1
|
Frejo L, Cara FE, Flook M, Robles-Bolivar P, Escalera-Balsera A, Montilla-Ibañez MA, Dominguez-Duran E, Martinez-Martinez M, Perez-Carpena P, Lopez-Escamez JA. Allergy and autoinflammation drive persistent systemic inflammatory response in Meniere Disease: A longitudinal study. Clin Immunol 2025; 271:110413. [PMID: 39622350 DOI: 10.1016/j.clim.2024.110413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024]
Abstract
BACKGROUND Meniere disease (MD), an inner ear disorder influenced by genetic and environmental factors, potentially leads to chronic inflammation. This study evaluates whether inflammation in MD patients is driven by allergy or autoinflammation. METHODS 2-year longitudinal study. Cytokine and chemokine levels were measured in plasma from 72 patients. Functional clusters were identified using weighted-based discriminant and km3d trajectory analyses. THP-1 cells were exposed to patients' plasma to assess macrophage polarization, and qPCR analyzed upstream cytokine release events. RESULTS Four groups were identified: 1) Autoimmune (20 %) with high TNF-α (p = 0.0004); 2) Allergic (25 %) with elevated IgE (p < 0.0001) and M2 polarization; 3) Autoinflammatory (13 %) with increased IL-1β (p < 0.0001), activated via CASP1/NLRP3; 4) Low cytokine levels (42 %; cytokines in Q1). Group stability was observed, with 36 % of allergic patients also showing high IL-1β. CONCLUSION Identified immunophenotypes, allergy-driven IgE responses, and IL-1β-mediated autoinflammation indicate that targeting inflammation with biomarkers could optimize MD treatment and outcomes.
Collapse
Affiliation(s)
- Lidia Frejo
- Meniere's Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, The University of Sydney, Sydney, New South Wales, Australia; Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain; Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain.
| | - Francisca E Cara
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain; Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Marisa Flook
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain; Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain; UCL Ear Institute, University College London, London, United Kingdom
| | - Paula Robles-Bolivar
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain; Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Alba Escalera-Balsera
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain; Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | | | - Emilio Dominguez-Duran
- Otorhinolaryngology Health Management Unit, Hospital Universitario Virgen Macarena, Seville, Spain
| | - Marta Martinez-Martinez
- Department of Otorhinolaryngology, Hospital Clinico Universitario San Cecilio, Granada, Spain
| | - Patricia Perez-Carpena
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain; Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain; Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Jose Antonio Lopez-Escamez
- Meniere's Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, The University of Sydney, Sydney, New South Wales, Australia; Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain; Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| |
Collapse
|
2
|
Escalera-Balsera A, Robles-Bolivar P, Parra-Perez AM, Murillo-Cuesta S, Chua HC, Rodríguez-de la Rosa L, Contreras J, Domarecka E, Amor-Dorado JC, Soto-Varela A, Varela-Nieto I, Szczepek AJ, Gallego-Martinez A, Lopez-Escamez JA. A rare haplotype of the GJD3 gene segregating in familial Meniere's disease interferes with connexin assembly. Genome Med 2025; 17:4. [PMID: 39815343 PMCID: PMC11737067 DOI: 10.1186/s13073-024-01425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 12/11/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Familial Meniere's disease (FMD) is a rare polygenic disorder of the inner ear. Mutations in the connexin gene family, which encodes gap junction proteins, can also cause hearing loss, but their role in FMD is largely unknown. METHODS We retrieved exome sequencing data from 94 individuals in 70 Meniere's disease (MD) families. Through gene burden analysis, we calculated the enrichment of rare variants (allele frequency < 0.05) in connexins genes in FMD individuals compared with the reference population. The connexin monomer and the homomeric connexon structural models were predicted using AlphaFold2 and HDOCK. RT-qPCR and immunofluorescence were done in mice cochleae to identify expression of the mouse ortholog candidate gene Gjd3. RESULTS We found an enrichment of rare missense variants in the GJD3 gene when comparing allelic frequencies in FMD (N = 94) with the Spanish reference population (OR = 3.9[1.92-7.91], FDR = 2.36E-03). In the GJD3 sequence, we identified a rare haplotype (TGAGT) composed of two missense, two synonymous, and one downstream variant. This haplotype was found in five individuals with FMD, segregating in three unrelated families with a total of ten individuals; and in another eight MD individuals. GJD3 encodes the gap junction protein delta 3, also known as human connexin 31.9 (Cx31.9). The protein model predicted that the NP_689343.3:p.(His175Tyr) missense variant could modify the interaction between connexins and the connexon assembly, affecting the homotypic GJD3 gap junction between cells. Our studies in mice revealed that Gjd3-encoding Gjd3 or mouse connexin 30.2 (Cx30.2)-was expressed in the organ of Corti and vestibular organs, particularly in the tectorial membrane, the base of inner and outer hair cells and the nerve fibers. CONCLUSIONS The present results describe a novel association between GJD3 and FMD, providing evidence that FMD is related to changes in the inner ear channels, and supporting a new role of tectorial membrane proteins in MD.
