1
|
Mehranfar S, Tarashi S, Hajishizari S, Badi SA, Yekaninejad MS, Clark CCT, Motahhary A, Jamili S, Siadat SD, Mirzaei K. The association between gut microbiota and resting metabolic rate in overweight/obese women: a case-control study. J Diabetes Metab Disord 2024; 23:931-941. [PMID: 38932806 PMCID: PMC11196539 DOI: 10.1007/s40200-023-01368-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/06/2023] [Indexed: 06/28/2024]
Abstract
Purpose When examining the underlying processes of obesity, evaluation of gut flora and energy homeostasis can be crucial since disruption of the normal gut microbiota community and energy imbalances are significant factors in the development of obesity. Therefore, this study aimed to compare the relative abundance of important obesity modulator gut microbiota (including Firmicutes, Bacteroidetes, Bifidobactrium spp., Lactobacillus spp., Bacteroides fragilis, Faecalibacterium prausnitzii, Akkermansia muciniphila, and Escherichia coli) in fecal samples of normometabilic and hypometabolic overweight/obese individuals. Methods This matched case-control study conducted on 36 healthy women aged 18-50 years old. An indirect calorimeter and impedance body analyzer were used to assess resting metabolic rate (RMR) and body composition, respectively. Dietary intake and physical activity were assessed using questionnaires. To determine the abundance of the abovementioned gut microbiota, quantitative polymerase chain reaction (qPCR) method was performed. Moreover, ELISA kits were used to assess leptin, ghrelin, and insulin hormones. Results The results highlighted higher load of Firmicutes (p = 0.02), F. prausnitzii (p < 0.001), and B. fragilis (p = 0.02) in the normometabolic individuals compared to the hypometabolic ones. Besides, the positive correlation between the abundance of Firmicutes (β = 7.76 × 10-1, p = 0.01), F. prausnitzii (β = 1.29 × 10-5, p = 0.01), and B. fragilis (β = 4.13 × 10-6, p = 0.04) with the RMR have been shown. Whereas the abundance of Bacteroidetes, A. muciniphila, Lactobacillus spp., Bifidobactrium spp., and E. coli showed no significant difference (p > 0.05) and no significant correlation with the RMR except Lactobacillus spp. (β = 1.73 × 10-4, p = 0.01). Conclusion It seems that gut microbiota can be a potential target for refining host energy homeostasis and treating obesity and its consequences.
Collapse
Affiliation(s)
- Sanaz Mehranfar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Tarashi
- Microbiology Research Centre, Pasteur Institute of Iran, Tehran, Iran
| | - Sara Hajishizari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Ahmadi Badi
- Microbiology Research Centre, Pasteur Institute of Iran, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Cain C. T. Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, UK
| | - Atiyyeh Motahhary
- Microbiology Research Centre, Pasteur Institute of Iran, Tehran, Iran
| | - Shahin Jamili
- Department of Surgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Centre, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Kalyanaraman B, Cheng G, Hardy M. Gut microbiome, short-chain fatty acids, alpha-synuclein, neuroinflammation, and ROS/RNS: Relevance to Parkinson's disease and therapeutic implications. Redox Biol 2024; 71:103092. [PMID: 38377788 PMCID: PMC10891329 DOI: 10.1016/j.redox.2024.103092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024] Open
Abstract
In this review, we explore how short-chain fatty acids (SCFAs) produced by the gut microbiome affect Parkinson's disease (PD) through their modulatory interactions with alpha-synuclein, neuroinflammation, and oxidative stress mediated by reactive oxygen and nitrogen species (ROS/RNS). In particular, SCFAs-such as acetate, propionate, and butyrate-are involved in gut-brain communication and can modulate alpha-synuclein aggregation, a hallmark of PD. The gut microbiome of patients with PD has lower levels of SCFAs than healthy individuals. Probiotics may be a potential strategy to restore SCFAs and alleviate PD symptoms, but the underlying mechanisms are not fully understood. Also in this review, we discuss how alpha-synuclein, present in the guts and brains of patients with PD, may induce neuroinflammation and oxidative stress via ROS/RNS. Alpha-synuclein is considered an early biomarker for PD and may link the gut-brain axis to the disease pathogenesis. Therefore, elucidating the role of SCFAs in the gut microbiome and their impact on alpha-synuclein-induced neuroinflammation in microglia and on ROS/RNS is crucial in PD pathogenesis and treatment.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States
| | - Micael Hardy
