1
|
Zalila-Kolsi I, Dhieb D, Osman HA, Mekideche H. The Gut Microbiota and Colorectal Cancer: Understanding the Link and Exploring Therapeutic Interventions. BIOLOGY 2025; 14:251. [PMID: 40136508 PMCID: PMC11939563 DOI: 10.3390/biology14030251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Abstract
CRC remains a significant public health challenge due to its high prevalence and mortality rates. Emerging evidence highlights the critical role of the gut microbiota in both the pathogenesis of CRC and the efficacy of treatment strategies, including chemotherapy and immunotherapy. Dysbiosis, characterized by imbalances in microbial communities, has been implicated in CRC progression and therapeutic outcomes. This review examines the intricate relationship between gut microbiota composition and CRC, emphasizing the potential for microbial profiles to serve as biomarkers for early detection and prognosis. Various interventions, such as prebiotics, probiotics, postbiotics, fecal microbiota transplantation, and dietary modifications, aim to restore microbiota balance and shift dysbiosis toward eubiosis, thereby improving health outcomes. Additionally, the integration of microbial profiling into clinical practice could enhance diagnostic capabilities and personalize treatment strategies, advancing the field of oncology. The study of intratumoral microbiota offers new diagnostic and prognostic tools that, combined with artificial intelligence algorithms, could predict treatment responses and assess the risk of adverse effects. Given the growing understanding of the gut microbiome-cancer axis, developing microbiota-oriented strategies for CRC prevention and treatment holds promise for improving patient care and clinical outcomes.
Collapse
Affiliation(s)
- Imen Zalila-Kolsi
- Faculty of Medical and Health Sciences, Liwa College, Abu Dhabi P.O. Box 41009, United Arab Emirates; (H.A.O.); (H.M.)
| | - Dhoha Dhieb
- College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Hussam A. Osman
- Faculty of Medical and Health Sciences, Liwa College, Abu Dhabi P.O. Box 41009, United Arab Emirates; (H.A.O.); (H.M.)
| | - Hadjer Mekideche
- Faculty of Medical and Health Sciences, Liwa College, Abu Dhabi P.O. Box 41009, United Arab Emirates; (H.A.O.); (H.M.)
| |
Collapse
|
2
|
Sudaarsan ASK, Ghosh AR. Appraisal of postbiotics in cancer therapy. Front Pharmacol 2024; 15:1436021. [PMID: 39372197 PMCID: PMC11449718 DOI: 10.3389/fphar.2024.1436021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Cancer remains a multifactorial disease with an increased mortality rate around the world for the past several decades. Despite advancements in treatment strategies, lower survival rates, drug-associated side effects, and drug resistance create a need for novel anticancer agents. Ample evidence shows that imbalances in the gut microbiota are associated with the formation of cancer and its progression. Altering the gut microbiota via probiotics and their metabolites has gained attention among the research community as an alternative therapy to treat cancer. Probiotics exhibit health benefits as well as modulate the immunological and cellular responses in the host. Apart from probiotics, their secreted products like bacteriocins, exopolysaccharides, short-chain fatty acids, conjugated linoleic acid, peptidoglycan, and other metabolites are found to possess anticancer activity. The beneficiary role of these postbiotic compounds is widely studied for characterizing their mechanism and mode of action that reduces cancer growth. The present review mainly focuses on the postbiotic components that are employed against cancer with their reported mechanism of action. It also describes recent research works carried out so far with specific strain and anticancer activity of derived compounds both in vitro and in vivo, validating that the probiotic approach would pave an alternative way to reduce the burden of cancer.
