1
|
Zahoor A, Khazer R, Mehraj I, Gani U, Fayaz F, Khanday FA, Bhat SS. Aberrant DNA methylation as a key modulator of cell death pathways: insights into cancer progression and other diseases. Funct Integr Genomics 2025; 25:50. [PMID: 40024973 DOI: 10.1007/s10142-025-01552-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 03/04/2025]
Abstract
Cell death plays a significant role in the physiology of all living organisms, and its disruption is the underlying cause of various diseases. Previously, it was assumed that apoptosis and necrosis were the only means of cell death. Recent discoveries of alternative cell death pathways highlighted a complicated interplay between cell death regulation and its role in numerous human pathologies. DNA methylation is a universal epigenetic mechanism characterized by the covalent addition of a methyl group to cytosine in CpG dinucleotides. Alterations in DNA methylation patterns lead to the dysregulation of multiple cell death pathways. DNA methylome studies on cell death pathways have improved our understanding of the mechanism of various types of cell death, such as apoptosis, pyroptosis, necroptosis, ferroptosis, anoikis, autophagy, and cuproptosis. The irregular DNA methylation patterns of genes encoding proteins linked to multiple cell death pathways could underlie resistance to cell death. Dysregulation of cell death is linked to ailments in humans, such as cancer. However, unlike genetic alterations, DNA methylation is reversible, making it extremely interesting for therapeutics considering the potential use of DNA methyltransferase inhibitors. Furthermore, tumor microenvironment and genetic heterogeneity of cancers may influence the methylation-dependent regulation of cell death, contributing to tumor progression and therapeutic resistance. Understanding how DNA methylation influences cell death pathways may illuminate the underlying causes of cancer. This review explores the significance of the DNA methylation patterns of key genes involved in cell death pathways, emphasizing their connections and identifying potential gaps that could be exploited for developing epigenetic therapies targeting cancer.
Collapse
Affiliation(s)
- Ambreen Zahoor
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K, Srinagar, 190006, J&K, India
| | - Rafia Khazer
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, J&K, India
| | - Insha Mehraj
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K, Srinagar, 190006, J&K, India
| | - Ubaid Gani
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K, Srinagar, 190006, J&K, India
| | - Falah Fayaz
- Govt. Medical College, Srinagar, 190001, J&K, India
| | - Firdous A Khanday
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, J&K, India
| | - Sahar Saleem Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K, Srinagar, 190006, J&K, India.
| |
Collapse
|
2
|
Zhang X, Jin L, Wu Y, Huang B, Chen K, Huang W, Li J. Anti-inflammatory properties of biflavonoids derived from Selaginella moellendorffii Hieron: Targeting NLRP3 inflammasome-dependent pyroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119172. [PMID: 39643022 DOI: 10.1016/j.jep.2024.119172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Selaginella moellendorffii Hieron. has been used as ethnic drug for chronic inflammation treatment. Biflavonoids represent a crucial class of bioactive compounds recognized for their potent anti-inflammatory activity in S. moellendorffii (SM). However, the effective components, targets, and pathways that SM in anti-inflammasome remain unclear. AIM OF THE STUDY Therefore, this study initially evaluated the effective components of SM and explored the underlying mechanisms. MATERIALS AND METHODS Firstly, a series of biflavonoids were isolated from SM, and then all compounds were evaluated for their anti-inflammatory ability in the THP-macrophages co-stimulated with lipopolysaccharide (LPS) and NLRP3 inflammasome inducers. Secondly, transcriptomic analysis and metabolomics analysis revealed the differential genes and metabolites associated with effective components treatment. Finally, molecular docking of effective components with NLRP3 was performed and western blotting was performed in order to determine the expression of related proteins. RESULTS Overall, eleven biflavonoids were successfully isolated from SM. Particularly, F7 exhibited the most potent inhibitory effect against NLRP3 inflammasome-mediated cytokines levels, cell membrane integrity and Ca2+ influx. Transcriptomic studies demonstrated that the differential genes (DEGs) were mainly enriched in NF-κB signaling pathway and NOD-like receptor signaling pathway. Metabolomics studies that the metabolites were mainly involved the pyrimidine metabolites. Further validation analysis manifested that F7's significant downregulation of NLRP3 inflammasome-related genes and proteins expression (P < 0.05, P < 0.01), encompassing both priming (NLRP3, TNF-α, p-p65/p65) and activation stages (IL-1β, IL-18, Caspase-1, GSDMD-N/GSDMD). Moreover, NLRP3 knockdown attenuated F7-mediated inhibition of pyroptosis. Finally, in silico results showed that F7 exhibited promising predicted binding affinity towards NLRP3. CONCLUSIONS Collectively, these findings revealed an anti-inflammatory material basis for SM and confirmed F7 as a potent inhibitor of pyroptosis by suppressing NF-κB/NLRP3 Pathway.
Collapse
Affiliation(s)
- Xueyan Zhang
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Huang-Jia-Hu West Road 16(#), Hongshan District, Wuhan, Hubei, 430065, China; Department of Pharmacy, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430070, China
| | - Lu Jin
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Huang-Jia-Hu West Road 16(#), Hongshan District, Wuhan, Hubei, 430065, China
| | - You Wu
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Huang-Jia-Hu West Road 16(#), Hongshan District, Wuhan, Hubei, 430065, China
| | - Bisheng Huang
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Huang-Jia-Hu West Road 16(#), Hongshan District, Wuhan, Hubei, 430065, China
| | - Keli Chen
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Huang-Jia-Hu West Road 16(#), Hongshan District, Wuhan, Hubei, 430065, China
| | - Wei Huang
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Huang-Jia-Hu West Road 16(#), Hongshan District, Wuhan, Hubei, 430065, China.
| | - Juan Li
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Huang-Jia-Hu West Road 16(#), Hongshan District, Wuhan, Hubei, 430065, China.