- Aix-Marseille Univ, CNRS, ICR, UMR 7273, Marseille, 13013, France
| |
Collapse
|
3
|
Zhou YJ, Ying GX, Dong SL, Xiang B, Jin QF. Gut microbial profile of treatment-naive patients with primary biliary cholangitis. Front Immunol 2023; 14:1126117. [PMID: 37223092 PMCID: PMC10200865 DOI: 10.3389/fimmu.2023.1126117] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/24/2023] [Indexed: 05/25/2023] Open
Abstract
Background and aims The pathogenesis of primary biliary cholangitis (PBC) is associated with alterations of gut microbiota. We compared the gut microbiota of PBC patients and healthy controls from Zhejiang Province and assessed the use of these data for the diagnosis of PBC. Methods First, 16S rRNA gene sequencing was used to characterize the gut microbiota of treatment-naive PBC patients (n=25) and matched healthy controls (n=25). Then, the value of gut microbiota composition for the diagnosis of PBC and assessment of PBC severity was determined. Results The gut microbiota of PBC patients had lower diversity based on three different metrics of alpha-diversity (ace, Chao1, and observed features) and fewer overall genera (all p<0.01). PBC patients had significant enrichment of four genera and significant depletion of eight genera. We identified six amplicon sequence variants (Serratia, Oscillospirales, Ruminococcaceae, Faecalibacterium, Sutterellaceae, and Coprococcus) as optimal biomarkers to distinguish PBC patients from controls based on receiver operating characteristic analysis (area under the curve [AUC] = 0.824). PBC patients who were anti-gp210-positive had lower levels of Oscillospiraceae than those who were anti-gp210-negative. KEGG functional annotation suggested the major changes in the gut microbiota of PBC patients were related to lipid metabolism and biosynthesis of secondary metabolites. Conclusion We characterized the gut microbiota of treatment-naive PBC patients and healthy controls from Zhejiang Province. The PBC patients had significant alterations in their gut microbiota, suggesting that gut microbiota composition could be useful as a non-invasive tool for the diagnosis of PBC.
Collapse
Affiliation(s)
- Yi-jun Zhou
- Department of Hepatology, Affiliated Hangzhou Xixi Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Gao-xiang Ying
- Department of Hepatology, Affiliated Hangzhou Xixi Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shi-lei Dong
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Bo Xiang
- Department of Hepatology, Affiliated Hangzhou Xixi Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiao-fei Jin
- Department of Hepatology, Affiliated Hangzhou Xixi Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Can butyrate prevent colon cancer? The AusFAP study: A randomised, crossover clinical trial. Contemp Clin Trials Commun 2023; 32:101092. [PMID: 36852101 PMCID: PMC9958425 DOI: 10.1016/j.conctc.2023.101092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Increased colonic butyrate from microbial fermentation of fibre may protect from colorectal cancer (CRC). Dietary butyrylated high amylose maize starch (HAMSB) delivers butyrate to the large bowel. The objective of this clinical trial (AusFAP) is to evaluate potential chemoprotective effects of HAMSB on polyposis in individuals with a genetic form of colon cancer, Familial Adenomatous Polyposis (FAP). The study is a multi-site, double blind, randomised, placebo-controlled crossover trial undertaken at major hospitals in Australia. After a baseline endoscopy participants consume either 40g/day of HAMSB or placebo (low amylose maize) starch for 26 weeks. After another endoscopic examination participants consume the alternate starch for 26 weeks. A third endoscopy at 52 weeks is followed by 26 weeks' washout and a final endoscopy at 78 weeks. Primary outcome measure is the global large bowel polyp number. Secondary measures include global polyp size counts, and number and size of polyps at two tattoo sites: one cleared of polyps at baseline, and another safely chosen with polyps left in situ during the study. Other secondary outcome measures include the effects of intervention on cellular proliferation in colonic biopsies, faecal measures including short chain fatty acid concentrations, and participants' dietary intakes. Generalized linear mixed models analysis will be used to estimate differences in primary outcomes between intervention and placebo periods. This study represents the first clinical evaluation of the effects of increased colonic butyrate on polyp burden in FAP which, if effective, may translate to lower risk of sporadic CRC in the community. Australian New Zealand Clinical Trials Registry Number: 12612000804886.
