toxic tissue complications.
Collapse
Affiliation(s)
- Imane Mokhtari
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohamed I, 60 000 Oujda, Morocco.
| | - Chakib Mokhtari
- Laboratory of Applied Chemistry and Environment - ECOMP, Faculty of Sciences, University Mohamed I, 60 000 Oujda, Morocco
| | - Mohammadine Moumou
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohamed I, 60 000 Oujda, Morocco.
| | - Mohamed Harnafi
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohamed I, 60 000 Oujda, Morocco.
| | - Dragan Milenkovic
- Department of Nutrition, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA 95616, USA.
| | - Souliman Amrani
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohamed I, 60 000 Oujda, Morocco.
| | - Abdelmalek Hakmaoui
- Laboratory of Biopathology, Center of Clinical Research, University Hospital Mohamed VI, Marrakech, Morocco
| | - Hicham Harnafi
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohamed I, 60 000 Oujda, Morocco.
| |
Collapse
|
14
|
Liu HJ, Miao H, Yang JZ, Liu F, Cao G, Zhao YY. Deciphering the role of lipoproteins and lipid metabolic alterations in ageing and ageing-associated renal fibrosis. Ageing Res Rev 2023; 85:101861. [PMID: 36693450 DOI: 10.1016/j.arr.2023.101861] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/07/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Fibrosis is the ultimate pathological feature of many chronic diseases, and ageing a major risk factor for fibrotic diseases. Current therapies are limited to those that reduce the rate of functional decline in patients with mild to moderate disease, but few interventions are available to specifically target the pathogenesis of fibrosis. In this context, new treatments that can significantly improve survival time and quality of life for these patients are urgently needed. In this review, we outline both the synthesis and metabolism of lipids and lipoproteins associated with ageing-associated renal fibrosis and the prominent contribution of lipids and lipidomics in the discovery of biomarkers that can be used for the prevention, diagnosis, and treatment of renal ageing and fibrosis. Next, we describe the effect of dyslipidaemia on ageing-related renal fibrosis and the pathophysiological changes in the kidney caused by dyslipidaemia. We then summarize the enzymes, transporters, transcription factors, and RNAs that contribute to dysregulated lipid metabolism in renal fibrosis and discuss their role in renal fibrosis in detail. We conclude by discussing the progress in research on small molecule therapeutic agents that prevent and treat ageing and ageing-associated renal fibrosis by modulating lipid metabolism. A growing number of studies suggest that restoring aberrant lipid metabolism may be a novel and promising therapeutic strategy to combat ageing and ageing-associated renal fibrosis.
Collapse
Affiliation(s)
- Hong-Jiao Liu
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Jun-Zheng Yang
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, No. 71 Dongpeng Avenue, Guangzhou, Guangdong 510530, China
| | - Fei Liu
- Department of Urology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 South of Panjiayuan, Beijing 100021, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
15
|
Canbakan M, Bakkaloglu OK, Atay K, Koroglu E, Tuncer MM, Canbakan B, Senturk H. The liver-kidney axis: Is serum leptin a potential link in non-alcoholic fatty liver disease-associated chronic kidney disease? Arab J Gastroenterol 2023; 24:52-57. [PMID: 36764893 DOI: 10.1016/j.ajg.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/30/2022] [Accepted: 01/04/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND AND STUDY AIMS Non-alcoholic fatty liver disease (NAFLD) is an independent risk factor for chronic kidney disease (CKD). Previous studies argued that leptin levels increase significantly with the progression of CKD. But the association between leptin and CKD has not been investigated in patients with NAFLD. Therefore, we conducted this study to establish whether increased leptin level is associated with CKD in NAFLD patients. PATIENTS AND METHODS In our prospective study with a follow up period of six months thirty-five teetotaller biopsy-proven NAFLD patients were divided as groups with mild, versus advanced, fibrosis. Liver fibrosis was also assessed with Fibroscan. Serum leptin levels were measured by radioimmunoassay. For insulin resistance we used the homeostasis model assessment method (HOMA-IR). For the kidney function, we used the abbreviated formula Modification of Diet in Renal Disease (MDRD) formula, which estimates GFR. For statistical analysis, Student's-t test, Mann-Whitney test, linear regression-binary logistic regression analyses and the ROC curve analysis were used. RESULTS Advanced fibrosis and increased HOMA-IR were risk factors for decreased eGFR. Leptin correlated inversely with advanced fibrosis (p: 0.03) and low leptin was a risk factor for CKD (p: 0.02). In ROC curve analysis, advanced fibrosis and low leptin were risk factors for decreased eGFR (p: 0.007 and 0.004, respectively). Low leptin level was dependently associated with decreased eGFR. CONCLUSION Advanced fibrosis in NAFLD patients is a risk factor for CKD. Leptin correlated inversely with advanced fibrosis. Unlike the previous studies, which were not performed in NAFLD patients, we found decreased leptin in NAFLD patients with decreased eGFR. Low leptin level was found to be a dependent predictor for differentiating NAFLD patients with high risk for CKD.
