1
|
Park YH, Lee SW, Kim TC, Park HJ, Van Kaer L, Hong S. The iNKT cell ligand α-GalCer prevents murine septic shock by inducing IL10-producing iNKT and B cells. Front Immunol 2024; 15:1457690. [PMID: 39355237 PMCID: PMC11442275 DOI: 10.3389/fimmu.2024.1457690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction α-galactosylceramide (α-GalCer), a prototypical agonist of invariant natural killer T (iNKT) cells, stimulates iNKT cells to produce various cytokines such as IFNγ and IL4. Moreover, repeated α-GalCer treatment can cause protective or pathogenic outcomes in various immune-mediated diseases. However, the precise role of α-GalCer-activated iNKT cells in sepsis development remains unclear. To address this issue, we employed a lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced murine sepsis model and two alternative models. Methods Sepsis was induced in wild-type (WT) C57BL/6 (B6) mice by three methods (LPS/D-GalN, α-GalCer/D-GalN, and cecal slurry), and these mice were monitored for survival rates. WT B6 mice were intraperitoneally injected with α-GalCer or OCH (an IL4-biased α-GalCer analog) one week prior to the induction of sepsis. To investigate the effects of α-GalCer-mediated iNKT cell activation on sepsis development, immune responses were analyzed by flow cytometry using splenocytes and liver-infiltrating leukocytes. In addition, a STAT6 inhibitor (AS1517499) and an IL10 inhibitor (AS101) were employed to evaluate the involvement of IL4 or IL10 signaling. Furthermore, we performed B cell adoptive transfers to examine the contribution of α-GalCer-induced regulatory B (Breg) cell populations in sepsis protection. Results In vivo α-GalCer pretreatment polarized iNKT cells towards IL4- and IL10-producing phenotypes, significantly attenuating LPS/D-GalN-induced septic lethality in WT B6 mice. Furthermore, α-GalCer pretreatment reduced the infiltration of immune cells to the liver and attenuated pro-inflammatory cytokine production. Treatment with a STAT6 inhibitor was unable to modulate disease progression, indicating that IL4 signaling did not significantly affect iNKT cell-mediated protection against sepsis. This finding was confirmed by pretreatment with OCH, which did not alter sepsis outcomes. However, interestingly, prophylactic effects of α-GalCer on sepsis were significantly suppressed by treatment with an IL10 antagonist, suggesting induction of IL10-dependent anti-inflammatory responses. In addition to IL10-producing iNKT cells, IL10-producing B cell populations were significantly increased after α-GalCer pretreatment. Conclusion Overall, our results identify α-GalCer-mediated induction of IL10 by iNKT and B cells as a promising option for controlling the pathogenesis of postoperative sepsis.
Collapse
Affiliation(s)
- Yun Hoo Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Republic of Korea
| | - Sung Won Lee
- Department of Biomedical Laboratory Science, College of Health and Biomedical Services, Sangji University, Wonju, Republic of Korea
| | - Tae-Cheol Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Republic of Korea
| | - Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Republic of Korea
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Kim TC, Park HJ, Lee SW, Park YH, Van Kaer L, Hong S. Alpha-galactosylceramide pre-treatment attenuates clinical symptoms of LPS-induced acute neuroinflammation by converting pathogenic iNKT cells to anti-inflammatory iNKT10 cells in the brain. Inflamm Res 2024; 73:1511-1527. [PMID: 39028491 DOI: 10.1007/s00011-024-01915-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Invariant natural killer T (iNKT) cells play protective or pathogenic roles in a variety of immune and inflammatory diseases. However, whether iNKT cells contribute to the progression of acute neuroinflammation remains unclear. Thus, we addressed this question with a mouse model of lipopolysaccharide (LPS)-induced acute neuroinflammation. METHODS For induction of acute neuroinflammation, wild-type (WT) C57BL/6 (B6) mice were injected intraperitoneally (i.p.) with LPS for either three or five consecutive days, and then these mice were analyzed for brain-infiltrating leukocytes or mouse behaviors, respectively. To examine the role of iNKT cell activation in LPS-induced neuroinflammation, mice were injected i.p. with the iNKT cell agonist α-galactosylceramide (α-GalCer) seven days prior to LPS treatment. Immune cells infiltrated into the brain during LPS-induced neuroinflammation were determined by flow cytometry. In addition, LPS-induced clinical behavior symptoms such as depressive-like behavior and memory impairment in mice were evaluated by the open field and Y-maze tests, respectively. RESULTS