Collapse
|
5
|
Bordonaro M. Oncogenic and Receptor-Mediated Wnt Signaling Influence the Sensitivity of Colonic Cells to Butyrate. J Cancer 2023; 14:446-453. [PMID: 36860917 PMCID: PMC9969577 DOI: 10.7150/jca.82393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
Deregulated Wnt signaling is responsible for most cases of colorectal cancer (CRC). Dietary fiber is protective against CRC and this activity is likely mediated by butyrate, a breakdown product of dietary fiber that hyperactivates Wnt signaling, repressing CRC proliferation and inducing apoptosis. Receptor-mediated Wnt signaling and oncogenic Wnt signaling, which is typically initiated by mutation in more downstream elements of the pathway, activate non-overlapping patterns of gene expression. Receptor-mediated signaling is associated with a poor prognosis for CRC while oncogenic signaling is associated with a relatively good prognosis. We have compared the expression of genes differentially expressed in receptor-mediated vs. oncogenic Wnt signaling to microarray data generated in our laboratory. Most importantly we evaluated these gene expression patterns comparing the early stage colon microadenoma line LT97 with the metastatic CRC cell line SW620. LT97 cells exhibit a gene expression pattern more strongly associated with that observed with oncogenic Wnt signaling, while SW620 cells exhibit a gene expression pattern moderately associated with that observed with receptor-mediated Wnt signaling. Given that SW620 cells are more advanced and malignant compared to LT97 cells, these findings are generally consistent with the better prognosis observed with tumors exhibiting a more oncogenic Wnt gene expression pattern. Importantly, LT97 cells are more sensitive to the effects of butyrate on proliferation and apoptosis that are CRC cells. We further examine these gene expression patterns in butyrate-resistant vs. butyrate-sensitive CRC cells. Based upon all of these observations, we hypothesize that colonic neoplastic cells exhibiting a more oncogenic as compared to receptor-mediated Wnt signaling gene expression pattern would be more sensitive to the effects of butyrate, and, hence, fiber, than are those cells exhibiting a more receptor-mediated Wnt signaling pattern of expression. Diet-derived butyrate may affect the differential patient outcomes resulting from the two types of Wnt signaling. We further posit that development of butyrate resistance and concomitant changes in Wnt signaling patterns, including associations with CBP and p300, disrupts the association between the two major types of Wnt signaling (receptor-mediated and oncogenic) and neoplastic progression/prognosis. Ideas about testing the hypothesis and therapeutic implications are briefly considered.
Collapse
Affiliation(s)
- Michael Bordonaro
- ✉ Corresponding author: Geisinger Commonwealth School of Medicine 525 Pine Street Scranton, PA 18509 Tel: 570-504-9646 Fax: 570-504-9636 ,
| |
Collapse
|
6
|
Park SY, Chung YS, Park SY, Kim SH. Role of AMPK in Regulation of Oxaliplatin-Resistant Human Colorectal Cancer. Biomedicines 2022; 10:2690. [PMID: 36359211 PMCID: PMC9687437 DOI: 10.3390/biomedicines10112690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 10/12/2023] Open
Abstract
Oxaliplatin is a platinum analog that can interfere with DNA replication and transcription. Continuous exposure to oxaliplatin results in chemoresistance; however, this mechanism is not well known. In this study, oxaliplatin-resistant (OR) colorectal cancer (CRC) cells of HCT116, HT29, SW480 and SW620 were established by gradually increasing the drug concentration to 2.5 μM. The inhibitory concentrations of cell growth by 50% (IC50) of oxaliplatin were 4.40-12.7-fold significantly higher in OR CRC cells as compared to their respective parental (PT) CRC cells. Phospho-Akt and phospho-mammalian target of rapamycin (mTOR) decreased in PT CRC cells but was overexpressed in OR CRC cells in response to oxaliplatin. In addition, an oxaliplatin-mediated decrease in phospho-AMP-activated protein kinase (AMPK) in PT CRC cells induced autophagy. Contrastingly, an increased phospho-AMPK in OR CRC cells was accompanied by a decrease in LC3B, further inducing the activity of glycolytic enzymes, such as glucose transporter 1 (GLUT1), 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) and phosphofructokinase 1 (PFK1), to mediate cell survival. Inhibition of AMPK in OR CRC cells induced autophagy through inactivation of Akt/mTOR pathway and a decrease in GLUT1, PFKFB3, and PFK1. Collectively, targeting AMPK may provide solutions to overcome chemoresistance in OR CRC cells and restore chemosensitivity to anticancer drugs.