Collapse
|
3
|
Doukaki A, Papadopoulou OS, Baraki A, Siapka M, Ntalakas I, Tzoumkas I, Papadimitriou K, Tassou C, Skandamis P, Nychas GJ, Chorianopoulos N. Effect of the Bioprotective Properties of Lactic Acid Bacteria Strains on Quality and Safety of Feta Cheese Stored under Different Conditions. Microorganisms 2024; 12:1870. [PMID: 39338544 PMCID: PMC11434416 DOI: 10.3390/microorganisms12091870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Lately, the inclusion of additional lactic acid bacteria (LAB) strains to cheeses is becoming more popular since they can affect cheese's nutritional, technological, and sensory properties, as well as increase the product's safety. This work studied the effect of Lactiplantibacillus pentosus L33 and Lactiplantibacillus plantarum L125 free cells and supernatants on feta cheese quality and Listeria monocytogenes fate. In addition, rapid and non-invasive techniques such as Fourier transform infrared (FTIR) and multispectral imaging (MSI) analysis were used to classify the cheese samples based on their sensory attributes. Slices of feta cheese were contaminated with 3 log CFU/g of L. monocytogenes, and then the cheese slices were sprayed with (i) free cells of the two strains of the lactic acid bacteria (LAB) in co-culture (F, ~5 log CFU/g), (ii) supernatant of the LAB co-culture (S) and control (C, UHT milk) or wrapped with Na-alginate edible films containing the pellet (cells, FF) or the supernatant (SF) of the LAB strains. Subsequently, samples were stored in air, in brine, or in vacuum at 4 and 10 °C. During storage, microbiological counts, pH, and water activity (aw) were monitored while sensory assessment was conducted. Also, in every sampling point, spectral data were acquired by means of FTIR and MSI techniques. Results showed that the initial microbial population of Feta was ca. 7.6 log CFU/g and consisted of LAB (>7 log CFU/g) and yeast molds in lower levels, while no Enterobacteriaceae were detected. During aerobic, brine, and vacuum storage for both temperatures, pathogen population was slightly postponed for S and F samples and reached lower levels compared to the C ones. The yeast mold population was slightly delayed in brine and vacuum packaging. For aerobic storage at 4 °C, an elongation in the shelf life of F samples by 4 days was observed compared to C and S samples. At 10 °C, the shelf life of both F and S samples was extended by 13 days compared to C samples. FTIR and MSI analyses provided reliable estimations of feta quality using the PLS-DA method, with total accuracy (%) ranging from 65.26 to 84.31 and 60.43 to 89.12, respectively. In conclusion, the application of bioprotective LAB strains can result in the extension of feta's shelf life and provide a mild antimicrobial action against L. monocytogenes and spoilage microbiota. Furthermore, the findings of this study validate the effectiveness of FTIR and MSI techniques, in tandem with data analytics, for the rapid assessment of the quality of feta samples.
Collapse
Affiliation(s)
- Angeliki Doukaki
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (A.D.); (A.B.); (M.S.); (I.N.); (I.T.); (G.-J.N.)
| | - Olga S. Papadopoulou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—DIMITRA, S. Venizelou 1, 14123 Lycovrissi, Greece; (O.S.P.); (C.T.)
| | - Antonia Baraki
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (A.D.); (A.B.); (M.S.); (I.N.); (I.T.); (G.-J.N.)
| | - Marina Siapka
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (A.D.); (A.B.); (M.S.); (I.N.); (I.T.); (G.-J.N.)
| | - Ioannis Ntalakas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (A.D.); (A.B.); (M.S.); (I.N.); (I.T.); (G.-J.N.)
| | - Ioannis Tzoumkas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (A.D.); (A.B.); (M.S.); (I.N.); (I.T.); (G.-J.N.)
| | - Konstantinos Papadimitriou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (K.P.); (P.S.)
| | - Chrysoula Tassou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—DIMITRA, S. Venizelou 1, 14123 Lycovrissi, Greece; (O.S.P.); (C.T.)
| | - Panagiotis Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (K.P.); (P.S.)
| | - George-John Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (A.D.); (A.B.); (M.S.); (I.N.); (I.T.); (G.-J.N.)
| | - Nikos Chorianopoulos
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (A.D.); (A.B.); (M.S.); (I.N.); (I.T.); (G.-J.N.)
| |
Collapse
|
4
|
Fida F, Yuvarajan S, Ashwath K, Rekha PD. Lactiplantibacillus plantarum exerts anticancer effects and increase the chemosensitivity of 5-fluorouracil against oral cancer cells in vitro. BIOIMPACTS : BI 2024; 15:30427. [PMID: 40256235 PMCID: PMC12008257 DOI: 10.34172/bi.30427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 04/22/2025]
Abstract
Introduction Probiotics are used to provide health benefits and can improve the immune response. They can also target cancer cells directly with anticancer effects through various mechanisms. In this study, Lactiplantibacillus plantarum (basonym: Lactobacillus plantarum) strain MCC 3016 and its postbiotic metabolites/cell free supernatant (CFS) were used against Cal27 oral cancer cells in vitro. Methods Standard assays were employed to investigate the effect of Lpb. plantarum on cell viability, proliferation, migration, and clonogenicity of Cal27 cells. The mechanism of action was assessed by measuring the levels of reactive oxygen species (ROS), interleukins (IL)-6 and IL-8, tumor necrosis factor-α (TNF-α), as well as the expression of Ki67, vascular endothelial growth factor (VEGF), p53 and caspase-3. Further, the effect of Lpb. plantarum and its CFS on the cytotoxicity of chemotherapy drug 5-fluorouracil (5-FU) was evaluated using cell viability assays. Results Cal27 cells treated with Lpb. plantarum and its CFS showed a significant decrease (P < 0.01) in cell viability, proliferation, migration, and clonogenicity, along with increased levels of ROS and induced apoptosis. It significantly reduced IL-6, IL-8, TNF-α, and VEGF levels and upregulated p53 and caspase-3 expression. The postbiotic metabolites also showed similar effects on Cal27 cells. Furthermore, the cytotoxic effect of 5-FU on Cal27 cells was enhanced by Lpb. plantarum and its CFS treatment. Conclusion Lpb. plantarum MCC 3016 and its postbiotic metabolites exhibited promising anticancer effects on oral cancer cells and improved drug efficacy, demonstrating their potential therapeutic value in oral cancer therapy.