| |
Collapse
|
3
|
Doke R, Lamkhade GJ, Vinchurkar K, Singh S. Demystifying the Role of Neuroinflammatory Mediators as Biomarkers for Diagnosis, Prognosis, and Treatment of Alzheimer's Disease: A Review. ACS Pharmacol Transl Sci 2024; 7:2987-3003. [PMID: 39416969 PMCID: PMC11475310 DOI: 10.1021/acsptsci.4c00457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Neuroinflammatory mediators play a pivotal role in the pathogenesis of Alzheimer's Disease (AD), influencing its onset, progression, and severity. The precise mechanisms behind AD are still not fully understood, leading current treatments to focus mainly on managing symptoms rather than preventing or curing the condition. The amyloid and tau hypotheses are the most widely accepted explanations for AD pathology; however, they do not completely account for the neuronal degeneration observed in AD. Growing evidence underscores the crucial role of neuroinflammation in the pathology of AD. The neuroinflammatory hypothesis presents a promising new approach to understanding the mechanisms driving AD. This review examines the importance of neuroinflammatory biomarkers in the diagnosis, prognosis, and treatment of AD. It delves into the mechanisms underlying neuroinflammation in AD, highlighting the involvement of various mediators such as cytokines, chemokines, and ROS. Additionally, this review discusses the potential of neuroinflammatory biomarkers as diagnostic tools, prognostic indicators, and therapeutic targets for AD management. By understanding the intricate interplay between neuroinflammation and AD pathology, this review aims to help in the development of efficient diagnostic and treatment plans to fight this debilitating neurological condition. Furthermore, it elaborates recent advancements in neuroimaging techniques and biofluid analysis for the identification and monitoring of neuroinflammatory biomarkers in AD patients.
Collapse
Affiliation(s)
- Rohit
R. Doke
- Jaihind
College of Pharmacy, Vadgaon Sahani, Pune, Maharashtra 412401, India
| | | | - Kuldeep Vinchurkar
- Krishna
School of Pharmacy, Kiran and Pallavi Patel
Global University, Vadodara, Gujarat 391243, India
| | - Sudarshan Singh
- Office
of Research Administration, Chiang Mai University, Chaing Mai 50200, Thailand
- Faculty
of Pharmacy, Chiang Mai University, Chaing Mai 50200, Thailand
| |
Collapse
|
4
|
Satheesan A, Kumar J, Leela KV, Murugesan R, Chaithanya V, Angelin M. Review on the role of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome pathway in diabetes: mechanistic insights and therapeutic implications. Inflammopharmacology 2024; 32:2753-2779. [PMID: 39160391 DOI: 10.1007/s10787-024-01556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
This review explores the pivotal role of the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome in the pathogenesis of diabetes and its complications, highlighting the therapeutic potential of various oral hypoglycemic drugs targeting this pathway. NLRP3 inflammasome activation, triggered by metabolic stressors like hyperglycemia, hyperlipidemia, and free fatty acids (FFAs), leads to the release of pro-inflammatory cytokines interleukin-1β and interleukin-18, driving insulin resistance, pancreatic β-cell dysfunction, and systemic inflammation. These processes contribute to diabetic complications such as nephropathy, neuropathy, retinopathy, and cardiovascular diseases (CVD). Here we discuss the various transcriptional, epigenetic, and gut microbiome mediated regulation of NLRP3 activation in diabetes. Different classes of oral hypoglycemic drugs modulate NLRP3 inflammasome activity through various mechanisms: sulfonylureas inhibit NLRP3 activation and reduce inflammatory cytokine levels; sodium-glucose co-transporter 2 inhibitors (SGLT2i) suppress inflammasome activity by reducing oxidative stress and modulating intracellular signaling pathways; dipeptidyl peptidase-4 inhibitors mitigate inflammasome activation, protecting against renal and vascular complications; glucagon-like peptide-1 receptor agonists attenuate NLRP3 activity, reducing inflammation and improving metabolic outcomes; alpha-glucosidase inhibitors and thiazolidinediones exhibit anti-inflammatory properties by directly inhibiting NLRP3 activation. Agents that specifically target NLRP3 and inhibit their activation have been identified recently such as MCC950, Anakinra, CY-09, and many more. Targeting the NLRP3 inflammasome, thus, presents a promising strategy for managing diabetes and its complications, with oral hypoglycemic drugs offering dual benefits of glycemic control and inflammation reduction. Further research into the specific mechanisms and long-term effects of these drugs on NLRP3 inflammasome activity is warranted.
Collapse
Affiliation(s)
- Abhishek Satheesan
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Janardanan Kumar
- Department of General Medicine, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India.
| | - Kakithakara Vajravelu Leela
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Ria Murugesan
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Venkata Chaithanya
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Matcha Angelin
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| |
Collapse
|
5
|
Yu H, Liu S, Wang S, Gu X. The involvement of HDAC3 in the pathogenesis of lung injury and pulmonary fibrosis. Front Immunol 2024; 15:1392145. [PMID: 39391308 PMCID: PMC11464298 DOI: 10.3389/fimmu.2024.1392145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
Acute lung injury (ALI) and its severe counterpart, acute respiratory distress syndrome (ARDS), are critical respiratory conditions with high mortality rates due primarily to acute and intense pulmonary inflammation. Despite significant research advances, effective pharmacological treatments for ALI and ARDS remain unavailable, highlighting an urgent need for therapeutic innovation. Notably, idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disease characterized by the irreversible progression of fibrosis, which is initiated by repeated damage to the alveolar epithelium and leads to excessive extracellular matrix deposition. This condition is further complicated by dysregulated tissue repair and fibroblast dysfunction, exacerbating tissue remodeling processes and promoting progression to terminal pulmonary fibrosis. Similar to that noted for ALI and ARDS, treatment options for IPF are currently limited, with no specific drug therapy providing a cure. Histone deacetylase 3 (HDAC3), a notable member of the HDAC family with four splice variants (HD3α, -β, -γ, and -δ), plays multiple roles. HDAC3 regulates gene transcription through histone acetylation and adjusts nonhistone proteins posttranslationally, affecting certain mitochondrial and cytoplasmic proteins. Given its unique structure, HDAC3 impacts various physiological processes, such as inflammation, apoptosis, mitochondrial homeostasis, and macrophage polarization. This article explores the intricate role of HDAC3 in ALI/ARDS and IPF and evaluates its therapeutic potential the treatment of these severe pulmonary conditions.
