1
|
Sasany R, Jamjoom FZ, Uçar SM, Yilmaz B. Nanoindentation creep: The impact of water and artificial saliva storage on milled and 3D-printed resin composites. J Prosthodont 2024. [PMID: 39105440 DOI: 10.1111/jopr.13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 06/28/2024] [Indexed: 08/07/2024] Open
Abstract
PURPOSE This study evaluated the effects of artificial saliva and distilled water on the nanoindentation creep of different 3D-printed and milled CAD-CAM resin composites. MATERIAL AND METHODS Disk-shaped specimens were subtractively fabricated from polymer-infiltrated ceramic network (EN) and reinforced resin composite (B) and additively from resin composite (C) and hybrid resin composite (VS) using digital light processing (DLP). Specimens from each material were divided into two groups according to their storage conditions (artificial saliva or distilled water for 3 months). Creep was analyzed by nanoindentation testing. Statistical analysis was done using two-way ANOVA, one-way ANOVA, Bonferroni post hoc tests, and independent t-test (α = 0.05). RESULTS The main effects of material and storage conditions, and their interaction were statistically significant on nanoindentation (p < 0.001). Storage condition had the greatest influence (partial eta squared ηP 2 = 0.370), followed by the material (ηP 2 = 0.359), and the interaction (ηP 2 = 0.329). The nanoindentation creep depths after artificial saliva storage ranged from 0.34 to 0.51 µm and from 0.50 to 0.87 µm after distilled water storage. One of the additively manufactured groups had higher nanoindentation creep depths in both storage conditions. CONCLUSIONS All specimens showed comparable performance after artificial saliva storage, but increased nanoindentation creep after distilled water storage for 3 months. The subtractive CAD-CAM blocks showed superior dimensional stability in terms of nanoindentation creep depths in both storage conditions. Additively manufactured composite resins had lower dimensional stability than one of the subtractively manufactured composites, which was demonstrated as having higher creep deformation and maximum recovery. However, after artificial saliva storage, one of the additively manufactured resins had dimensional stability similar to that of subtractively manufactured.
Collapse
Affiliation(s)
- Rafat Sasany
- Department of Prosthodontics, Faculty of Dentistry, Istanbul Biruni University, Istanbul, Turkey
| | - Faris Z Jamjoom
- Restorative and Prosthetic Dental Science Department, College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Sultan Merve Uçar
- Department of Prosthodontics, Faculty of Dentistry, Istanbul Biruni University, Istanbul, Turkey
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Burak Yilmaz
- Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland
- Division of Restorative and Prosthetic Dentistry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Abouelleil H, Attik N, Chiriac R, Toche F, Ory A, Zayakh A, Grosgogeat B, Pradelle-Plasse N. Comparative study of two bioactive dental materials. Dent Mater 2024; 40:297-306. [PMID: 38007319 DOI: 10.1016/j.dental.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/05/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
OBJECTIVES New bioactive materials were introduced to not only restore the lost dental hard tissue but also to release fluoride that inhibits demineralization and occurrence of secondary caries. The current study thus aims to assess Fluoride release as well as the mechanical and physical properties of two new commercially available bioactive restorative materials. METHODS Two materials, Cention® Forte (CF) (Ivoclar Vivadent), Surefil one™ (SO) (Denstply Sirona), were evaluated in terms of fracture toughness (FT), flexural strength (FS), flexural modulus (FM) (ISO 4049), compressive strength (CS), and Vickers hardness (VH). In addition, thermogravimetric analysis (TGA) was performed, as well as pH measurements and quantification of Fluoride release after immersion in distilled water at times of 0, 7, 14 and 21 days. The sealing ability was evaluated using silver nitrate dye penetration on natural teeth. Finally, Energy-Dispersive X-Ray Spectroscopy (EDX) was used to investigate the surface composition of the two studied material surfaces. The data were statistically analyzed using Independent T-Tests; the chosen significance level was α = 0.05. RESULTS CF had significantly higher FT values compared to SO (p = 0.001). Also the FS results showed that CF had significantly higher values (90.11 MPa), followed by SO (22.15 MPa). The CS values showed the same order with significantly higher values for CF (231.79 MPa). While the FM and VH showed the reverse order with SO having significantly higher values than CF. pH measurements showed that CF evolved towards significantly higher pH values after 3 weeks in distilled water, while thermal properties showed more stability and higher resistance to degradation for CF compared to SO. The silver nitrate penetration results showed significantly better sealing ability for CF compared to the self-adhesive SO. Finally, EDX surface analysis results were consistent with the release profiles and confirmed the composition of the two tested materials. SIGNIFICANCE Both materials, demonstrated enhanced Fluoride release ability, and hence good remineralisation potential in vitro that could prevent recurrent carious lesions in vivo. The composition based on acrylic polymerization showed better mechanical resistance to bending and fracture, and higher sealing ability than those based on acid base reaction.