Collapse
Affiliation(s)
- Mustafa Canbakan
- University of Health Sciences, Haydarpasa Numune Research and Training Hospital, Department of Nephrology and Transplantation, Istanbul, Turkey.
| | - Oguz Kagan Bakkaloglu
- Cerrahpasa Medical Faculty of Istanbul University Cerrahpasa, Department of Gastroenterology, Istanbul, Turkey
| | - Kadri Atay
- Mardin Research and Training Hospital, Department of Gastroenterology, Mardin, Turkey
| | - Emine Koroglu
- Kartal Education & Research Hospital, Department of Gastroenterology, Istanbul, Turkey
| | - Mehmet Murat Tuncer
- Cerrahpasa Medical Faculty of Istanbul University Cerrahpasa, Department of Gastroenterology, Istanbul, Turkey
| | - Billur Canbakan
- Cerrahpasa Medical Faculty of Istanbul University Cerrahpasa, Department of Gastroenterology, Istanbul, Turkey
| | - Hakan Senturk
- Bezmi Alem Vakif University Faculty of Medicine, Department of Gastroenterology, Istanbul, Turkey
| |
Collapse
|
16
|
Li R, Kong D, Ye Z, Zong G, Hu K, Xu W, Fang P, Zhang L, Zhou Y, Zhang K, Xue Y. Correlation of multiple lipid and lipoprotein ratios with nonalcoholic fatty liver disease in patients with newly diagnosed type 2 diabetic mellitus: A retrospective study. Front Endocrinol (Lausanne) 2023; 14:1127134. [PMID: 36875464 PMCID: PMC9982122 DOI: 10.3389/fendo.2023.1127134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The diagnostic value of lipid and lipoprotein ratios for NAFLD in newly diagnosed T2DM remains unclear. This study aimed to investigate the relationships between lipid and lipoprotein ratios and the risk of NAFLD in subjects with newly diagnosed T2DM. METHODS A total of 371 newly diagnosed T2DM patients with NAFLD and 360 newly diagnosed T2DM without NAFLD were enrolled in the study. Demographics variables, clinical history and serum biochemical indicators of the subjects were collected. Six lipid and lipoprotein ratios, including triglycerides to high-density lipoprotein-cholesterol (TG/HDL-C) ratio, cholesterol to HDL-C (TC/HDL-C) ratio, free fatty acid to HDL-C (FFA/HDL-C) ratio, uric acid to HDL-C (UA/HDL-C) ratio, low-density lipoprotein-cholesterol to HDL-C (LDL-C/HDL-C) ratio, apolipoprotein B to apolipoprotein A1 (APOB/A1) ratio, were calculated. We compared the differences in lipid and lipoprotein ratios between NAFLD group and non-NAFLD group, and further analyzed the correlation and diagnostic value of these ratios with the risk of NAFLD in the newly diagnosed T2DM patients. RESULTS The proportion of NAFLD in patients with newly diagnosed T2DM increased progressively over the range Q1 to Q4 of six lipid ratios, including the TG/HDL-C ratio, TC/HDL-C ratio, FFA/HDL-C ratio, UA/HDL-C ratio, LDL-C/HDL-C ratio, and APOB/A1 ratio. After adjusting for multiple confounders, TG/HDL-C, TC/HDL-C, UA/HDL-C, LDL-C/HDL-C and APOB/A1 were all strongly correlated with the risk of NAFLD in patients with newly diagnosed T2DM. In patients with newly-onset T2DM, the TG/HDL-C ratio was the most powerful indicator for the diagnosis of NAFLD among all six indicators, with an area under the curve (AUC) of 0.732 (95% CI 0.696-0.769). In addition, TG/HDL-C ratio>1.405, with a sensitivity of 73.8% and specificity of 60.1%, had a good diagnostic ability for NAFLD in patients with newly diagnosed T2DM. CONCLUSIONS The TG/HDL-C ratio may be an effective marker to help identify the risk of NAFLD in patients with newly diagnosed T2DM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Ying Xue
- *Correspondence: Ying Xue, ; Keqin Zhang,
| |
Collapse
|
17
|
Hu Q, Chen Y, Bao T, Huang Y. Association of metabolic dysfunction-associated fatty liver disease with chronic kidney disease: a Chinese population-based study. Ren Fail 2022; 44:1996-2005. [DOI: 10.1080/0886022x.2022.2144373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Qian Hu
- Health Management Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yao Chen
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Bao
- Health Management Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yan Huang