Collapse
Affiliation(s)
| | | | | | - Xiu Gu
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of
China Medical University, Shenyang, China
| |
Collapse
|
6
|
Suthivanich P, Boonhoh W, Sumneang N, Punsawad C, Cheng Z, Phungphong S. Aerobic Exercise Attenuates Doxorubicin-Induced Cardiomyopathy by Suppressing NLRP3 Inflammasome Activation in a Rat Model. Int J Mol Sci 2024; 25:9692. [PMID: 39273638 PMCID: PMC11395441 DOI: 10.3390/ijms25179692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Doxorubicin (DOX) is a potent chemotherapeutic agent with well-documented dose-dependent cardiotoxicity. Regular exercise is recognized for its cardioprotective effects against DOX-induced cardiac inflammation, although the precise mechanisms remain incompletely understood. The activation of inflammasomes has been implicated in the pathogenesis and treatment of DOX-induced cardiotoxicity, with the nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome emerging as a key mediator in cardiovascular inflammation. This study aimed to investigate the role of exercise in modulating the NLRP3 inflammasome to protect against DOX-induced cardiac inflammation. Male Sprague-Dawley rats were randomly assigned to receive a 10-day course of DOX or saline injections, with or without a preceding 10-week treadmill running regimen. Cardiovascular function and histological changes were subsequently evaluated. DOX-induced cardiotoxicity was characterized by cardiac atrophy, systolic dysfunction, and hypotension, alongside activation of the NLRP3 inflammasome. Our findings revealed that regular exercise preserved cardiac mass and hypertrophic indices and prevented DOX-induced cardiac dysfunction, although it did not fully preserve blood pressure. These results underscore the significant cardioprotective effects of exercise against DOX-induced cardiotoxicity. While regular exercise did not entirely prevent DOX-induced hypotension, our findings demonstrate that it confers protection against DOX-induced cardiotoxicity by suppressing NLRP3 inflammasome activation in the heart, underscoring its anti-inflammatory role. Further research should explore the temporal dynamics and interactions among exercise, pyroptosis, and other pathways in DOX-induced cardiotoxicity to enhance translational applications in cardiovascular medicine.
Collapse
Affiliation(s)
- Phichaya Suthivanich
- Doctor of Philosophy Program in Physiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Worakan Boonhoh
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Natticha Sumneang
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Chuchard Punsawad
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Zhaokang Cheng
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Sukanya Phungphong
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
7
|
Hermans L, O’Sullivan TE. No time to die: Epigenetic regulation of natural killer cell survival. Immunol Rev 2024; 323:61-79. [PMID: 38426615 PMCID: PMC11102341 DOI: 10.1111/imr.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
NK cells are short-lived innate lymphocytes that can mediate antigen-independent responses to infection and cancer. However, studies from the past two decades have shown that NK cells can acquire transcriptional and epigenetic modifications during inflammation that result in increased survival and lifespan. These findings blur the lines between the innate and adaptive arms of the immune system, and suggest that the homeostatic mechanisms that govern the persistence of innate immune cells are malleable. Indeed, recent studies have shown that NK cells undergo continuous and strictly regulated adaptations controlling their survival during development, tissue residency, and following inflammation. In this review, we summarize our current understanding of the critical factors regulating NK cell survival throughout their lifespan, with a specific emphasis on the epigenetic modifications that regulate the survival of NK cells in various contexts. A precise understanding of the molecular mechanisms that govern NK cell survival will be important to enhance therapies for cancer and infectious diseases.
Collapse
Affiliation(s)
- Leen Hermans
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Timothy E. O’Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Kodi T, Sankhe R, Gopinathan A, Nandakumar K, Kishore A. New Insights on NLRP3 Inflammasome: Mechanisms of Activation, Inhibition, and Epigenetic Regulation. J Neuroimmune Pharmacol 2024; 19:7. [PMID: 38421496 PMCID: PMC10904444 DOI: 10.1007/s11481-024-10101-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/06/2023] [Indexed: 03/02/2024]
Abstract
Inflammasomes are important modulators of inflammation. Dysregulation of inflammasomes can enhance vulnerability to conditions such as neurodegenerative diseases, autoinflammatory diseases, and metabolic disorders. Among various inflammasomes, Nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) is the best-characterized inflammasome related to inflammatory and neurodegenerative diseases. NLRP3 is an intracellular sensor that recognizes pathogen-associated molecular patterns and damage-associated patterns resulting in the assembly and activation of NLRP3 inflammasome. The NLRP3 inflammasome includes sensor NLRP3, adaptor apoptosis-associated speck-like protein (ASC), and effector cysteine protease procaspase-1 that plays an imperative role in caspase-1 stimulation which further initiates a secondary inflammatory response. Regulation of NLRP3 inflammasome ameliorates NLRP3-mediated diseases. Much effort has been invested in studying the activation, and exploration of specific inhibitors and epigenetic mechanisms controlling NLRP3 inflammasome. This review gives an overview of the established NLRP3 inflammasome assembly, its brief molecular mechanistic activations as well as a current update on specific and non-specific NLRP3 inhibitors that could be used in NLRP3-mediated diseases. We also focused on the recently discovered epigenetic mechanisms mediated by DNA methylation, histone alterations, and microRNAs in regulating the activation and expression of NLRP3 inflammasome, which has resulted in a novel method of gaining insight into the mechanisms that modulate NLRP3 inflammasome activity and introducing potential therapeutic strategies for CNS disorders.