Collapse
Affiliation(s)
- Fathima Fida
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore-575018, India
| | - Subramaniyan Yuvarajan
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore-575018, India
| | - Kesari Ashwath
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore-575018, India
| | - Punchappady Devasya Rekha
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore-575018, India
| |
Collapse
|
5
|
Liu B, Zhong X, Liu Z, Guan X, Wang Q, Qi R, Zhou X, Huang J. Probiotic Potential and Safety Assessment of Lactiplantibacillus plantarum cqf-43 and Whole-Genome Sequence Analysis. Int J Mol Sci 2023; 24:17570. [PMID: 38139398 PMCID: PMC10744225 DOI: 10.3390/ijms242417570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
This study reports the whole-genome sequence of Lactiplantibacillus plantarum cqf-43 isolated from healthy sow feces. Based on genomic analysis, we performed a comprehensive safety assessment of strain cqf-43, using both in vitro and in vivo experiments, and explored its probiotic potential. The total genome length measures 3,169,201 bp, boasting a GC content of 44.59%. Through phylogenetic analyses, leveraging both 16S rRNA gene and whole-genome sequences, we confidently categorize strain cqf-43 as a member of Lactiplantibacillus. Genome annotation using Prokka unveiled a total of 3141 genes, encompassing 2990 protein-coding sequences, 71 tRNAs, 16 rRNAs, and 1 tmRNA. Functional annotations derived from COG and KEGG databases highlighted a significant abundance of genes related to metabolism, with a notable emphasis on carbohydrate utilization. The genome also revealed the presence of prophage regions and CRISPR-Cas regions while lacking virulence and toxin genes. Screening for antibiotic resistance genes via the CARD database yielded no detectable transferable resistance genes, effectively eliminating the potential for harmful gene transfer. It is worth highlighting that the virulence factors identified via the VFDB database primarily contribute to bolstering pathogen resilience in hostile environments. This characteristic is particularly advantageous for probiotics. Furthermore, the genome is devoid of menacing genes such as hemolysin, gelatinase, and biogenic amine-producing genes. Our investigation also unveiled the presence of three unannotated secondary metabolite biosynthetic gene clusters, as detected by the online tool antiSMASH, suggesting a great deal of unknown potential for this strain. Rigorous in vitro experiments confirmed tolerance of strain cqf-43 in the intestinal environment, its antimicrobial efficacy, sensitivity to antibiotics, absence of hemolysis and gelatinase activity, and its inability to produce biogenic amines. In addition, a 28-day oral toxicity test showed that the strain cqf-43 did not pose a health hazard in mice, further establishing it as a safe strain.
Collapse
Affiliation(s)
- Baiheng Liu
- Chongqing Academy of Animal Science, Chongqing 402460, China; (B.L.); (X.Z.); (Z.L.); (X.G.); (Q.W.); (R.Q.); (X.Z.)