- Health Management Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Liu H, Zhang C, Xiong J. Pathological Connections between Nonalcoholic Fatty Liver Disease and Chronic Kidney Disease. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:458-465. [PMID: 36590682 PMCID: PMC9798839 DOI: 10.1159/000527834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/22/2022] [Indexed: 12/13/2022]
Abstract
Background Nonalcoholic fatty liver disease and chronic kidney disease are major public health issues worldwide. The clinical burden of nonalcoholic fatty liver disease is not only confined to liver-related morbidity and mortality, but it also includes the burden of chronic extrahepatic complications. It is well known that liver and kidney are strictly interconnected in physiological and pathological conditions. Summary Mounting evidence indicates a strong association between nonalcoholic fatty liver disease and chronic kidney disease, independent of the identified cardiorenal risk factors. The presence and severity of nonalcoholic fatty liver disease are related to the developmental stage and risk of chronic kidney disease. And chronic kidney disease progression also contributes to nonalcoholic fatty liver disease development. Nonalcoholic fatty liver disease and chronic kidney disease mutually contribute to disease progression through pathological links. Shared pathogenic mechanisms also exist between nonalcoholic fatty liver disease and chronic kidney disease, including pyroptosis and ferroptosis. Additionally, the use of combined liver-kidney transplantation has increased exponentially in recent years. Key Messages This review focuses on the emerging pathological mechanisms linking nonalcoholic fatty liver disease and chronic kidney disease and shared pathogenic mechanisms to find novel targeted therapies and retard the progression of both disease processes.
Collapse
|
19
|
Nephrotoxicity of Flame Retardants: An Understudied but Critical Toxic Endpoint. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.100359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Pan X. The Roles of Fatty Acids and Apolipoproteins in the Kidneys. Metabolites 2022; 12:metabo12050462. [PMID: 35629966 PMCID: PMC9145954 DOI: 10.3390/metabo12050462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
The kidneys are organs that require energy from the metabolism of fatty acids and glucose; several studies have shown that the kidneys are metabolically active tissues with an estimated energy requirement similar to that of the heart. The kidneys may regulate the normal and pathological function of circulating lipids in the body, and their glomerular filtration barrier prevents large molecules or large lipoprotein particles from being filtered into pre-urine. Given the permeable nature of the kidneys, renal lipid metabolism plays an important role in affecting the rest of the body and the kidneys. Lipid metabolism in the kidneys is important because of the exchange of free fatty acids and apolipoproteins from the peripheral circulation. Apolipoproteins have important roles in the transport and metabolism of lipids within the glomeruli and renal tubules. Indeed, evidence indicates that apolipoproteins have multiple functions in regulating lipid import, transport, synthesis, storage, oxidation and export, and they are important for normal physiological function. Apolipoproteins are also risk factors for several renal diseases; for example, apolipoprotein L polymorphisms induce kidney diseases. Furthermore, renal apolipoprotein gene expression is substantially regulated under various physiological and disease conditions. This review is aimed at describing recent clinical and basic studies on the major roles and functions of apolipoproteins in the kidneys.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, NY 11501, USA;
- Diabetes and Obesity Research Center, NYU Langone Hospital—Long Island, Mineola, New York, NY 11501, USA
| |
Collapse
|