Collapse
Affiliation(s)
- Alba Escalera-Balsera
- Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain
- Division of Otolaryngology, Department of Surgery, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Paula Robles-Bolivar
- Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain
- Division of Otolaryngology, Department of Surgery, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Alberto M Parra-Perez
- Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain
- Division of Otolaryngology, Department of Surgery, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Silvia Murillo-Cuesta
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- Institute for Biomedical Research Sols-Morreale (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Han Chow Chua
- Sydney Pharmacy School, Faculty of Medicine and Health and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Lourdes Rodríguez-de la Rosa
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- Institute for Biomedical Research Sols-Morreale (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Julio Contreras
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), Madrid, Spain
- Anatomy and Embryology Department, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
| | - Ewa Domarecka
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | | | - Andrés Soto-Varela
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Division of Otoneurology, Department of Otorhinolaryngology, Complexo Hospitalario Universitario, Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialities, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabel Varela-Nieto
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- Institute for Biomedical Research Sols-Morreale (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Agnieszka J Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Alvaro Gallego-Martinez
- Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain
- Division of Otolaryngology, Department of Surgery, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Jose A Lopez-Escamez
- Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain.
- Division of Otolaryngology, Department of Surgery, Universidad de Granada, Granada, Spain.
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain.
- Faculty of Medicine & Health, School of Medical Sciences, Meniere's Disease Neuroscience Research Program, The Kolling Institute, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Zhang Z, Wang Q, Zhou Z, Peng A, Jiang W. Comparative Proteomic Analysis of Endolymphatic Sac Luminal Fluid in Patients with Meniere's Disease and Controls. J Inflamm Res 2024; 17:10209-10222. [PMID: 39649425 PMCID: PMC11625438 DOI: 10.2147/jir.s474910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/12/2024] [Indexed: 12/10/2024] Open
Abstract
Introduction Meniere's disease (MD) is known to be caused by the dysfunction of the endolymphatic sac (ES), but its molecular mechanism is unknown. Methods We performed a comparative proteomic analysis of ES luminal fluids (ELFs) from patients with MD and controls. Results We found 6 differentially expressed proteins, including 2 significantly increased proteins and 4 significantly decreased proteins, 8 proteins identified exclusively in at least 7 of the 8 ELF samples from MD patients and 3 proteins detected solely in at least 4 of the 5 ELF samples from controls. Discussion The increased levels of IGLV 3-9 and IGLV1-47 in MD group compared with control group suggested an increased inflammatory reactions and a decreased level of Aldehyde dehydrogenase 2 in MD group compared with control group might result in oxidative damage and inflammatory lesions in the ES of MD. Whereas CD44 identified exclusively in MD samples might be involved in the metabolism of its ligand, hyaluronic acid for overproduction of endolymph in the ES of MD.