Collapse
Affiliation(s)
- Hazem Abouelleil
- Univ Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, F-69622 Villeurbanne, France; Univ Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, 69008 Lyon, France
| | - Nina Attik
- Univ Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, F-69622 Villeurbanne, France; Univ Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, 69008 Lyon, France.
| | - Rodica Chiriac
- Univ Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, F-69622 Villeurbanne, France
| | - Francois Toche
- Univ Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, F-69622 Villeurbanne, France
| | - Anthony Ory
- Univ Paris, Faculté d'Odontologie, Hôpital Rothschild, Assistance Publique-Hôpitaux de Paris, France
| | - Assia Zayakh
- Hospices civils de Lyon, Service d'Odontologie, 69007 Lyon, France
| | - Brigitte Grosgogeat
- Univ Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, F-69622 Villeurbanne, France; Univ Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, 69008 Lyon, France; Hospices civils de Lyon, Service d'Odontologie, 69007 Lyon, France
| | - Nelly Pradelle-Plasse
- Univ Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, F-69622 Villeurbanne, France; Univ Paris, Faculté d'Odontologie, Hôpital Rothschild, Assistance Publique-Hôpitaux de Paris, France
| |
Collapse
|
3
|
Alotaibi H, Al-Otibi F, Alharbi R, ALshwuaiman G, Altwaijri S, Alfouzan A, Altaweel S, Alshehri H, Binrayes A, Labban N. Assessing the effect of Artemisia sieberi extracts on surface roughness and candida growth of digitally processed denture acrylic materials. Technol Health Care 2024; 32:2629-2641. [PMID: 38517819 DOI: 10.3233/thc-231767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
BACKGROUND Denture stomatitis, frequently encountered, is generally addressed symptomatically, with limited exploration of preventive approaches involving antifungal medicinal plants. OBJECTIVE This study assessed the impact of Artemisia sieberi extracts on the candida growth of conventional and digitally processed acrylic materials. METHOD Thirty acrylic resin discs (3 mm thickness × 10 mm diameter) were prepared by conventional or CAD/CAM technology (milling and 3D printing). The resin discs were exposed to simulated brushing, thermocycling, and immersion in Artemisia sieberi extract for 8 hours. The surface roughness of the discs was assessed at baseline and after immersion in Artemisia sieberi extract. Candida growth was quantified through colony-forming units (CFU/mL). Data was analyzed using SPSS v.22 (α⩽ 0.05). RESULTS Irrespective of the material type, the post-immersion surface roughness was significantly higher compared to pre-immersion values (p< 0.05). Candida growth was significantly higher in conventional acrylic materials than digitally fabricated acrylics (p< 0.05). At × 3, Ra and CFU were found to be moderately positive and non-significantly correlated (R= 0.664, p= 0.149). At × 4, Ra and CFU were found to be weak positive and non-significantly correlated (R= 0.344, p= 0.503). CONCLUSION Artemisia sieberi extracts had a notable impact on digitally fabricated denture acrylics, reducing candida albicans growth compared to conventional heat-cured acrylic. This suggests a potential role for these extracts in improving denture hygiene and preventing denture stomatitis, particularly in the context of digitally fabricated dentures.