Collapse
Affiliation(s)
- Triveni Kodi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Runali Sankhe
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Adarsh Gopinathan
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
9
|
Looi CK, Foong LC, Chung FFL, Khoo ASB, Loo EM, Leong CO, Mai CW. Targeting the crosstalk of epigenetic modifications and immune evasion in nasopharyngeal cancer. Cell Biol Toxicol 2023; 39:2501-2526. [PMID: 37755585 DOI: 10.1007/s10565-023-09830-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a distinct type of head and neck cancer that is highly associated with Epstein-Barr virus (EBV) infection. EBV acts as an epigenetic driver in NPC tumorigenesis, reprogramming the viral and host epigenomes to regulate viral latent gene expression, and creating an environment conducive to the malignant transformation of nasopharyngeal epithelial cells. Targeting epigenetic mechanisms in pre-clinical studies has been shown promise in eradicating tumours and overcoming immune resistance in some solid tumours. However, its efficacy in NPC remains inclusive due to the complex nature of this cancer. In this review, we provide an updated understanding of the roles of epigenetic factors in regulating EBV latent gene expression and promoting NPC progression. We also explore the crosstalk between epigenetic mechanisms and immune evasion in NPC. Particularly, we discuss the potential roles of DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors in reversing immune suppression and augmenting antitumour immunity. Furthermore, we highlight the advantages of combining epigenetic therapy and immune checkpoint inhibitor to reverse immune resistance and improve clinical outcomes. Epigenetic drugs have the potential to modulate both epigenetic mediators and immune factors involved in NPC. However, further research is needed to fully comprehend the diverse range of epigenetic modifications in NPC. A deeper understanding of the crosstalk between epigenetic mechanisms and immune evasion during NPC progression is crucial for the development of more effective treatments for this challenging disease.
Collapse
Affiliation(s)
- Chin-King Looi
- School of Postgraduate Studies, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Lian-Chee Foong
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai, 200127, China
| | - Felicia Fei-Lei Chung
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Alan Soo-Beng Khoo
- School of Postgraduate Studies, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Department of Medical Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Pennsylvania, PA, 19107, USA
| | - Ee-Mun Loo
- AGTC Genomics, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- AGTC Genomics, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Development, and Innovation (IRDI), Institute for Research, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Chun-Wai Mai
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai, 200127, China.
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Abstract
Systemic autoinflammatory diseases (SAIDs) are a heterogeneous group of disorders caused by excess activation of the innate immune system in an antigen-independent manner. Starting with the discovery of the causal gene for familial Mediterranean fever, more than 50 monogenic SAIDs have been described. These discoveries, paired with advances in immunology and genomics, have allowed our understanding of these diseases to improve drastically in the last decade. The genetic causes of SAIDs are complex and include both germline and somatic pathogenic variants that affect various inflammatory signaling pathways. We provide an overview of the acquired SAIDs from a genetic perspective and summarize the clinical phenotypes and mechanism(s) of inflammation, aiming to provide a comprehensive understanding of the pathogenesis of autoinflammatory diseases.
Collapse
Affiliation(s)
- Jiahui Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA;
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China;
| |
Collapse
|
11
|
Brahadeeswaran S, Dasgupta T, Manickam V, Saraswathi V, Tamizhselvi R. NLRP3: a new therapeutic target in alcoholic liver disease. Front Immunol 2023; 14:1215333. [PMID: 37520548 PMCID: PMC10374212 DOI: 10.3389/fimmu.2023.1215333] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
The liver is in charge of a wide range of critical physiological processes and it plays an important role in activating the innate immune system which elicits the inflammatory events. Chronic ethanol exposure disrupts hepatic inflammatory mechanism and leads to the release of proinflammatory mediators such as chemokines, cytokines and activation of inflammasomes. The mechanism of liver fibrosis/cirrhosis involve activation of NLRP3 inflammasome, leading to the destruction of hepatocytes and subsequent metabolic dysregulation in humans. In addition, increasing evidence suggests that alcohol intake significantly modifies liver epigenetics, promoting the development of alcoholic liver disease (ALD). Epigenetic changes including histone modification, microRNA-induced genetic modulation, and DNA methylation are crucial in alcohol-evoked cell signaling that affects gene expression in the hepatic system. Though we are at the beginning stage without having the entire print of epigenetic signature, it is time to focus more on NLRP3 inflammasome and epigenetic modifications. Here we review the novel aspect of ALD pathology linking to inflammation and highlighting the role of epigenetic modification associated with NLRP3 inflammasome and how it could be a therapeutic target in ALD.