Collapse
Affiliation(s)
- Zhiwen Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South UniversityChangsha, People’s Republic of China
| | - Qin Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South UniversityChangsha, People’s Republic of China
| | - Zhou Zhou
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South UniversityChangsha, People’s Republic of China
| | - Anquan Peng
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South UniversityChangsha, People’s Republic of China
| | - Wenqi Jiang
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
4
|
Lopez-Escamez JA, Perez-Carpena P. Update on the pathophysiology, diagnosis and management of Ménière's disease. Curr Opin Otolaryngol Head Neck Surg 2024; 32:306-312. [PMID: 39146194 DOI: 10.1097/moo.0000000000001002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
PURPOSE OF REVIEW The aim of this work is to summarize the main advances on the pathophysiology, diagnosis, and treatment of Meniere's disease (MD). RECENT FINDINGS Different immune responses to biotic stimuli may trigger MD, with subgroups identified based on cytokine and genetic profile, suggesting potential benefits from immune therapy, including antiallergic medication. Genetic and epigenetic research, along with imaging studies, reveal the complexity of MD, involving inflammation, immunity, and metabolic processes. Advanced imaging techniques define specific temporal bone features and endolymphatic hydrops, while machine learning models enhance diagnostic accuracy through clinical and laboratory data analysis. Differentiating MD from vestibular migraine remains challenging due to overlapping symptoms, but combining vestibular tests, audiological assessments, and biomarkers like cytokines and chemokines shows promise. Pharmacological treatments such as betahistine or corticosteroids show varying effectiveness and require further research according to immune subgroups. Surgical options like endolymphatic sac decompression, semicircular canal occlusion and labyrinthectomy are restricted to intractable cases. SUMMARY Research into MD aims to improve diagnosis and treatment through genetic, immunological, and advanced imaging studies. Current treatments include pharmacological, intratympanic, and surgical interventions, but current research supports a personalized approach based on clinical and molecular re-definition of patient subgroups.
Collapse
Affiliation(s)
- Jose A Lopez-Escamez
- Meniere's Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, The University of Sydney, Sydney, New South Wales, Australia
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid
- Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitaria, ibs.GRANADA, Universidad de Granada
| | - Patricia Perez-Carpena
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid
- Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitaria, ibs.GRANADA, Universidad de Granada
- Deparment of Otolaryngology, Hospital Universitario San Cecilio, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain
| |
Collapse
|
5
|
Patil V, Perez-Carpena P, Lopez-Escamez JA. A systematic review on the contribution of DNA methylation to hearing loss. Clin Epigenetics 2024; 16:88. [PMID: 38970134 PMCID: PMC11227199 DOI: 10.1186/s13148-024-01697-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/17/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND DNA methylation may have a regulatory role in monogenic sensorineural hearing loss and complex, polygenic phenotypic forms of hearing loss, including age-related hearing impairment or Meniere disease. The purpose of this systematic review is to critically assess the evidence supporting a functional role of DNA methylation in phenotypes associated with hearing loss. RESULTS The search strategy yielded a total of 661 articles. After quality assessment, 25 records were selected (12 human DNA methylation studies, 5 experimental animal studies and 8 studies reporting mutations in the DNMT1 gene). Although some methylation studies reported significant differences in CpG methylation in diverse gene promoters associated with complex hearing loss phenotypes (ARHI, otosclerosis, MD), only one study included a replication cohort that supported a regulatory role for CpG methylation in the genes TCF25 and POLE in ARHI. Conversely, several studies have independently confirmed pathogenic mutations within exon 21 of the DNMT1 gene, which encodes the DNA (cytosine-5)-methyltransferase 1 enzyme. This methylation enzyme is strongly associated with a rare disease defined by autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN). Of note, rare variants in DNMT1 and DNMT3A genes have also been reported in noise-induced hearing loss. CONCLUSIONS Evidence supporting a functional role for DNA methylation in hearing loss is limited to few genes in complex disorders such as ARHI. Mutations in the DNMT1 gene are associated with ADCA-DN, suggesting the CpG methylation in hearing loss genes deserves further attention in hearing research.