We found that iNKT cell-deficient Jα18 mutant mice display delayed disease progression and decreased leukocyte infiltration into the brain compared with WT mice, indicating that iNKT cells contribute to the pathogenesis of LPS-induced neuroinflammation. Since it has been reported that pre-treatment with α-GalCer, an iNKT cell agonist, can convert iNKT cells towards anti-inflammatory phenotypes, we next explored whether pre-activation of iNKT cells with α-GalCer can regulate LPS-induced neuroinflammation. Strikingly, we found that α-GalCer pre-treatment significantly delays the onset of clinical symptoms, including depression-like behavior and memory impairment, while decreasing brain infiltration of pro-inflammatory natural killer cells and neutrophils, in this model of LPS-induced neuroinflammation. Such anti-inflammatory effects of α-GalCer pre-treatment closely correlated with iNKT cell polarization towards IL4- and IL10-producing phenotypes. Furthermore, α-GalCer pre-treatment restored the expression of suppressive markers on brain regulatory T cells during LPS-induced neuroinflammation. CONCLUSION Our findings provide strong evidence that α-GalCer-induced pre-activation of iNKT cells expands iNKT10 cells, mitigating depressive-like behaviors and brain infiltration of inflammatory immune cells induced by LPS-induced acute neuroinflammation. Thus, we suggest the prophylactic potential of iNKT cells and α-GalCer against acute neuroinflammation.
Collapse
Affiliation(s)
- Tae-Cheol Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea
| | - Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea
| | - Sung Won Lee
- Department of Biomedical Laboratory Science, College of Health and Biomedical Services, Sangji University, Wonju, 26339, South Korea
| | - Yun Hoo Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea.
| |
Collapse
|
3
|
Wang Y, Zou Y, Jiang Q, Li W, Chai X, Zhao T, Liu S, Yuan Z, Yu C, Wang T. Ox-LDL-induced CD80 + macrophages expand pro-atherosclerotic NKT cells via CD1d in atherosclerotic mice and hyperlipidemic patients. Am J Physiol Cell Physiol 2024; 326:C1563-C1572. [PMID: 38586879 DOI: 10.1152/ajpcell.00043.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Atherosclerosis is an inflammatory disease of blood vessels involving the immune system. Natural killer T (NKT) cells, as crucial components of the innate and acquired immune systems, play critical roles in the development of atherosclerosis. However, the mechanism and clinical relevance of NKT cells in early atherosclerosis are largely unclear. The study investigated the mechanism influencing NKT cell function in apoE deficiency-induced early atherosclerosis. Our findings demonstrated that there were higher populations of NKT cells and interferon-gamma (IFN-γ)-producing NKT cells in the peripheral blood of patients with hyperlipidemia and in the aorta, blood, spleen, and bone marrow of early atherosclerotic mice compared with the control groups. Moreover, we discovered that the infiltration of CD80+ macrophages and CD1d expression on CD80+ macrophages in atherosclerotic mice climbed remarkably. CD1d expression increased in CD80+ macrophages stimulated by oxidized low-density lipoprotein (ox-LDL) ex vivo and in vitro. Ex vivo coculture of macrophages with NKT cells revealed that ox-LDL-induced CD80+ macrophages presented lipid antigen α-Galcer (alpha-galactosylceramide) to NKT cells via CD1d, enabling NKT cells to express more IFN-γ. Furthermore, a greater proportion of CD1d+ monocytes and CD1d+CD80+ monocytes were found in peripheral blood of hyperlipidemic patients compared with that of healthy donors. Positive correlations were found between CD1d+CD80+ monocytes and NKT cells or IFN-γ+ NKT cells in hyperlipidemic patients. Our findings illustrated that CD80+ macrophages stimulated NKT cells to secrete IFN-γ via CD1d-presenting α-Galcer, which may accelerate the progression of early atherosclerosis. Inhibiting lipid antigen presentation by CD80+ macrophages to NKT cells may be a promising immune target for the treatment of early atherosclerosis.NEW & NOTEWORTHY This work proposed the ox-LDL-CD80+ monocyte/macrophage-CD1d-NKT cell-IFN-γ axis in the progression of atherosclerosis. The proinflammatory IFN-γ+ NKT cells are closely related to CD1d+CD80+ monocytes in hyperlipidemic patients. Inhibiting CD80+ macrophages to present lipid antigens to NKT cells through CD1d blocking may be a new therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Yin Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Yao Zou
- Department of Pharmacy, People's Hospital of Chongqing Liangjiang New District, Chongqing, People's Republic of China