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Xiaoxia Zhong
- Chongqing Academy of Animal Science, Chongqing 402460, China; (B.L.); (X.Z.); (Z.L.); (X.G.); (Q.W.); (R.Q.); (X.Z.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Zhiyun Liu
- Chongqing Academy of Animal Science, Chongqing 402460, China; (B.L.); (X.Z.); (Z.L.); (X.G.); (Q.W.); (R.Q.); (X.Z.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Xiaofeng Guan
- Chongqing Academy of Animal Science, Chongqing 402460, China; (B.L.); (X.Z.); (Z.L.); (X.G.); (Q.W.); (R.Q.); (X.Z.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Qi Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China; (B.L.); (X.Z.); (Z.L.); (X.G.); (Q.W.); (R.Q.); (X.Z.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Renli Qi
- Chongqing Academy of Animal Science, Chongqing 402460, China; (B.L.); (X.Z.); (Z.L.); (X.G.); (Q.W.); (R.Q.); (X.Z.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Xiaorong Zhou
- Chongqing Academy of Animal Science, Chongqing 402460, China; (B.L.); (X.Z.); (Z.L.); (X.G.); (Q.W.); (R.Q.); (X.Z.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Science, Chongqing 402460, China; (B.L.); (X.Z.); (Z.L.); (X.G.); (Q.W.); (R.Q.); (X.Z.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| |
Collapse
|
6
|
Huligere SS, Kumari V B C, Desai SM, Wong LS, Firdose N, Ramu R. Investigating the antidiabetic efficacy of dairy-derived Lacticaseibacillus paracasei probiotic strains: modulating α-amylase and α-glucosidase enzyme functions. Front Microbiol 2023; 14:1288487. [PMID: 38111646 PMCID: PMC10725979 DOI: 10.3389/fmicb.2023.1288487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/02/2023] [Indexed: 12/20/2023] Open
Abstract
The current study aims to evaluate and characterize the probiotic andantidiabetic properties of lactic acid bacteria (LAB) obtained from milk and other dairy-based products. The strains were tested physiologically, biochemically, and molecularly. Based on biochemical tests and 16S rRNA gene amplification and sequencing, all three isolates RAMULAB18, RAMULAB19, and RAMULAB53 were identified as Lacticaseibacillus paracasei with homology similarity of more than 98%. The inhibitory potential of each isolate against carbohydrate hydrolysis enzymes (α-amylase and α-glucosidase) was assessed using three different preparations of RAMULAB (RL) isolates: the supernatant (RL-CS), intact cells (RL-IC), and cell-free extraction (RL-CE). Additionally, the isolate was evaluated for its antioxidant activity against free radicals (DPPH and ABTS). The strain's RL-CS, RL-CE, and RL-IC inhibited α-amylase (17.25 to 55.42%), α-glucosidase (15.08-59.55%), DPPH (56.42-87.45%), and ABTS (46.35-78.45%) enzymes differently. With the highest survival rate (>98%) toward tolerance to gastrointestinal conditions, hydrophobicity (>42.18%), aggregation (>74.21%), as well as attachment to an individual's colorectal cancer cell line (HT-29) (>64.98%), human buccal and chicken crop epithelial cells, all three isolates exhibited extensive results. All three isolates exhibited high resistance toward antibiotics (methicillin, kanamycin, cefixime, and vancomycin), and other assays such as antibacterial, DNase, hemolytic, and gelatinase were performed for safety assessment. Results suggest that the LAB described are valuable candidates for their significant health benefits and that they can also be utilized as a beginning or bio-preservative tradition in the food, agriculture, and pharmaceutical sectors. The LAB isolates are excellent in vitro probiotic applicants and yet additional in vivo testing is required.
Collapse
Affiliation(s)
- Sujay S. Huligere
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Chandana Kumari V B
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Sudhanva M. Desai
- Department of Chemical Engineering, Dayanand Sagar College of Engineering, Bengaluru, Karnataka, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - Nagma Firdose
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| |
Collapse
|
7
|
Kiousi DE, Karadedos DM, Sykoudi A, Repanas P, Kamarinou CS, Argyri AA, Galanis A. Development of a Multiplex PCR Assay for Efficient Detection of Two Potential Probiotic Strains Using Whole Genome-Based Primers. Microorganisms 2023; 11:2553. [PMID: 37894211 PMCID: PMC10609308 DOI: 10.3390/microorganisms11102553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Probiotics are microorganisms that exert strain-specific health-promoting effects on the host. Τhey are employed in the production of functional dairy or non-dairy food products; still, their detection in these complex matrices is a challenging task. Several culture-dependent and culture-independent methods have been developed in this direction; however, they present low discrimination at the strain level. Here, we developed a multiplex PCR assay for the detection of two potential probiotic lactic acid bacteria (LAB) strains, Lactiplantibacillus plantarum L125 and Lp. pentosus L33, in monocultures and yogurt samples. Unique genomic regions were identified via comparative genomic analysis and were used to produce strain-specific primers. Then, primer sets were selected that produced distinct electrophoretic DNA banding patterns in multiplex PCR for each target strain. This method was further implemented for the detection of the two strains in yogurt samples, highlighting its biotechnological applicability. Moreover, it can be applied with appropriate modifications to detect any bacterial strain with available WGS.
Collapse
Affiliation(s)
- Despoina E. Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (D.M.K.); (A.S.); (P.R.); (C.S.K.)
| | - Dimitrios M. Karadedos
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (D.M.K.); (A.S.); (P.R.); (C.S.K.)
| | - Anastasia Sykoudi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (D.M.K.); (A.S.); (P.R.); (C.S.K.)
| | - Panagiotis Repanas
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (D.M.K.); (A.S.); (P.R.); (C.S.K.)
| | - Christina S. Kamarinou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (D.M.K.); (A.S.); (P.R.); (C.S.K.)