Collapse
Affiliation(s)
- Vibha Patil
- Meniere's Disease Neuroscience Research Program, Faculty of Medicine and Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Rm 611024, Level 11 Kolling Institute | 10 Westbourne St, St Leonards, Sydney, NSW, 2064, Australia.
| | - Patricia Perez-Carpena
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.Granada, Universidad de Granada, Granada, Spain
- Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitaria, ibs.GRANADA, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Program, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- Department of Otolaryngology, Hospital Universitario San Cecilio, Instituto de Investigacion Biosanitaria, ibs.GRANADA, Granada, Spain
| | - Jose A Lopez-Escamez
- Meniere's Disease Neuroscience Research Program, Faculty of Medicine and Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Rm 611024, Level 11 Kolling Institute | 10 Westbourne St, St Leonards, Sydney, NSW, 2064, Australia
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.Granada, Universidad de Granada, Granada, Spain
- Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitaria, ibs.GRANADA, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Program, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| |
Collapse
|
6
|
Flook M, Rojano E, Gallego-Martinez A, Escalera-Balsera A, Perez-Carpena P, Moleon MDC, Gonzalez-Aguado R, Rivero de Jesus V, Domínguez-Durán E, Frejo L, G Ranea JA, Lopez-Escamez JA. Cytokine profiling and transcriptomics in mononuclear cells define immune variants in Meniere Disease. Genes Immun 2024; 25:124-131. [PMID: 38396174 PMCID: PMC11023934 DOI: 10.1038/s41435-024-00260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Meniere Disease (MD) is a chronic inner ear disorder characterized by vertigo attacks, sensorineural hearing loss, tinnitus, and aural fullness. Extensive evidence supporting the inflammatory etiology of MD has been found, therefore, by using transcriptome analysis, we aim to describe the inflammatory variants of MD. We performed Bulk RNAseq on 45 patients with definite MD and 15 healthy controls. MD patients were classified according to their basal levels of IL-1β into 2 groups: high and low. Differentially expression analysis was performed using the ExpHunter Suite, and cell type proportion was evaluated using the estimation algorithms xCell, ABIS, and CIBERSORTx. MD patients showed 15 differentially expressed genes (DEG) compared to controls. The top DEGs include IGHG1 (p = 1.64 × 10-6) and IGLV3-21 (p = 6.28 × 10-3), supporting a role in the adaptative immune response. Cytokine profiling defines a subgroup of patients with high levels of IL-1β with up-regulation of IL6 (p = 7.65 × 10-8) and INHBA (p = 3.39 × 10-7) genes. Transcriptomic data from peripheral blood mononuclear cells support a proinflammatory subgroup of MD patients with high levels of IL6 and an increase in naïve B-cells, and memory CD8+ T cells.
Collapse
Affiliation(s)
- Marisa Flook
- Otology and Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain.
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain.
- UCL Ear Institute, University College London, London, UK.
| | - Elena Rojano
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Malaga, Spain
- Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
| | - Alvaro Gallego-Martinez
- Otology and Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Alba Escalera-Balsera
- Otology and Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Patricia Perez-Carpena
- Otology and Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - M Del Carmen Moleon
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- Department of Otolaryngology, Hospital Universitario San Cecilio, Granada, Spain
| | - Rocio Gonzalez-Aguado
- Department of Otorhinolaryngology, Hospital Universitario Marques de Valdecilla, Santander, Spain
| | | | - Emilio Domínguez-Durán
- Unidad de Gestión Clínica de Otorrinolaringología, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Lidia Frejo
- Otology and Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- Meniere Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Juan A G Ranea
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Malaga, Spain
- Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Centro de Investigación Biomedica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 29029, Madrid, Spain
- Spanish National Bioinformatics Institute (INB/ELIXIR-ES), 08034, Barcelona, Spain
| | - Jose Antonio Lopez-Escamez
- Otology and Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain.
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain.