| | - Qingsong Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, People's Republic of China
| | - Wenming Li
- Department of Clinical Laboratory, University-Town Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xinyu Chai
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Tingrui Zhao
- Department of Clinical Pharmacy, The Third Hospital of Mianyang, Sichuan Mental Health Center, Sichuan, People's Republic of China
| | - Siyi Liu
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Zhiyi Yuan
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Tingting Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| |
Collapse
|
4
|
Lee SW, Park HJ, Van Kaer L, Hong S. Role of CD1d and iNKT cells in regulating intestinal inflammation. Front Immunol 2024; 14:1343718. [PMID: 38274786 PMCID: PMC10808723 DOI: 10.3389/fimmu.2023.1343718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Invariant natural killer T (iNKT) cells, a subset of unconventional T cells that recognize glycolipid antigens in a CD1d-dependent manner, are crucial in regulating diverse immune responses such as autoimmunity. By engaging with CD1d-expressing non-immune cells (such as intestinal epithelial cells and enterochromaffin cells) and immune cells (such as type 3 innate lymphoid cells, B cells, monocytes and macrophages), iNKT cells contribute to the maintenance of immune homeostasis in the intestine. In this review, we discuss the impact of iNKT cells and CD1d in the regulation of intestinal inflammation, examining both cellular and molecular factors with the potential to influence the functions of iNKT cells in inflammatory bowel diseases such as Crohn's disease and ulcerative colitis.
Collapse
Affiliation(s)
- Sung Won Lee
- Department of Biomedical Laboratory Science, College of Health and Biomedical Services, Sangji University, Wonju, Republic of Korea
| | - Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Republic of Korea
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Shi Y, Pan X, Xu S, Zhu H, Zhao B, Sun Z, Dong R, Li N, Hou X, Yang X. Synthesis of the pH-sensitive nanoparticles based on the acylhydrazone bonds conjugated doxorubicin and studies on their in vivo anti-tumor effects. Eur J Med Chem 2023; 260:115715. [PMID: 37597438 DOI: 10.1016/j.ejmech.2023.115715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023]
Abstract
The purpose of this study was to synthesize DHPD polymers through the conjugation of doxorubicin (DOX) molecules onto poly(ethylene glycol) (PEG) chains via acylhydrazone bonds, and to fabricate pH-responsive DHPD nanoparticles (NPs) for investigation of their biosecurity and in vivo anti-tumor activity. The morphology, size distribution, stability, pH-responsiveness, biosecurity, and in vivo anti-tumor effects of the DHPD NPs were evaluated. Characterization of the DHPD polymers using 1H NMR, FTIR, and Raman spectra confirmed their successful synthesis. The DHPD NPs exhibited a round morphology with an average diameter of 144.4 ± 1.7 nm and a polydispersity index (PDI) of 0.23 ± 0.02. Biosecurity studies indicated that the DHPD NPs were non-toxic to treated mice, and in vitro cell tests demonstrated their ability to be taken up by 4T1 cells. Under the acidic microenvironment of 4T1 cells, the acylhydrazone bonds were cleaved, resulting in increased DOX delivery to tumor cells and improved in vivo anti-tumor effects. Animal experiments confirmed that the DHPD NPs reduced DOX toxicity while enhancing its anti-tumor activity. Furthermore, results from the analysis of γ-interferon (INF-γ), tumor necrosis factor-α (TNF-α), epidermal growth factor (EGF), and vascular endothelial growth factor (VEGF) indicated that the DHPD NPs improved the anti-4T1 tumor effect of DOX, suggesting their potential application in the treatment of breast cancer.
Collapse
Affiliation(s)
- Yongli Shi
- College of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, PR China.
| | - Xiaofei Pan
- College of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, PR China
| | - Suyue Xu
- College of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, PR China
| | - Huiqing Zhu
- College of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, PR China
| | - Bingqian Zhao
- Basic Medicine College, Xinxiang Medical University, 453003, Xinxiang, PR China
| | - Zeyu Sun
- First Clinical College, Xinxiang Medical University, 453003, Xinxiang, PR China
| | - Ruoyi Dong
- College of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, PR China
| | - Na Li
- College of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, PR China
| | - Xueyan Hou
- College of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, PR China
| | - Xue Yang
- College of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, PR China.