Collapse
Affiliation(s)
- Subhashini Brahadeeswaran
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Tiasha Dasgupta
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Venkatraman Manickam
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Viswanathan Saraswathi
- Department of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, Veterans Affairs Medical Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Ramasamy Tamizhselvi
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
12
|
Kim D, Ban KY, Lee GH, Jun HS. Lysophosphatidic Acid Induces Podocyte Pyroptosis in Diabetic Nephropathy by an Increase of Egr1 Expression via Downregulation of EzH2. Int J Mol Sci 2023; 24:9968. [PMID: 37373116 DOI: 10.3390/ijms24129968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Podocyte damage and renal inflammation are the main features and pathogenesis of diabetic nephropathy (DN). Inhibition of lysophosphatidic acid (LPA) receptor 1 (LPAR1) suppresses glomerular inflammation and improves DN. Herein, we investigated LPA-induced podocyte damage and its underlying mechanisms in DN. We investigated the effects of AM095, a specific LPAR1 inhibitor, on podocytes from streptozotocin (STZ)-induced diabetic mice. E11 cells were treated with LPA in the presence or absence of AM095, and the expression of NLRP3 inflammasome factors and pyroptosis were measured. A chromatin immunoprecipitation assay and Western blotting were performed to elucidate underlying molecular mechanisms. Gene knockdown by transfecting small interfering RNA was used to determine the role of the transcription factor Egr1 (early growth response protein 1) and histone methyltransferase EzH2 (Enhancer of Zeste Homolog 2) in LPA-induced podocyte injury. AM095 administration inhibited podocyte loss, NLRP3 inflammasome factor expression, and cell death in STZ-induced diabetic mice. In E11 cells, LPA increased NLRP3 inflammasome activation and pyroptosis via LPAR1. Egr1 mediated NLRP3 inflammasome activation and pyroptosis in LPA-treated E11 cells. LPA decreased H3K27me3 enrichment at the Egr1 promoter in E11 cells by downregulating EzH2 expression. EzH2 knockdown further increased LPA-induced Egr1 expression. In podocytes from STZ-induced diabetic mice, AM095 suppressed Egr1 expression increase and EzH2/H3K27me3 expression reduction. Collectively, these results demonstrate that LPA induces NLRP3 inflammasome activation by downregulating EzH2/H3K27me3 and upregulating Egr1 expression, resulting in podocyte damage and pyroptosis, which may be a potential mechanism of DN progression.
Collapse
Affiliation(s)
- Donghee Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Ka-Yun Ban
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Geon-Ho Lee
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
- Gachon Medical Research Institute, Gil Hospital, Incheon 21565, Republic of Korea
| |
Collapse
|
13
|
Wei D, Tian X, Zhai X, Sun C. Adipose Tissue Macrophage-Mediated Inflammation in Obesity: A Link to Posttranslational Modification. Immunol Invest 2023:1-25. [PMID: 37129471 DOI: 10.1080/08820139.2023.2205883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Adipose tissue macrophages (ATM) are an essential type of immune cells in adipose tissue. Obesity induces the inflammation of adipose tissues, as expressed by ATM accumulation, that is more likely to become a source of systemic metabolic diseases, including insulin resistance. The process is characterized by the transcriptional regulation of inflammatory pathways by virtue of signaling molecules such as cytokines and free fatty acids. Notably, posttranslational modification (PTM) is a key link for these signaling molecules to trigger the proinflammatory or anti-inflammatory phenotype of ATMs. This review focuses on summarizing the functions and molecular mechanisms of ATMs regulating inflammation in obese adipose tissue. Furthermore, the role of PTM is elaborated, hoping to identify new horizons of treatment and prevention for obesity-mediated metabolic disease.
Collapse
Affiliation(s)
- Dongqin Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| | - Xin Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| | - Xiangyun Zhai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| |
Collapse
|
14
|
Xu P, Li F, Tang H. Pyroptosis and airway homeostasis regulation. Physiol Res 2023; 72:1-13. [PMID: 36545873 PMCID: PMC10069808 DOI: 10.33549/physiolres.934971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Pyroptosis is a form of cell death associated with inflammation. In the maintenance of airway homeostasis, pyroptosis goes through activation and assembly of Inflammasome. The pyroptosis pathway is mediated by caspase which activates the pore-forming effect of substrate gasdermin family members. It eventually leads to lysis and release of the cell contents and then induces an inflammatory response. In this process, it participates in airway homeostasis regulation by affecting airway immunity, airway epithelial structure and airway microbiota. Therefore, we discussed the correlation between airway immunity, airway epithelial structure, airway microbiota and the mechanism of pyroptosis to describe the role of pyroptosis in airway homeostasis regulation which is of great significance for understanding the occurrence and treatment of airway inflammatory diseases.
Collapse
Affiliation(s)
- P Xu
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China. and
| | | | | |
Collapse
|
15
|
Ikzf1 as a novel regulator of microglial homeostasis in inflammation and neurodegeneration. Brain Behav Immun 2023; 109:144-161. [PMID: 36702234 DOI: 10.1016/j.bbi.2023.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/28/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
In the last two decades, microglia have emerged as key contributors to disease progression in many neurological disorders, not only by exerting their classical immunological functions but also as extremely dynamic cells with the ability to modulate synaptic and neural activity. This dynamic behavior, together with their heterogeneous roles and response to diverse perturbations in the brain parenchyma has raised the idea that microglia activation is more diverse than anticipated and that understanding the molecular mechanisms underlying microglial states is essential to unravel their role in health and disease from development to aging. The Ikzf1 (a.k.a. Ikaros) gene plays crucial roles in modulating the function and maturation of circulating monocytes and lymphocytes, but whether it regulates microglial functions and states is unknown. Using genetic tools, here we describe that Ikzf1 is specifically expressed in the adult microglia in brain regions such as cortex and hippocampus. By characterizing the Ikzf1 deficient mice, we observed that these mice displayed spatial learning deficits, impaired hippocampal CA3-CA1 long-term potentiation, and decreased spine density in pyramidal neurons of the CA1, which correlates with an increased expression of synaptic markers within microglia. Additionally, these Ikzf1 deficient microglia exhibited a severe abnormal morphology in the hippocampus, which is accompanied by astrogliosis, an aberrant composition of the inflammasome, and an altered expression of disease-associated microglia molecules. Interestingly, the lack of Ikzf1 induced changes on histone 3 acetylation and methylation levels in the hippocampus. Since the lack of Ikzf1 in mice appears to induce the internalization of synaptic markers within microglia, and severe gliosis we then analyzed hippocampal Ikzf1 levels in several models of neurological disorders. Ikzf1 levels were increased in the hippocampus of these neurological models, as well as in postmortem hippocampal samples from Alzheimer's disease patients. Finally, over-expressing Ikzf1 in cultured microglia made these cells hyporeactive upon treatment with lipopolysaccharide, and less phagocytic compared to control microglia. Altogether, these results suggest that altered Ikzf1 levels in the adult hippocampus are sufficient to induce synaptic plasticity and memory deficits via altering microglial state and function.