Collapse
Affiliation(s)
- Sun Young Park
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Korea
| | - Ye Seo Chung
- Department of Biohealth Regulatory Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - So Yeon Park
- Department of Biohealth Regulatory Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - So Hee Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Korea
- Department of Biohealth Regulatory Science, Graduate School of Ajou University, Suwon 16499, Korea
| |
Collapse
|
7
|
Nittayaboon K, Leetanaporn K, Sangkhathat S, Roytrakul S, Navakanitworakul R. Cytotoxic effect of metformin on butyrate-resistant PMF-K014 colorectal cancer spheroid cells. Biomed Pharmacother 2022; 151:113214. [PMID: 35676792 DOI: 10.1016/j.biopha.2022.113214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/01/2022] Open
Abstract
Three-dimensional (3D) cell culture models are used in cancer research because they mimic physiological responses in vivo compared with two-dimensional (2D) culture systems. Recently, cross-resistance of butyrate-resistant (BR) cells and chemoresistance in colorectal cancer (CRC) cells have been reported; however, effective treatments for BR cells have not been identified. In this study, we investigated the cytotoxicity of metformin (MET), an anti-diabetic drug, on BR CRC cells in a 3D spheroid culture model. The results demonstrate that MET decreases spheroid size, migration, and spheroid viability, while it increases spheroid death. The molecular mechanism revealed that AMP-activated protein kinase (AMPK) and Akt serine/threonine kinase 1(Akt) were significantly upregulated, whereas the acetyl-CoA-carboxylase (ACC) and mammalian target of rapamycin (mTOR) were downregulated, which led to caspase activation and apoptosis. Our findings show the potential cytotoxicity of MET on CRC-BR cells. The combination of MET and conventional chemotherapeutic drugs should be addressed in further studies to reduce the side effects of standard chemotherapy for CRC.
Collapse
Affiliation(s)
- Kesara Nittayaboon
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Kittinun Leetanaporn
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Surasak Sangkhathat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Sittirak Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani 12120, Thailand.
| | - Raphatphorn Navakanitworakul
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
8
|
Guo Q, Qin H, Liu X, Zhang X, Chen Z, Qin T, Chang L, Zhang W. The Emerging Roles of Human Gut Microbiota in Gastrointestinal Cancer. Front Immunol 2022; 13:915047. [PMID: 35784372 PMCID: PMC9240199 DOI: 10.3389/fimmu.2022.915047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
The gut microbiota is composed of a large number of microorganisms with a complex structure. It participates in the decomposition, digestion, and absorption of nutrients; promotes the development of the immune system; inhibits the colonization of pathogens; and thus modulates human health. In particular, the relationship between gut microbiota and gastrointestinal tumor progression has attracted widespread concern. It was found that the gut microbiota can influence gastrointestinal tumor progression in independent ways. Here, we focused on the distribution of gut microbiota in gastrointestinal tumors and further elaborated on the impact of gut microbiota metabolites, especially short-chain fatty acids, on colorectal cancer progression. Additionally, the effects of gut microbiota on gastrointestinal tumor therapy are outlined. Finally, we put forward the possible problems in gut microbiota and the gastrointestinal oncology field and the efforts we need to make.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Qianqian Guo, ; Wenzhou Zhang,
| | - Hai Qin
- Department of Clinical Laboratory, Guizhou Provincial Orthopedic Hospital, Guiyang City, China
| | - Xueling Liu
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xinxin Zhang
- The Second Clinical Medical School of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Zelong Chen
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Province Engineering Research Center of Artificial Intelligence and Internet of Things Wise Medical, Zhengzhou, China
| | - Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Linlin Chang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Qianqian Guo, ; Wenzhou Zhang,
| |
Collapse
|
9
|
Song J, Sun H, Zhang S, Shan C. The Multiple Roles of Glucose-6-Phosphate Dehydrogenase in Tumorigenesis and Cancer Chemoresistance. Life (Basel) 2022; 12:271. [PMID: 35207558 PMCID: PMC8875868 DOI: 10.3390/life12020271] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/04/2023] Open
Abstract
The pentose phosphate pathway (PPP) is a branch from glycolysis that begins from glucose-6-phosphate (G6P) and ends up with fructose-6-phosphate (F6P) and glyceraldehyde-3-phosphate (GADP). Its primary physiological significance is to provide nicotinamide adenine dinucleotide phosphate (NADPH) and nucleotides for vital activities such as reactive oxygen species (ROS) defense and DNA synthesis. Glucose-6-phosphate dehydrogenase (G6PD) is a housekeeping protein with 514 amino acids that is also the rate-limiting enzyme of PPP, catalyzing G6P into 6-phosphogluconolactone (6PGL) and producing the first NADPH of this pathway. Increasing evidence indicates that G6PD is upregulated in diverse cancers, and this dysfunction influences DNA synthesis, DNA repair, cell cycle regulation and redox homeostasis, which provides advantageous conditions for cancer cell growth, epithelial-mesenchymal transition (EMT), invasion, metastasis and chemoresistance. Thus, targeting G6PD by inhibitors has been shown as a promising strategy in treating cancer and reversing chemotherapeutic resistance. In this review, we will summarize the existing knowledge concerning G6PD and discuss its role, regulation and inhibitors in cancer development and chemotherapy resistance.
Collapse
Affiliation(s)
- Jiaqi Song
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China; (J.S.); (H.S.)
| | - Huanran Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China; (J.S.); (H.S.)
| | - Shuai Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China; (J.S.); (H.S.)
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|