- Meniere Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Parra-Perez AM, Gallego-Martinez A, Lopez-Escamez JA. An overload of missense variants in the OTOG gene may drive a higher prevalence of familial Meniere disease in the European population. Hum Genet 2024; 143:423-435. [PMID: 38519595 PMCID: PMC11043142 DOI: 10.1007/s00439-024-02643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/14/2024] [Indexed: 03/25/2024]
Abstract
Meniere disease is a complex inner ear disorder with significant familial aggregation. A differential prevalence of familial MD (FMD) has been reported, being 9-10% in Europeans compared to 6% in East Asians. A broad genetic heterogeneity in FMD has been described, OTOG being the most common mutated gene, with a compound heterozygous recessive inheritance. We hypothesize that an OTOG-related founder effect may explain the higher prevalence of FMD in the European population. Therefore, the present study aimed to compare the allele frequency (AF) and distribution of OTOG rare variants across different populations. For this purpose, the coding regions with high constraint (low density of rare variants) were retrieved in the OTOG coding sequence in Non-Finnish European (NFE).. Missense variants (AF < 0.01) were selected from a 100 FMD patient cohort, and their population AF was annotated using gnomAD v2.1. A linkage analysis was performed, and odds ratios were calculated to compare AF between NFE and other populations. Thirteen rare missense variants were observed in 13 FMD patients, with 2 variants (rs61978648 and rs61736002) shared by 5 individuals and another variant (rs117315845) shared by two individuals. The results confirm the observed enrichment of OTOG rare missense variants in FMD. Furthermore, eight variants were enriched in the NFE population, and six of them were in constrained regions. Structural modeling predicts five missense variants that could alter the otogelin stability. We conclude that several variants reported in FMD are in constraint regions, and they may have a founder effect and explain the burden of FMD in the European population.
Collapse
Affiliation(s)
- Alberto M Parra-Perez
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER),, Madrid, Spain
- Faculty of Medicine and Health, School of Medical Sciences, Meniere's Disease Neuroscience Research Program, The Kolling Institute, The University of Sydney, 10 Westbourne St, Sydney, NSW, Australia
| | - Alvaro Gallego-Martinez
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER),, Madrid, Spain
- Faculty of Medicine and Health, School of Medical Sciences, Meniere's Disease Neuroscience Research Program, The Kolling Institute, The University of Sydney, 10 Westbourne St, Sydney, NSW, Australia
| | - Jose A Lopez-Escamez
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Universidad de Granada, Granada, Spain.
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER),, Madrid, Spain.
- Faculty of Medicine and Health, School of Medical Sciences, Meniere's Disease Neuroscience Research Program, The Kolling Institute, The University of Sydney, 10 Westbourne St, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Liu F, Han B, Zhou X, Huang S, Huang J. Research progress on the treatment and nursing of sensorineural hearing loss. Front Neurosci 2023; 17:1199946. [PMID: 37346087 PMCID: PMC10279882 DOI: 10.3389/fnins.2023.1199946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
This article provides a comprehensive review of the progress in the treatment and care of sensorineural hearing loss (SNHL), which is a common disease in the field of otolaryngology. In recent years, the incidence of SNHL has been on the rise due to factors such as fast-paced lifestyles, work pressure, and environmental noise pollution, which have a significant impact on the quality of life of patients. Therefore, the study of the treatment and care of SNHL remains a hot topic in the medical community. Despite significant advances in this field, there are still some challenges and limitations. For example, there is currently no single method that can completely cure SNHL, and the effectiveness of treatment may vary significantly among individuals. In addition, due to the complex etiology of SNHL, the prognosis of patients may vary greatly, requiring the development of personalized treatment plans and care strategies. To address these challenges, continuous research is needed to explore new treatment methods and care models to improve the quality of life of patients. In addition, there is a need for health education programs for the general public to raise awareness of SNHL and promote preventive measures to reduce its incidence. The ultimate goal is to ensure the sustainable development of the field of SNHL treatment and care, thus ensuring the health and well-being of affected individuals.