| |
Collapse
|
6
|
Park HJ, Lee SW, Park YH, Kim TC, Lee S, Lee S, Van Kaer L, Hong S. In Vivo Zymosan Treatment Induces IL15-Secreting Macrophages and KLRG1-Expressing NK Cells in Mice. Molecules 2023; 28:5779. [PMID: 37570749 PMCID: PMC10421142 DOI: 10.3390/molecules28155779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Beta-glucan (β-glucan) is a natural polysaccharide produced by fungi, bacteria, and plants. Although it has been reported that β-glucan enhances innate immune memory responses, it is unclear whether different types of β-glucans display similar immune effects. To address this issue, we employed zymosan (β-1,3-glycosidic linkage) and pustulan (β-1,6-glycosidic linkage) to investigate their in vivo effects on innate memory immune responses. We examined the changes of innate memory-related markers in macrophages and natural killer (NK) cells, two immune cell types that display innate memory characteristics, at two different time points (16 h and 7 days) after β-glucan stimulation. We found that short-term (16 h) zymosan treatment significantly induced macrophages to upregulate IL15 production and increased surface IL15Rα expression on NK cells. In addition, long-term (7 days) zymosan treatment significantly induced macrophages to upregulate the expression of innate memory-related markers (e.g., TNFα, HIF1α, and mTOR) and induced NK cells to express enhanced levels of KLRG1, known as an innate memory-like marker. Our results provide support that zymosan can be an effective adjuvant to promote innate memory immune responses, providing a bridge between innate and adaptive immune cells to enhance various immune responses such as those directed against tumors.
Collapse
Affiliation(s)
- Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea; (H.J.P.); (Y.H.P.); (T.-C.K.); (S.L.); (S.L.)
| | - Sung Won Lee
- Department of Biomedical Laboratory Science, College of Health and Biomedical Services, Sangji University, Wonju 26339, Republic of Korea;
| | - Yun Hoo Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea; (H.J.P.); (Y.H.P.); (T.-C.K.); (S.L.); (S.L.)
| | - Tae-Cheol Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea; (H.J.P.); (Y.H.P.); (T.-C.K.); (S.L.); (S.L.)
| | - Sujin Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea; (H.J.P.); (Y.H.P.); (T.-C.K.); (S.L.); (S.L.)
| | - Seyeong Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea; (H.J.P.); (Y.H.P.); (T.-C.K.); (S.L.); (S.L.)
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea; (H.J.P.); (Y.H.P.); (T.-C.K.); (S.L.); (S.L.)
| |
Collapse
|
7
|
Park HJ, Lee SW, Van Kaer L, Lee MS, Hong S. IL-7 Deficiency Exacerbates Atopic Dermatitis in NC/Nga Mice. Int J Mol Sci 2023; 24:9956. [PMID: 37373104 DOI: 10.3390/ijms24129956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Interleukin-7 (IL-7) plays a vital role in the homeostasis of CD4+ and CD8+ T cells. Although IL-7 has been implicated in T helper (Th)1- and Th17-mediated autoinflammatory diseases, its role in Th2-type allergic disorders, such as atopic dermatitis (AD), remains unclear. Thus, to elucidate the effects of IL-7 deficiency on AD development, we generated IL-7-deficient AD-prone mice by backcrossing IL-7 knockout (KO) B6 mice onto the NC/Nga (NC) mouse strain, a model for human AD. As expected, IL-7 KO NC mice displayed defective development of conventional CD4+ and CD8+ T cells compared with wild type (WT) NC mice. However, IL-7 KO NC mice presented with enhanced AD clinical scores, IgE hyperproduction, and increased epidermal thickness compared with WT NC mice. Moreover, IL-7 deficiency decreased Th1, Th17, and IFN-γ-producing CD8+ T cells but increased Th2 cells in the spleen of NC mice, indicating that a reduced Th1/Th2 ratio correlates with severity of AD pathogenesis. Furthermore, significantly more basophils and mast cells infiltrated the skin lesions of IL-7 KO NC mice. Taken together, our findings suggest that IL-7 could be a useful therapeutic target for treating Th2-mediated skin inflammations, such as AD.