Collapse
Affiliation(s)
- Hanan Alotaibi
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Fatimah Al-Otibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Raedah Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ghada ALshwuaiman
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shahad Altwaijri
- Department of Prosthodontics, Majmaah University, AlMajmaah, Saudi Arabia
- Department of Prosthodontics, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Afnan Alfouzan
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Sara Altaweel
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Huda Alshehri
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Binrayes
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Nawaf Labban
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Rosentritt M, Hickl V, Rauch A, Schmidt M. Effects of storage and toothbrush simulation on Martens hardness of CAD/CAM, hand-cast, thermoforming, and 3D-printed splint materials. Clin Oral Investig 2023; 27:7859-7869. [PMID: 37957307 PMCID: PMC10713707 DOI: 10.1007/s00784-023-05378-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVES To investigate Martens hardness parameters of splint materials after storage in liquids and toothbrush simulation. MATERIALS AND METHODS Ten specimens per material and group were fabricated (hand-cast CAST, thermoformed TF, CAD/CAM-milled CAM, 3D-printed PS, PL, PK, PV), stored in air, water, coffee, red wine, and cleaning tablets and investigated after fabrication, 24 h, 2- and 4-week storage or toothbrushing. Martens hardness (HM), indentation hardness (HIT), indentation modulus (EIT), the elastic part of indentation work (ηIT), and indentation creep (CIT) were calculated (ISO 14577-1). STATISTICS ANOVA, Bonferroni post hoc test, between-subjects effects, Pearson correlation (α = 0.05). RESULTS HM varied between 30.8 N/mm2 for PS (water 4 weeks) and 164.0 N/mm2 for CAM (toothbrush). HIT values between 34.9 N/mm2 for PS (water 4 weeks) and 238.9 N/mm2 for CAM (toothbrush) were found. EIT varied between 4.3 kN/mm2 for CAM (toothbrush) and 1.8 kN/mm2 for PK (water 2 weeks). ηIT was found to vary between 16.9% for PS (water 4 weeks) and 42.8% for PL (toothbrush). CIT varied between 2.5% for PL (toothbrush) and 11.4% for PS (water 4 weeks). The highest impact was identified for the material (p ≤ 0.001). CONCLUSIONS Storage and toothbrushing influenced Martens parameters. The properties of splints can be influenced by the choice of materials, based on different elastic and viscoelastic parameters. High HM and EIT and low CIT might be beneficial for splint applications. CLINICAL RELEVANCE Martens parameters HM, EIT, and CIT might help to evaluate clinically relevant splint properties such as hardness, elasticity, and creep.
Collapse
Affiliation(s)
- Martin Rosentritt
- Department of Prosthetic Dentistry, UKR University Hospital Regensburg, 93042, Regensburg, Germany.
| | - Verena Hickl
- Department of Prosthetic Dentistry, UKR University Hospital Regensburg, 93042, Regensburg, Germany
| | - Angelika Rauch
- Department of Prosthetic Dentistry, UKR University Hospital Regensburg, 93042, Regensburg, Germany
| | - Michael Schmidt
- Department of Prosthetic Dentistry, UKR University Hospital Regensburg, 93042, Regensburg, Germany
| |
Collapse
|
5
|
Rosello Jimenez JR, Fuchs F, Schmohl L, Schulz-Siegmund M, Koenig A. Aging Processes and Their Influence on the Mechanical Properties of Printable Occlusal Splint Materials. Polymers (Basel) 2023; 15:4574. [PMID: 38232021 PMCID: PMC10707959 DOI: 10.3390/polym15234574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
Three-dimensional (3D)-printed occlusal splints are becoming more prevalent in the treatment of tooth substance loss due to their fast and cost-effective production. The purpose of this in vitro study was to investigate whether the mechanical properties (tensile strength-TS, modulus of elasticity in tension-ME, and Vickers hardness-HV) vary between the materials (printed dimethacrylate-based resins: Keyprint KeySplint soft-KEY, Luxaprint Ortho Plus-LUX, V-Print splint-VPR, printed methacrylate-based resins Freeprint splint 2.0-FRE, and milled methacrylate-based material, CLEAR splint-CLE), and the influence of aging processes (extraoral storage conditions and nightly or daily use) was examined. The printed methacrylate-based resins (FRE, LUX, and VPR) had much higher TS (43.7-48.5 MPa compared to 12.3-13.3 MPa), higher ME (2.01-2.37 GPa compared to 0.43-0.72 GPa), and higher HV (11.8-15.0 HV compared to 3.3-3.5 HV) than both of the methacrylate-based resins (KEY and CLE) after the production process. Although the TS, ME, and HV of the printed dimethacrylate resins (FRE, LUX, and VPR) decreased significantly under humid conditions with possibly elevated temperatures (thermocycling as well as 37 °C), these mechanical properties were significantly higher than both methacrylate-based resins (KEY and CLE). Therefore, printed dimethacrylate resins should be used rather than methacrylate-based resins for high expected masticatory forces, low wall thicknesses, or very long wearing times (≥6 months).