Collapse
|
16
|
Roy S, Arif Ansari M, Choudhary K, Singh S. NLRP3 inflammasome in depression: A review. Int Immunopharmacol 2023; 117:109916. [PMID: 36827927 DOI: 10.1016/j.intimp.2023.109916] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
The present article provides a detailed concept of the role of NLRP3 inflammasome in the pathophysiology of depression-like chronic diseases where inflammation and release of various cytokines plays a pivotal role in exaggerating the condition. The various pathways involved in NLRP3 activation are the main target of NLRP3 inhibitors for the therapeutic management of depression as per the recent clinical and research studies conducted so far. Further various drug inhibitors for NLRP3 available in preclinical and clinical trials have been discussed in detail. Hence, blockage of the action of NLRP3 inflammasome is crucial to anticipate the inflammatory cytokine release from the mediators that contributes to cause depression.
Collapse
Affiliation(s)
- Salona Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Md Arif Ansari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Khushboo Choudhary
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India.
| |
Collapse
|
17
|
Damane BP, Mulaudzi TV, Kader SS, Naidoo P, Savkovic SD, Dlamini Z, Mkhize-Kwitshana ZL. Unraveling the Complex Interconnection between Specific Inflammatory Signaling Pathways and Mechanisms Involved in HIV-Associated Colorectal Oncogenesis. Cancers (Basel) 2023; 15:748. [PMID: 36765706 PMCID: PMC9913377 DOI: 10.3390/cancers15030748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
The advancement of HIV treatment has led to increased life expectancy. However, people living with HIV (PLWH) are at a higher risk of developing colorectal cancers. Chronic inflammation has a key role in oncogenesis, affecting the initiation, promotion, transformation, and advancement of the disease. PLWH are prone to opportunistic infections that trigger inflammation. It has been documented that 15-20% of cancers are triggered by infections, and this percentage is expected to be increased in HIV co-infections. The incidence of parasitic infections such as helminths, with Ascariasis being the most common, is higher in HIV-infected individuals. Cancer cells and opportunistic infections drive a cascade of inflammatory responses which assist in evading immune surveillance, making them survive longer in the affected individuals. Their survival leads to a chronic inflammatory state which further increases the probability of oncogenesis. This review discusses the key inflammatory signaling pathways involved in disease pathogenesis in HIV-positive patients with colorectal cancers. The possibility of the involvement of co-infections in the advancement of the disease, along with highlights on signaling mechanisms that can potentially be utilized as therapeutic strategies to prevent oncogenesis or halt cancer progression, are addressed.
Collapse
Affiliation(s)
- Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Medical School Campus, College of Health Sciences, University of KwaZulu-Natal-Natal, Durban 4041, South Africa
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Sayed Shakeel Kader
- Department of Surgery, University of KwaZulu Natal, Congella, Durban 4013, South Africa
| | - Pragalathan Naidoo
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Medical School Campus, College of Health Sciences, University of KwaZulu-Natal-Natal, Durban 4041, South Africa
- SAMRC Research Capacity Development Division, South African Medical Research Council, Tygerberg, Cape Town 4091, South Africa
| | - Suzana D. Savkovic
- School of Medicine, Department of Pathology & Laboratory Medicine, 1430 Tulane Ave., SL-79, New Orleans, LA 70112, USA
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Zilungile Lynette Mkhize-Kwitshana
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Medical School Campus, College of Health Sciences, University of KwaZulu-Natal-Natal, Durban 4041, South Africa
- SAMRC Research Capacity Development Division, South African Medical Research Council, Tygerberg, Cape Town 4091, South Africa
| |
Collapse
|
18
|
The Role of Epigenetics in Neuroinflammatory-Driven Diseases. Int J Mol Sci 2022; 23:ijms232315218. [PMID: 36499544 PMCID: PMC9740629 DOI: 10.3390/ijms232315218] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders are characterized by the progressive loss of central and/or peripheral nervous system neurons. Within this context, neuroinflammation comes up as one of the main factors linked to neurodegeneration progression. In fact, neuroinflammation has been recognized as an outstanding factor for Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and multiple sclerosis (MS). Interestingly, neuroinflammatory diseases are characterized by dramatic changes in the epigenetic profile, which might provide novel prognostic and therapeutic factors towards neuroinflammatory treatment. Deep changes in DNA and histone methylation, along with histone acetylation and altered non-coding RNA expression, have been reported at the onset of inflammatory diseases. The aim of this work is to review the current knowledge on this field.
Collapse
|
19
|
Epigenetic Mechanisms Involved in Inflammaging-Associated Hypertension. Curr Hypertens Rep 2022; 24:547-562. [PMID: 35796869 DOI: 10.1007/s11906-022-01214-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW This review summarizes the involvement of inflammaging in vascular damage with focus on the epigenetic mechanisms by which inflammaging-induced hypertension is triggered. RECENT FINDINGS Inflammaging in hypertension is a complex condition associated with the production of inflammatory mediators by the immune cells, enhancement of oxidative stress, and tissue remodeling in vascular smooth muscle cells and endothelial cells. Cellular processes are numerous, including inflammasome assembly and cell senescence which may involve mitochondrial dysfunction, autophagy, DNA damage response, dysbiosis, and many others. More recently, a series of noncoding RNAs, mainly microRNAs, have been described as possessing epigenetic actions on the regulation of inflammasome-related hypertension, emerging as a promising therapeutic strategy. Although there are a variety of pharmacological agents that effectively regulate inflammaging-related hypertension, a deeper understanding of the epigenetic events behind the control of vessel deterioration is needed for the treatment or even to prevent the disease onset.