Collapse
Affiliation(s)
- Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea
| | - Sung Won Lee
- Department of Biomedical Laboratory Science, College of Health and Biomedical Services, Sangji University, Wonju 26339, Republic of Korea
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
8
|
Lee SW, Oh SY, Park HJ, Kim TC, Park YH, Van Kaer L, Hong S. Phosphorothioate-linked guanine/cytosine-based stem-loop oligonucleotides induce the extracellular release of mitochondrial DNA from peritoneal B1a cells. Int J Biol Macromol 2022; 223:252-262. [PMID: 36347365 DOI: 10.1016/j.ijbiomac.2022.10.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/07/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2022]
Abstract
It has been previously demonstrated that phosphorothioate-linked GpC-based stem-loop oligonucleotides (GC-SL ODN) induce the release of mitochondrial DNA (mtDNA) from chronic lymphocytic leukemia (CLL) B cells. Although CLL B cells are believed to originate from CD5+ B cells because of their phenotypic similarities, it remains unclear whether GC-SL ODN can stimulate CD5+ B1 cells to secrete mtDNA. To explore this possibility, we compared the frequency of the mtDNA-producing population among peritoneal cells after GC-SL ODN treatment. We found that mtDNA-releasing cells are enriched for peritoneal CD19+ B cells upon GC-SL ODN challenge. Among peritoneal CD19+ B cells, the CD5+ B1a subpopulation was a primary cellular source of mtDNA secretion in GC-SL ODN-elicited immune responses. GC-SL ODN-stimulated mtDNA release by B1a cells was positively regulated by MyD88 and TRIF signaling pathways. In vivo GC-SL ODN treatment increased lipopolysaccharide-induced activation of innate immune cells such as NK cells, suggesting the immune-enhancing effects of mtDNA secretion. Furthermore, the loop size formed by GC-SL ODNs was a critical factor in inducing mtDNA release by B1a cells. Taken together, our results identified GC-SL ODN as promising biomaterials for enhancing immune responses.
Collapse
Affiliation(s)
- Sung Won Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea
| | - So Young Oh
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea
| | - Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea
| | - Tae-Cheol Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea
| | - Yun Hoo Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
9
|
Aminoclay Nanoparticles Induce Anti-Inflammatory Dendritic Cells to Attenuate LPS-Elicited Pro-Inflammatory Immune Responses. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248743. [PMID: 36557876 PMCID: PMC9787634 DOI: 10.3390/molecules27248743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Although 3-aminopropyl functionalized magnesium phyllosilicate nanoparticles (hereafter aminoclay nanoparticles, ACNs) are well-known nanomaterials employed as drug carriers, their effects on immune cells remain unclear. To address this issue, we explored murine dendritic cells (DCs) as these cells belong to the innate arm of the immune system and function as antigen-presenting cells to elicit adaptive immune responses. We examined the in vitro effects of ACNs on DCs isolated from B6 mice. ACN treatment significantly down-regulated the expression of inflammasome-related markers, including NLRP3, caspase-1, and IL1β. The ACNs-induced anti-inflammatory DC phenotype was further confirmed by down-regulation of the AKT/mTOR/HIF1α signaling pathway. Such anti-inflammatory effects of ACNs on DCs occurred independently of DC subtypes. To document the effects of ACNs on DCs more clearly, we examined their anti-inflammatory effects on lipopolysaccharide (LPS)-activated DCs. As expected, excessive inflammatory responses (increased mitochondrial ROS and Th1-type cytokines such as IL12 and IL1β) of LPS-activated DCs were dramatically attenuated by ACN treatment. Furthermore, ACNs down-regulated IFNγ production by antigen-specific CD4+ T cells, which is consistent with a reduced inflammatory phenotype of DCs. Overall, our results provide support for employing ACNs as drug delivery materials with therapeutic potential to control inflammatory disorders.
Collapse
|
10
|
Opposing Roles of DCs and iNKT Cells in the Induction of Foxp3 Expression by MLN CD25 +CD4 + T Cells during IFNγ-Driven Colitis. Int J Mol Sci 2022; 23:ijms232315316. [PMID: 36499642 PMCID: PMC9738888 DOI: 10.3390/ijms232315316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/29/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
We have previously shown that a deficiency of CD1d-restricted invariant natural killer T (iNKT) cells exacerbates dextran sulfate sodium (DSS)-induced colitis in Yeti mice that exhibit IFNγ-mediated hyper-inflammation. Although iNKT cell-deficiency resulted in reduced Foxp3 expression by mesenteric lymph node (MLN) CD4+ T cells in DSS-treated Yeti mice, the cellular mechanisms that regulate Foxp3 expression by CD25+CD4+ T cells during intestinal inflammation remain unclear. We found that Foxp3-CD25+CD4+ T cells expressing Th1 and Th17 phenotypic hallmarks preferentially expanded in the MLNs of DSS-treated Yeti/CD1d knockout (KO) mice. Moreover, adoptive transfer of Yeti iNKT cells into iNKT cell-deficient Jα18 KO mice effectively suppressed the expansion of MLN Foxp3-CD25+CD4+ T cells during DSS-induced colitis. Interestingly, MLN dendritic cells (DCs) purified from DSS-treated Yeti/CD1d KO mice promoted the differentiation of naive CD4+ T cells into Foxp3-CD25+CD4+ T cells rather than regulatory T (Treg) cells, indicating that MLN DCs might mediate Foxp3+CD25+CD4+ T cell expansion in iNKT cell-sufficient Yeti mice. Furthermore, we showed that Foxp3-CD25+CD4+ T cells were pathogenic in DSS-treated Yeti/CD1d KO mice. Our result suggests that pro-inflammatory DCs and CD1d-restricted iNKT cells play opposing roles in Foxp3 expression by MLN CD25+CD4+ T cells during IFNγ-mediated intestinal inflammation, with potential therapeutic implications.