Collapse
Affiliation(s)
| | | | | | - Shuo Huang
- *Correspondence: Shuo Huang, ; Jing Huang,
| | - Jing Huang
- *Correspondence: Shuo Huang, ; Jing Huang,
| |
Collapse
|
9
|
Parra-Perez AM, Lopez-Escamez JA. Types of Inheritance and Genes Associated with Familial Meniere Disease. J Assoc Res Otolaryngol 2023:10.1007/s10162-023-00896-0. [PMID: 37022572 DOI: 10.1007/s10162-023-00896-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023] Open
Abstract
Meniere disease (MD) is a rare disorder of the inner ear defined by sensorineural hearing loss (SNHL) associated with episodes of vertigo and tinnitus. The phenotype is variable, and it may be associated with other comorbidities such as migraine, respiratory allergies, and several autoimmune disorders. The condition has a significant heritability according to epidemiological and familial segregation studies. Familial MD is found in 10% of cases, the most frequently found genes being OTOG, MYO7A, and TECTA, previously associated with autosomal dominant and recessive non-syndromic SNHL. These findings suggest a new hypothesis where proteins involved in the extracellular structures in the apical surface of sensory epithelia (otolithic and tectorial membranes) and proteins in the stereocilia links would be key elements in the pathophysiology of MD. The ionic homeostasis of the otolithic and tectorial membranes could be critical to suppress the innate motility of individual hair cell bundles. Initially, focal detachment of these extracellular membranes may cause random depolarization of hair cells and will explain changes in tinnitus loudness or trigger vertigo attacks in early stages of MD. With the progression of the disease, a larger detachment will lead to an otolithic membrane herniation into the horizontal semicircular canal with dissociation in caloric and head impulse responses. Familial MD shows different types of inheritance, including autosomal dominant and compound recessive patterns and implementation of genetic testing will improve our understanding of the genetic structure of MD.
Collapse
Affiliation(s)
- Alberto M Parra-Perez
- Meniere's Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, 10 Westbourne St, St Leonards NSW 2064, Sydney, NSW, Australia
- Otology and Neurotology Group CTS495, Department of Genomic Medicine, GENYO - Centre for Genomics and Oncological Research - Pfizer, University of Granada, PTS, Junta de Andalucía, Granada, Spain
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Jose A Lopez-Escamez
- Meniere's Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, 10 Westbourne St, St Leonards NSW 2064, Sydney, NSW, Australia.
- Otology and Neurotology Group CTS495, Department of Genomic Medicine, GENYO - Centre for Genomics and Oncological Research - Pfizer, University of Granada, PTS, Junta de Andalucía, Granada, Spain.
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Universidad de Granada, Granada, Spain.
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain.
| |
Collapse
|
10
|
Huang L, Wang Q, Huang C, Zhou Z, Peng A, Zhang Z. Untargeted Metabolomic Analysis in Endolymphatic Sac Luminal Fluid from Patients with Meniere's Disease. J Assoc Res Otolaryngol 2023; 24:239-251. [PMID: 36715893 PMCID: PMC10121990 DOI: 10.1007/s10162-023-00887-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/23/2022] [Indexed: 01/31/2023] Open
Abstract
Dysfunction of the endolymphatic sac (ES) is one of the etiologies of Meniere's disease (MD), the mechanism of which remains unclear. The aim of the present study was to explore the molecular pathological characteristics of ES during the development of MD. Metabolomic profiling of ES luminal fluid from patients with MD and patients with acoustic neuroma (AN) was performed. Diluted ES luminal fluid (ELF) samples were obtained from 10 patients who underwent endolymphatic duct blockage for the treatment of intractable MD and from 6 patients who underwent translabyrinthine surgery for AN. ELF analysis was performed using liquid chromatography-mass spectrometry before the raw data were normalized and subjected to subsequent statistical analysis by MetaboAnalyst. Using thresholds of P ≤ 0.05 and variable important in projection > 1, a total of 111 differential metabolites were screened in the ELF, including 52 metabolites in negative mode and 59 in positive mode. Furthermore, 15 differentially altered metabolites corresponding to 15 compound names were identified using a Student's t-test, including 7 significant increased metabolites and 8 significant decreased metabolites. Moreover, two differentially altered metabolites, hyaluronic