Collapse
Affiliation(s)
- Jan Raffael Rosello Jimenez
- Department of Prosthodontics and Material Sciences, Leipzig University, 04103 Leipzig, Germany
- Private Practice, Zahnarztpraxis Jan Rosello, 04654 Frohburg, Germany
| | - Florian Fuchs
- Department of Prosthodontics and Material Sciences, Leipzig University, 04103 Leipzig, Germany
| | - Leonie Schmohl
- Department of Prosthodontics and Material Sciences, Leipzig University, 04103 Leipzig, Germany
| | | | - Andreas Koenig
- Department of Prosthodontics and Material Sciences, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Rosentritt M, Rauch A, Hahnel S, Schmidt M. In-vitro performance of subtractively and additively manufactured resin-based molar crowns. J Mech Behav Biomed Mater 2023; 141:105806. [PMID: 37001248 DOI: 10.1016/j.jmbbm.2023.105806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE To compare the in-vitro performance and wear behavior of additively or subtractively fabricated resin-based composite molar crowns for temporary and permanent application. MATERIALS AND METHODS Identical molar crowns (n = 8 per group) were manufactured from materials for temporary or permanent application (3x temporary additive fabrication, 3x additive permanent fabrication, 1x temporary subtractive fabrication, 1x permanent subtractive fabrication). All crowns were adhesively bonded (Calibra Universal, Dentsply Sirona, USA) on standardized resin-based composite molars (FDI 46, P Pro temporary Crown & Bridge). Thermal cycling and mechanical loading (2 × 3000 × 5°C/55 °C, 2min, H20 dist., 1.2 × 106 force 50N) were performed and fracture force was determined (v = 1 mm/min, Z010, Zwick, Germany). Mean wear, maximum wear, and roughness were investigated on polished (P1200) specimens (n = 8 per group, d = 8 mm) in a pin-on-block test (50N; 120000 cycles; 1.6Hz; H2O). Statistics were performed by using one-way ANOVA, Bonferroni post-hoc-tests, and Pearson-correlation (α = 0.05). RESULTS All crowns survived TCML without failures. Fracture forces ranged from 1362.4 ± 182.4N to 2354.1 ± 373.3N for the additive temporary crowns, from 1680.4.4 ± 525.1N to 2601.6 ± 403.7N for the additive permanent crowns, and reached values of 2988.5 ± 604.7N for subtractive temporary crowns and 3092.0 ± 307.6 N for subtractive permanent crowns. Significant (p < 0.001) differences were identified between the various additively manufactured systems, but not for the subtractively fabricated systems (p = 0.673). Mean wear of the additive temporary crowns ranged between 114.5 ± 25.8 μm and 163.8 ± 21.4 μm without significant differences (p = 0.061). Mean wear of the additive permanent crowns ranged between 120.0 ± 27.5 μm and 171.3 ± 31.8 μm with significant differences (p = 0.004). No statistically significant differences were identified between temporary and permanent subtractively manufactured specimens, with mean wear ranging between 140.5 ± 51.1 μm and 176.6 ± 26.8 μm (p = 0.673). Maximum wear of additive temporary specimens ranged between 221.4.5 ± 53.3 μm and 322.1 ± 50.6 μm; significant differences were identified between the groups (p = 0.016). Maximum wear of additive permanent specimens ranged between 246.3 ± 47.3 μm and 337.4 ± 61.4 μm, and significant differences were identified between the groups (p = 0.006). Mean wear of the subtractive group (permanent and temporary) showed no differences in maximum wear from 277.9 ± 79.7.1 μm to 316.4 ± 58.1 μm (p = 0.288). Ra roughness ranged from 0.7 ± 0.2 μm to 3.6 ± 1.3 μm with significant differences (p < 0.001) and Rz reference between 65.9 ± 26.2 μm and 16.8 ± 6.3 μm. CONCLUSION Temporary and permanent molar crowns provided at least acceptable in-vitro performance and fracture force for clinical mid-term application. Laboratory wear stability of the resin-based materials appeared sufficient, but should be verified under clinical conditions.