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—DIMITRA, 14123 Lycovrissi, Greece;
| | - Anthoula A. Argyri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—DIMITRA, 14123 Lycovrissi, Greece;
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (D.M.K.); (A.S.); (P.R.); (C.S.K.)
| |
Collapse
|
8
|
Kingkaew E, Konno H, Hosaka Y, Tanasupawat S. Probiogenomic Analysis of Lactiplantibacillus sp. LM14-2 from Fermented Mussel (Hoi-dong), and Evaluation of its Cholesterol-lowering and Immunomodulation Effects. Probiotics Antimicrob Proteins 2023; 15:1206-1220. [PMID: 35987935 DOI: 10.1007/s12602-022-09977-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 02/01/2023]
Abstract
Lactiplantibacillus sp. LM14-2, isolated from Thai-fermented mussel (Hoi-dong), showed attractive probiotic properties. This strain was identified as Lactiplantibacillus plantarum based on its phenotypic, chemotaxonomic, and genetic characteristics including whole-genome sequencing (WGS). The draft genome sequence was analyzed and annotated for the molecular mechanisms involved in the safety assessment, the adaptation and adhesion of L. plantarum LM14-2 to the gastrointestinal tract (GIT), and the beneficial genes involved in bacteria-host interactions. The L. plantarum LM14-2 exhibited bile salt hydrolase (BSH) activity, assimilated cholesterol at 86.07 ± 5.03%, stimulated the secretion of interleukin-12, interferon-gamma, and human beta defensin-2, and induced nitric oxide production. In addition, L. plantarum LM14-2 showed excellent gastrointestinal tolerance and adhesion ability to Caco-2 cells. Furthermore, the in silico analysis showed that L. plantarum LM14-2 was a non-human pathogen and did not contain antibiotic resistance genes or plasmids. L. plantarum LM14-2 also contained potential genes associated with various probiotic characteristics and health-promoting effects. Consequently, this study suggested that L. plantarum LM14-2 could be considered safe, with potential probiotic properties and health-promoting impacts, which could facilitate its probiotic application.
Collapse
Affiliation(s)
- Engkarat Kingkaew
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Hiroshi Konno
- Akita Konno CO., LTD., 248 Aza Kariwano, Daisen-shi, Akita, 019-2112, Japan
| | - Yoshihito Hosaka
- Akita Konno CO., LTD., 248 Aza Kariwano, Daisen-shi, Akita, 019-2112, Japan
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Thoda C, Touraki M. Probiotic-Derived Bioactive Compounds in Colorectal Cancer Treatment. Microorganisms 2023; 11:1898. [PMID: 37630458 PMCID: PMC10456921 DOI: 10.3390/microorganisms11081898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Colorectal cancer (CRC) is a multifactorial disease with increased morbidity and mortality rates globally. Despite advanced chemotherapeutic approaches for the treatment of CRC, low survival rates due to the regular occurrence of drug resistance and deleterious side effects render the need for alternative anticancer agents imperative. Accumulating evidence supports that gut microbiota imbalance precedes the establishment of carcinogenesis, subsequently contributing to cancer progression and response to anticancer therapy. Manipulation of the gut microbiota composition via the administration of probiotic-derived bioactive compounds has gradually attained the interest of scientific communities as a novel therapeutic strategy for CRC. These compounds encompass miscellaneous metabolic secreted products of probiotics, including bacteriocins, short-chain fatty acids (SCFAs), lactate, exopolysaccharides (EPSs), biosurfactants, and bacterial peptides, with profound anti-inflammatory and antiproliferative properties. This review provides a classification of postbiotic types and a comprehensive summary of the current state of research on their biological role against CRC. It also describes how their intricate interaction with the gut microbiota regulates the proper function of the intestinal barrier, thus eliminating gut dysbiosis and CRC development. Finally, it discusses the future perspectives in precision-medicine approaches as well as the challenges of their synthesis and optimization of administration in clinical studies.