Collapse
|
20
|
Dai Y, Liu S, Chen J, Liu L, Zhou C, Zuo Y. Microglial Responses and Pain Behaviors Are Exacerbated by Chronic Sleep Deprivation in Rats with Chronic Pain Via Neuroinflammatory Pathways. Neuroscience 2022; 503:83-94. [PMID: 36096338 DOI: 10.1016/j.neuroscience.2022.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 10/31/2022]
Abstract
The inflammatory response of central nervous system (CNS) and microglial activation is important in the development of pain behaviors induced by sleep deprivation. We found that chronic sleep deprivation (CSD) aggravated pain behaviors in rats with chronic pain by upregulating expression of Toll-like receptor 4 (TLR4), NOD-like receptor pyrin domain containing 3 (NLRP3), and interleukin 1β (IL-1β), which promoted microglial activation in the brain. We also found that CSD increased numbers of Iba1+ and TLR4+ cells, as well as neuronal apoptosis. Inhibitors of TLR4 and NLRP3 (TAK-242 and MCC950, respectively) reduced expression levels of inflammatory factor proteins and M1-related factor mRNA, decreased microglial activation, and relieved the hyperalgesia caused by CSD. These results suggest that CSD aggravated pain behavior in rats with chronic pain through the TLR4/NLRP3/IL-1β signaling pathway, which mediates microglial activation and promotes CNS inflammation and neuronal apoptosis.
Collapse
Affiliation(s)
- Yuee Dai
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Shaoxing Liu
- Department of Anesthesiology, Chengdu Second People's Hospital, Chengdu 610021, Sichuan, China
| | - Jie Chen
- Core Laboratory, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan, China
| | - Liu Liu
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Cheng Zhou
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
21
|
Murdaca G, Paladin F, Casciaro M, Vicario CM, Gangemi S, Martino G. Neuro-Inflammaging and Psychopathological Distress. Biomedicines 2022; 10:2133. [PMID: 36140234 PMCID: PMC9495653 DOI: 10.3390/biomedicines10092133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammaging is a low degree of chronic and systemic tissue inflammation associated with aging, and is intimately linked to pro-inflammatory mediators. These substances are involved in the pathogenesis of chronic inflammatory diseases and related psychopathological symptoms. When inflammation and aging affect the brain, we use the term neuro-inflammaging. In this review, we focused on the neuro-inflammatory process typical of advanced ages and the related psychopathological symptoms, with particular attention to understanding the immune-pathogenetic mechanisms involved and the potential use of immunomodulatory drugs in the control of clinical psychological signs. Inflammation and CNS were demonstrated being intimately linked in the neuro-inflammatory loop. IL-1, IL-6, TNF-a, COX and PGE are only partially responsible. BBB permeability and the consequent oxidative stress resulting from tissue damage make the rest. Some authors elaborated the "theory of cytokine-induced depression". Inflammation has a crucial role in the onset symptoms of psychopathological diseases as it is capable of altering the metabolism of biogenic monoamines involved in their pathogenesis. In recent years, NSAIDs as an adjunct therapy in the treatment of relevant psychopathological disorders associated with chronic inflammatory conditions demonstrated their efficacy. Additionally, novel molecules have been studied, such as adalimumab, infliximab, and etanercept showing antidepressant and anxiolytic promising results. However, we are only at the beginning of a new era characterized by the use of biological drugs for the treatment of inflammatory and autoimmune diseases, and this paper aims to stimulate future studies in such a direction.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, 16132 Genoa, Italy
| | - Francesca Paladin
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, 16132 Genoa, Italy
| | - Marco Casciaro
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | | | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Gabriella Martino
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| |
Collapse
|
22
|
Gómez‐Apo E, Silva‐Pereyra J, Soto‐Abraham V, Mondragón‐Maya A, Sanchez‐Lopez J. Immunohistochemical analysis of caspase expression in the brains of individuals with obesity or overweight. Obes Sci Pract 2022; 9:137-144. [PMID: 37034564 PMCID: PMC10073824 DOI: 10.1002/osp4.632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/03/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
Abstract
Mechanisms underlying the negative effects of obesity on the brain are still unknown. Obesity is associated with oxidative stress in the brain and neuroinflammation that promotes neurodegenerative diseases. Chronic low-grade neuroinflammation in obesity could be associated with lower volumes of gray matter and lower neuronal density. If neuroinflammation mediated by the expression of cytokines and chemokines leads to apoptosis, this can be assessed by examining caspase expression. The aim of this study was to compare the expression of caspases in the 16 brains of donors with obesity/overweight (n = 8; Body Mass Index [BMI] = 31.6 ± 4.35 kg/m2; 2 females; Age = 52.9 ± 4.76 years) and normal weight (n = 8; BMI = 21.8 ± 1.5 kg/m2; 3 females; Age = 37.8 ± 19.2 years). Sixteen human brain samples were processed. Serial paraffin sections were examined by anti-caspase immunochemistry (caspase-3, caspase-4, caspase-6, caspase-1, caspase-8, and caspase-9 antibodies). Postmortem samples of cerebral cortex tissue were captured as photomicrographs and the images obtained were analyzed using ImageJ software to obtain the percentage of positive caspase expression. Nonparametric Mann-Whitney U tests were performed to compare caspase expression between samples from donors with obesity/overweight and normal weight. Taking into consideration the immunohistochemistry results, the Search Tool for the Retrieval of Interacting Genes was used to model molecular interactions. Results showed that brain samples from individuals with obesity/overweight exhibited significantly greater values of positive expression for Caspase-1 (U = 16.5, p = 0.05, Cohen d = 0.89) and -8 (U = 15, p = 0.03, Cohen d = 0.99) than those from donors with normal weight. This study contributes to the knowledge about the inflammatory effects of obesity/overweight on brain, suggesting the activation of the alternative inflammasome pathway in which interact caspase-1 and -8.