acid (HA) and 4-hydroxynonenal (4-HNE), were validated to be upregulated in the epithelial lining of the ES, as well as in the subepithelial connective-tissue in patients with MD comparing with that in patients with AN. Among these differentially altered metabolites, an upregulated expression of HA detected in the ES lumen of the patients with MD was supposed to be associated with the increased endolymph in ES, while an increased level of 4-HNE found in the ELF of the patients with MD provided direct evidence to support that oxidative damage and inflammatory lesions underlie the mechanism of MD. Furthermore, citrate and ethylenediaminetetraacetic acid were detected to be decreased substantially in the ELF of the patients with MD, suggesting the elevated endolymphatic Ca2+ in the ears with chronic endolymphatic hydrops is likely to be associated with the reduction of these two chelators of Ca2+ in ES. The results in the present study indicate metabolomic analysis in the ELF of the patients with MD can potentially improve our understanding on the molecular pathophysiological mechanism in the ES during the development of MD.
Collapse
Affiliation(s)
- Li Huang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Qin Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Chao Huang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Zhou Zhou
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Anquan Peng
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Zhiwen Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| |
Collapse
|
11
|
Dai Q, Long L, Zhao H, Wang R, Zheng H, Duan M. Genetic advances in Meniere Disease. Mol Biol Rep 2023; 50:2901-2908. [PMID: 36565421 PMCID: PMC10011279 DOI: 10.1007/s11033-022-08149-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/22/2022] [Indexed: 12/25/2022]
Abstract
Meniere Disease (MD) is an idiopathic inner ear disease with complex etiology and pathogenesis, which is still unclear. With the development in gene analysis technology, the genetic research of MD has attracted extensive attention, resulting in a large number of studies on the research of the relationship between human genes and MD. This paper aims to review the studies on this topic in recent years. The studies mainly focused on the genetics of familial MD and the correlation between MD and potentially related functional genes. The results of these studies have demonstrated the complexity and diversity of the pathogenesis of MD with both genetic and epigenetic alterations, suggesting that MD might be related to inflammation, immunity, aqua and ion balance in the lymphatic fluid, virus infection, metabolism, and abnormal function of nerve conduction. The finding of rare mutations in TECTA, MYO7A and OTOG genes and other genes such as CDH23, PCDH15 and ADGRV1 in the same families suggest that the integrity of the stereocilia and their interaction with the tectorial and otolithic membranes could be involved in the pathophysiology of familial MD.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Otorhinolaryngology-Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041 Sichuan China
- Department of Otolaryngology-Head and Neck, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Karolinska Institute, 17176 Stockholm, Sweden
| | - Lili Long
- Department of Otorhinolaryngology, Sichuan University Hospital of Sichuan University, Chengdu, 610065 Sichuan China
| | - Hui Zhao
- Department of Otorhinolaryngology, Hospital of Civil Aviation Flight University of China, Guanghan, 618300 Sichuan China
| | - Ruikai Wang
- West China School of Medicine, Sichuan University, Chengdu, 610041 Sichuan China
| | - Hong Zheng
- Department of Otorhinolaryngology-Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041 Sichuan China
| | - Maoli Duan
- Department of Otolaryngology-Head and Neck, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Karolinska Institute, 17176 Stockholm, Sweden
| |
Collapse
|
12
|
Zhang S, Guo Z, Tian E, Liu D, Wang J, Kong W. Meniere disease subtyping: the direction of diagnosis and treatment in the future. Expert Rev Neurother 2022; 22:115-127. [PMID: 35057670 DOI: 10.1080/14737175.2022.2030221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Sulin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Zhaoqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - E Tian
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Dan Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Jun Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
- Key Laboratory of Neurological Disorders of Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| |
Collapse
|