Collapse
Affiliation(s)
| | - Maria Touraki
- Laboratory of General Biology, Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece;
| |
Collapse
|
10
|
Aziz T, Naveed M, Shabbir MA, Sarwar A, Ali Khan A, Zhennai Y, Alharbi M, Alsahammari A, Alasmari AF. Comparative genomics of food-derived probiotic Lactiplantibacillus plantarum K25 reveals its hidden potential, compactness, and efficiency. Front Microbiol 2023; 14:1214478. [PMID: 37455721 PMCID: PMC10346846 DOI: 10.3389/fmicb.2023.1214478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 05/18/2023] [Indexed: 07/18/2023] Open
Abstract
This study aimed to investigate the intricate genetic makeup of the Lactiplantibacillus plantarum K25 strain by conducting a comprehensive analysis of comparative genomics. The results of our study demonstrate that the genome exhibits a high-level efficiency and compactness, comprising a total of 3,199 genes that encode proteins and a GC content of 43.38%. The present study elucidates the evolutionary lineage of Lactiplantibacillus plantarum strains through an analysis of the degree of gene order conservation and synteny across a range of strains, thereby underscoring their closely interrelated evolutionary trajectories. The identification of various genetic components in the K25 strain, such as bacteriocin gene clusters and prophage regions, highlights its potential utility in diverse domains, such as biotechnology and medicine. The distinctive genetic elements possess the potential to unveil innovative therapeutic and biotechnological remedies in future. This study provides a comprehensive analysis of the L. plantarum K25 strain, revealing its remarkable genomic potential and presenting novel prospects for utilizing its unique genetic features in diverse scientific fields. The present study contributes to the existing literature on Lactiplantibacillus plantarum and sets the stage for prospective investigations and practical implementations that leverage the exceptional genetic characteristics of this adap organism.
Collapse
Affiliation(s)
- Tariq Aziz
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center for Food Additives, Beijing Technology and Business University, Beijing, China
- Laboratory of Animal Health, Food Hygiene, and Quality, Department of Agriculture, University of Ioannina, Arta, Greece
| | - Muhammad Naveed
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Aqib Shabbir
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Abid Sarwar
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center for Food Additives, Beijing Technology and Business University, Beijing, China
| | - Ayaz Ali Khan
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Yang Zhennai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center for Food Additives, Beijing Technology and Business University, Beijing, China
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman Alsahammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Kiousi DE, Kouroutzidou AZ, Neanidis K, Karavanis E, Matthaios D, Pappa A, Galanis A. The Role of the Gut Microbiome in Cancer Immunotherapy: Current Knowledge and Future Directions. Cancers (Basel) 2023; 15:cancers15072101. [PMID: 37046762 PMCID: PMC10093606 DOI: 10.3390/cancers15072101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Cancer immunotherapy is a treatment modality that aims to stimulate the anti-tumor immunity of the host to elicit favorable clinical outcomes. Immune checkpoint inhibitors (ICIs) gained traction due to the lasting effects and better tolerance in patients carrying solid tumors in comparison to conventional treatment. However, a significant portion of patients may present primary or acquired resistance (non-responders), and thus, they may have limited therapeutic outcomes. Resistance to ICIs can be derived from host-related, tumor-intrinsic, or environmental factors. Recent studies suggest a correlation of gut microbiota with resistance and response to immunotherapy as well as with the incidence of adverse events. Currently, preclinical and clinical studies aim to elucidate the unique microbial signatures related to ICI response and anti-tumor immunity, employing metagenomics and/or multi-omics. Decoding this complex relationship can provide the basis for manipulating the malleable structure of the gut microbiota to enhance therapeutic success. Here, we delve into the factors affecting resistance to ICIs, focusing on the intricate gut microbiome–immunity interplay. Additionally, we review clinical studies and discuss future trends and directions in this promising field.
Collapse
Affiliation(s)
- Despoina E. Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Antonia Z. Kouroutzidou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Konstantinos Neanidis
- Oncology Department, 424 General Military Training Hospital, 56429 Thessaloniki, Greece
| | - Emmanuel Karavanis
- Oncology Department, 424 General Military Training Hospital, 56429 Thessaloniki, Greece
| | | | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
12
|
Mendoza RM, Kim SH, Vasquez R, Hwang IC, Park YS, Paik HD, Moon GS, Kang DK. Bioinformatics and its role in the study of the evolution and probiotic potential of lactic acid bacteria. Food Sci Biotechnol 2023; 32:389-412. [PMID: 36911331 PMCID: PMC9992694 DOI: 10.1007/s10068-022-01142-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 11/04/2022] Open
Abstract
Due to their numerous well-established applications in the food industry, there have been many studies regarding the adaptation and evolution of lactic acid bacteria (LAB) in a wide variety of hosts and environments. Progress in sequencing technology and continual decreases in its costs have led to the availability of LAB genome sequence data. Bioinformatics has been central to the extraction of valuable information from these raw genome sequence data. This paper presents the roles of bioinformatics tools and databases in understanding the adaptation and evolution of LAB, as well as the bioinformatics methods used in the initial screening of LAB for probiotic potential. Moreover, the advantages, challenges, and limitations of employing bioinformatics for these purposes are discussed.