Collapse
|
11
|
Park HJ, Lee SW, Park YH, Kim TC, Van Kaer L, Hong S. CD1d-independent NK1.1+ Treg cells are IL2-inducible Foxp3+ T cells co-expressing immunosuppressive and cytotoxic molecules. Front Immunol 2022; 13:951592. [PMID: 36177042 PMCID: PMC9513232 DOI: 10.3389/fimmu.2022.951592] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Regulatory T cells (Treg) play pivotal roles in maintaining self-tolerance and preventing immunological diseases such as allergy and autoimmunity through their immunosuppressive properties. Although Treg cells are heterogeneous populations with distinct suppressive functions, expression of natural killer (NK) cell receptors (NKR) by these cells remains incompletely explored. Here we identified that a small population of Foxp3+CD4+ Treg cells in mice expresses the NK1.1 NKR. Furthermore, we found that rare NK1.1+ subpopulations among CD4+ Treg cells develop normally in the spleen but not the thymus through CD1d-independent pathways. Compared with NK1.1- conventional Treg cells, these NK1.1+ Treg cells express elevated Treg cell phenotypic hallmarks, pro-inflammatory cytokines, and NK cell-related cytolytic mediators. Our results suggest that NK1.1+ Treg cells are phenotypically hybrid cells sharing functional properties of both NK and Treg cells. Interestingly, NK1.1+ Treg cells preferentially expanded in response to recombinant IL2 stimulation in vitro, consistent with their increased IL2Rαβ expression. Moreover, DO11.10 T cell receptor transgenic NK1.1+ Treg cells were expanded in an ovalbumin antigen-specific manner. In the context of lipopolysaccharide-induced systemic inflammation, NK1.1+ Treg cells downregulated immunosuppressive molecules but upregulated TNFα production, indicating their plastic adaptation towards a more pro-inflammatory rather than regulatory phenotype. Collectively, we propose that NK1.1+ Treg cells might play a unique role in controlling inflammatory immune responses such as infection and autoimmunity.
Collapse
Affiliation(s)
- Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Sung Won Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Yun Hoo Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Tae-Cheol Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
- *Correspondence: Seokmann Hong,
| |
Collapse
|
12
|
Lee SW, Park HJ, Van Kaer L, Hong S. Roles and therapeutic potential of CD1d-Restricted NKT cells in inflammatory skin diseases. Front Immunol 2022; 13:979370. [PMID: 36119077 PMCID: PMC9478174 DOI: 10.3389/fimmu.2022.979370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Natural killer T (NKT) cells are innate-like T lymphocytes that recognize glycolipid antigens rather than peptides. Due to their immunoregulatory properties, extensive work has been done to elucidate the immune functions of NKT cells in various immune contexts such as autoimmunity for more than two decades. In addition, as research on barrier immunity such as the mucosa-associated lymphoid tissue has flourished in recent years, the role of NKT cells to immunity in the skin has attracted substantial attention. Here, we review the contributions of NKT cells to regulating skin inflammation and discuss the factors that can modulate the functions of NKT cells in inflammatory skin diseases such as atopic dermatitis. This mini-review article will mainly focus on CD1d-dependent NKT cells and their therapeutic potential in skin-related immune diseases.
Collapse
Affiliation(s)
- Sung Won Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
- *Correspondence: Seokmann Hong,
| |
Collapse
|
13
|
The Challenge Arising from New Knowledge about Immune and Inflammatory Skin Diseases: Where We Are Today and Where We Are Going. Biomedicines 2022; 10:biomedicines10050950. [PMID: 35625686 PMCID: PMC9138773 DOI: 10.3390/biomedicines10050950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
|