Collapse
Affiliation(s)
- Erick Gómez‐Apo
- Servicio de Anatomía Patológica Hospital General de México “Dr. Eduardo Liceaga” Ciudad de México México
- Programa de Maestría y Doctorado en Ciencias Médicas y Odontológicas y de la Salud Universidad Nacional Autónoma de México Ciudad de México México
| | - Juan Silva‐Pereyra
- Facultad de Estudios Superiores Iztacala Universidad Nacional Autónoma de México Tlalnepantla Estado de México México
| | - Virgilia Soto‐Abraham
- Servicio de Anatomía Patológica Hospital General de México “Dr. Eduardo Liceaga” Ciudad de México México
| | - Alejandra Mondragón‐Maya
- Facultad de Estudios Superiores Iztacala Universidad Nacional Autónoma de México Tlalnepantla Estado de México México
| | - Javier Sanchez‐Lopez
- Escuela Nacional de Estudios Superiores Unidad Juriquilla Universidad Nacional Autónoma de México Querétaro Querétaro México
| |
Collapse
|
23
|
López-Armada MJ, Fernández-Rodríguez JA, Blanco FJ. Mitochondrial Dysfunction and Oxidative Stress in Rheumatoid Arthritis. Antioxidants (Basel) 2022; 11:antiox11061151. [PMID: 35740048 PMCID: PMC9220001 DOI: 10.3390/antiox11061151] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Control of excessive mitochondrial oxidative stress could provide new targets for both preventive and therapeutic interventions in the treatment of chronic inflammation or any pathology that develops under an inflammatory scenario, such as rheumatoid arthritis (RA). Increasing evidence has demonstrated the role of mitochondrial alterations in autoimmune diseases mainly due to the interplay between metabolism and innate immunity, but also in the modulation of inflammatory response of resident cells, such as synoviocytes. Thus, mitochondrial dysfunction derived from several danger signals could activate tricarboxylic acid (TCA) disruption, thereby favoring a vicious cycle of oxidative/mitochondrial stress. Mitochondrial dysfunction can act through modulating innate immunity via redox-sensitive inflammatory pathways or direct activation of the inflammasome. Besides, mitochondria also have a central role in regulating cell death, which is deeply altered in RA. Additionally, multiple evidence suggests that pathological processes in RA can be shaped by epigenetic mechanisms and that in turn, mitochondria are involved in epigenetic regulation. Finally, we will discuss about the involvement of some dietary components in the onset and progression of RA.
Collapse
Affiliation(s)
- María José López-Armada
- Grupo de Investigación en Envejecimiento e Inflamación (ENVEINF), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain;
- Correspondence: (M.J.L.-A.); (F.J.B.); Tel./Fax: +34-981-178272-73 (M.J.L.-A.)
| | - Jennifer Adriana Fernández-Rodríguez
- Grupo de Investigación en Envejecimiento e Inflamación (ENVEINF), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain;
| | - Francisco Javier Blanco
- Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, Universidade da Coruña, 15001 A Coruña, Spain
- Correspondence: (M.J.L.-A.); (F.J.B.); Tel./Fax: +34-981-178272-73 (M.J.L.-A.)
| |
Collapse
|
24
|
Vetrani C, Di Nisio A, Paschou SA, Barrea L, Muscogiuri G, Graziadio C, Savastano S, Colao A. From Gut Microbiota through Low-Grade Inflammation to Obesity: Key Players and Potential Targets. Nutrients 2022; 14:2103. [PMID: 35631244 PMCID: PMC9145366 DOI: 10.3390/nu14102103] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
During the last decades, the gut microbiota has gained much interest in relation to human health. Mounting evidence has shown a strict association between gut microbiota and obesity and its related diseases. Inflammation has been appointed as the driving force behind this association. Therefore, a better understanding of the mechanisms by which gut microbiota might influence inflammation in the host could pave for the identification of effective strategies to reduce inflammation-related diseases, such as obesity and obesity-related diseases. For this purpose, we carried out an extensive literature search for studies published in the English language during the last 10 years. Most relevant studies were used to provide a comprehensive view of all aspects related to the association of gut microbiota and low-grade inflammation with obesity. Accordingly, this narrative review reports the evidence on the key players supporting the role of gut microbiota in the modulation of inflammation in relation to obesity and its complications. Moreover, therapeutic approaches to reduce microbiota-related inflammation are discussed to provide potential targets for future research.
Collapse
Affiliation(s)
- Claudia Vetrani
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, 80131 Naples, Italy; (C.V.); (C.G.); (S.S.); (A.C.)
| | - Andrea Di Nisio
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, 35128 Padova, Italy;
| | - Stavroula A. Paschou
- Endocrine Unit and Diabetes Centre, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, 80143 Napoli, Italy;
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, 80131 Naples, Italy
| | - Giovanna Muscogiuri
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, 80131 Naples, Italy; (C.V.); (C.G.); (S.S.); (A.C.)
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, 80131 Naples, Italy
- UNESCO Chair “Education for Health and Sustainable Development”, University of Naples “Federico II”, 80131 Naples, Italy
| | - Chiara Graziadio
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, 80131 Naples, Italy; (C.V.); (C.G.); (S.S.); (A.C.)
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, 80131 Naples, Italy
| | - Silvia Savastano
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, 80131 Naples, Italy; (C.V.); (C.G.); (S.S.); (A.C.)
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, 80131 Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, 80131 Naples, Italy; (C.V.); (C.G.); (S.S.); (A.C.)
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, 80131 Naples, Italy
- UNESCO Chair “Education for Health and Sustainable Development”, University of Naples “Federico II”, 80131 Naples, Italy
| | | |
Collapse
|