Collapse
Affiliation(s)
- Remilyn M. Mendoza
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - Sang Hoon Kim
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - Robie Vasquez
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - In-Chan Hwang
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029 Republic of Korea
| | - Gi-Seong Moon
- Division of Food Science and Biotechnology, Korea National University of Transportation, Jeungpyeong, 27909 Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| |
Collapse
|
13
|
Draft Genome Sequence of Lactiplantibacillus plantarum Strain ISO1, a Potential Probiotic Bacterium Isolated from the Milk of South African Saanen Goats. Microbiol Resour Announc 2023; 12:e0124522. [PMID: 36651743 PMCID: PMC9933647 DOI: 10.1128/mra.01245-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Lactiplantibacillus plantarum strain ISO1, a potential probiotic with wide food and biotechnological applications, was isolated from the raw milk of South African Saanen goats. Here, we report the draft genome sequence of this bacterium. Sequencing yielded a 3.23-Mb genome and 2,967 protein-coding sequences.
Collapse
|
14
|
Kiousi DE, Efstathiou C, Tzampazlis V, Plessas S, Panopoulou M, Koffa M, Galanis A. Genetic and phenotypic assessment of the antimicrobial activity of three potential probiotic lactobacilli against human enteropathogenic bacteria. Front Cell Infect Microbiol 2023; 13:1127256. [PMID: 36844407 PMCID: PMC9944596 DOI: 10.3389/fcimb.2023.1127256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Lactobacilli are avid producers of antimicrobial compounds responsible for their adaptation and survival in microbe-rich matrices. The bactericidal or bacteriostatic ability of lactic acid bacteria (LAB) can be exploited for the identification of novel antimicrobial compounds to be incorporated in functional foodstuffs or pharmaceutical supplements. In this study, the antimicrobial and antibiofilm properties of Lactiplantibacillus pentosus L33, Lactiplantibacillus plantarum L125 and Lacticaseibacillus paracasei SP5, previously isolated form fermented products, were examined, against clinical isolates of Staphylococcus aureus, Salmonella enterica subsp. enterica serovar Enteritidis and Escherichia coli. Methods The ability of viable cells to inhibit pathogen colonization on HT-29 cell monolayers, as well as their co-aggregation capacity, were examined utilizing the competitive exclusion assay. The antimicrobial activity of cell-free culture supernatants (CFCS) was determined against planktonic cells and biofilms, using microbiological assays, confocal microscopy, and gene expression analysis of biofilm formation-related genes. Furthermore, in vitro analysis was supplemented with in silico prediction of bacteriocin clusters and of other loci involved in antimicrobial activity. Results The three lactobacilli were able to limit the viability of planktonic cells of S. aureus and E. coli in suspension. Greater inhibition of biofilm formation was recorded after co-incubation of S. enterica with the CFCS of Lc. paracasei SP5. Predictions based on sequence revealed the ability of strains to produce single or two-peptide Class II bacteriocins, presenting sequence and structural conservation with functional bacteriocins. Discussion The efficiency of the potentially probiotic bacteria to elicit antimicrobial effects presented a strain- and pathogen-specific pattern. Future studies, utilizing multi-omic approaches, will focus on the structural and functional characterization of molecules involved in the recorded phenotypes.
Collapse
Affiliation(s)
- Despoina Eugenia Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christos Efstathiou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vasilis Tzampazlis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Stavros Plessas
- Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
| | - Maria Panopoulou
- Department of Medicine, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Koffa
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
15
|
Kiousi DE, Efstathiou C, Tegopoulos K, Mantzourani I, Alexopoulos A, Plessas S, Kolovos P, Koffa M, Galanis A. Genomic Insight Into Lacticaseibacillus paracasei SP5, Reveals Genes and Gene Clusters of Probiotic Interest and Biotechnological Potential. Front Microbiol 2022; 13:922689. [PMID: 35783439 PMCID: PMC9244547 DOI: 10.3389/fmicb.2022.922689] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 12/22/2022] Open
Abstract
The Lacticaseibacillus paracasei species is comprised by nomadic bacteria inhabiting a wide variety of ecological niches, from fermented foodstuffs to host-associated microenvironments. Lc. paracasei SP5 is a novel strain, originally isolated from kefir grains that presents desirable probiotic and biotechnological attributes. In this study, we applied genomic tools to further characterize the probiotic and biotechnological potential of the strain. Firstly, whole genome sequencing and assembly, were performed to construct the chromosome map of the strain and determine its genomic stability. Lc. paracasei SP5 carriers several insertion sequences, however, no plasmids or mobile elements were detected. Furthermore, phylogenomic and comparative genomic analyses were utilized to study the nomadic attributes of the strain, and more specifically, its metabolic capacity and ability to withstand environmental stresses imposed during food processing and passage through the gastrointestinal (GI) tract. More specifically, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Carbohydrate-active enzyme (CAZymes) analyses provided evidence for the ability of the stain to utilize an array of carbohydrates as growth substrates. Consequently, genes for heat, cold, osmotic shock, acidic pH, and bile salt tolerance were annotated. Importantly bioinformatic analysis showed that the novel strain does not harbor acquired antimicrobial resistance genes nor virulence factors, in agreement with previous experimental data. Putative bacteriocin biosynthesis clusters were identified using BAGEL4, suggesting its potential antimicrobial activity. Concerning microbe-host interactions, adhesins, moonlighting proteins, exopolysaccharide (EPS) biosynthesis genes and pilins mediating the adhesive phenotype were, also, pinpointed in the genome of Lc. paracasei SP5. Validation of this phenotype was performed by employing a microbiological method and confocal microscopy. Conclusively, Lc. paracasei SP5 harbors genes necessary for the manifestation of the probiotic character and application in the food industry. Upcoming studies will focus on the mechanisms of action of the novel strain at multiple levels.
Collapse
Affiliation(s)
- Despoina Eugenia Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christos Efstathiou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Tegopoulos
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioanna Mantzourani
- Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
| | - Athanasios Alexopoulos
- Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
| | - Stavros Plessas
- Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
- *Correspondence: Stavros Plessas,
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Koffa
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
- Alex Galanis,
| |
Collapse
|
16
|
Yilmaz B, Bangar SP, Echegaray N, Suri S, Tomasevic I, Manuel Lorenzo J, Melekoglu E, Rocha JM, Ozogul F. The Impacts of Lactiplantibacillus plantarum on the Functional Properties of Fermented Foods: A Review of Current Knowledge. Microorganisms 2022; 10:826. [PMID: 35456875 PMCID: PMC9026118 DOI: 10.3390/microorganisms10040826] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/17/2022] Open
Abstract
One of the most varied species of lactic acid bacteria is Lactiplantibacillus plantarum (Lb. plantarum), formerly known as Lactobacillus plantarum. It is one of the most common species of bacteria found in foods, probiotics, dairy products, and beverages. Studies related to genomic mapping and gene locations of Lb. plantarum have shown the novel findings of its new strains along with their non-pathogenic or non-antibiotic resistance genes. Safe strains obtained with new technologies are a pioneer in the development of new probiotics and starter cultures for the food industry. However, the safety of Lb. plantarum strains and their bacteriocins should also be confirmed with in vivo studies before being employed as food additives. Many of the Lb. plantarum strains and their bacteriocins are generally safe in terms of antibiotic resistance genes. Thus, they provide a great opportunity for improving the nutritional composition, shelf life, antioxidant activity, flavour properties and antimicrobial activities in the food industry. Moreover, since some Lb. plantarum strains have the ability to reduce undesirable compounds such as aflatoxins, they have potential use in maintaining food safety and preventing food spoilage. This review emphasizes the impacts of Lb. plantarum strains on fermented foods, along with novel approaches to their genomic mapping and safety aspects.
Collapse
Affiliation(s)
- Birsen Yilmaz
- Department of Nutrition and Dietetics, Cukurova University, Sarıcam, 01330 Adana, Turkey;
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29631, USA;
| | - Noemi Echegaray
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia no. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (N.E.); (J.M.L.)
| | - Shweta Suri
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Sonipat 131028, India;
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia no. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (N.E.); (J.M.L.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Ebru Melekoglu
- Department of Nutrition and Dietetics, Cukurova University, Sarıcam, 01330 Adana, Turkey;
| | - João Miguel Rocha
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Balcali, 01330 Adana, Turkey;
| |
Collapse
|
17
|
The Clash of Microbiomes: From the Food Matrix to the Host Gut. Microorganisms 2022; 10:microorganisms10010116. [PMID: 35056566 PMCID: PMC8780850 DOI: 10.3390/microorganisms10010116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Food fermentation has led to the improvement of the safety characteristics of raw materials and the production of new foodstuffs with elevated organoleptic characteristics. The empirical observation that these products could have a potential health benefit has garnered the attention of the scientific community. Therefore, several studies have been conducted in animal and human hosts to decipher which of these products may have a beneficial outcome against specific ailments. However, despite the accumulating literature, a relatively small number of products have been authorized as ‘functional foods’ by regulatory bodies. Data inconsistency and lack of in-depth preclinical characterization of functional products could heavily contribute to this issue. Today, the increased availability of omics platforms and bioinformatic algorithms for comprehensive data analysis can aid in the systematic characterization of microbe–microbe, microbe–matrix, and microbe–host interactions, providing useful insights about the maximization of their beneficial effects. The incorporation of these platforms in food science remains a challenge; however, coordinated efforts and interdisciplinary collaboration could push the field toward the dawn of a new era.
Collapse
|