Collapse
|
7
|
Martens Hardness of CAD/CAM Resin-Based Composites. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
(1) Background: The properties of CAD/CAM resin-based composites differ due to differences in their composition. Instrumented indentation testing can help to analyze these differences with respect to hardness, as well as energy-converting capabilities due to viscoelastic behavior. (2) Methods: Eleven materials were investigated using instrumented indentation testing. Indentation depth (hr), Martens hardness (HM), indentation hardness (HIT), indentation modulus (EIT), the elastic part of indentation work (ηIT), and indentation creep (CIT) were investigated, and statistical analysis was performed using one-way ANOVA, Bonferroni post-hoc test, and Pearson correlation (α = 0.05). (3) Results: All of the investigated parameters revealed differences between the analyzed materials. Besides the differences in hardness-associated parameters (hr, HM, and HIT), instrumented indentation testing demonstrated differences in energy-converting properties. The subsequent one-way ANOVA revealed significant differences (p < 0.001). A significant (p < 0.01, Pearson correlation >0.576) correlation between the materials and HM, HIT, or EIT was identified. (4) Conclusions: Due to the differences found in the energy-converting properties of the investigated materials, certain CAD/CAM resin-based composites could show superior stress-breaking capabilities than others. The consequential reduction in stress build-up may prove to beneficial, especially for implant-retained restorations or patients suffering from parafunctions.
Collapse
|
8
|
Schmohl L, Roesner AJ, Fuchs F, Wagner M, Schmidt MB, Hahnel S, Rauch A, Koenig A. Acid Resistance of CAD/CAM Resin Composites. Biomedicines 2022; 10:biomedicines10061383. [PMID: 35740405 PMCID: PMC9220078 DOI: 10.3390/biomedicines10061383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Acid resistance of CAD/CAM resin composites. Erosion-related tooth surface loss is closely related to acid exposure, such as contact with acidic beverages or disease-related reflux. As a result, dental restorations in affected patients are also exposed to acids, which indicates that the performance and longevity of a dental restoration is impacted by the acid resistance of the individually employed restorative materials. However, unlike for ceramic materials, the acid resistance of CAD/CAM resin composites is not commonly evaluated by the manufacturers, and no standardised test methods have yet been established. Against this background, the present in vitro study aimed to examine the long-term resistance of CAD/CAM resin composites (Brilliant Crios, Cerasmart, Grandio blocs, Lava Ultimate, Shofu Block HC) against three acidic media (tonic water, acetic acid, hydrochloric acid) as well as demineralized water and to investigate potential damage mechanisms. Changes in surface roughness (Sa) were detected by confocal laser scanning microscopy (CLSM), and changes in surface hardness were measured using Vickers hardness (HV). The damage mechanisms were analysed by scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) and micro X-ray computer tomography (µXCT). For each material, few changes in either Sa or HV were identified for at least one of the different media; for Cerasmart, the sharpest deterioration in surface properties was observed. SEM–EDS revealed leaching of barium, aluminium, and titanium from fillers in a 2 µm zone on the rough but not on the polished surface of the specimen. Within the limitations of the current study, it can be concluded that polished CAD/CAM resin composites can be recommended for clinical use in patients with erosive conditions.
Collapse
Affiliation(s)
- Leonie Schmohl
- Department of Prosthetic Dentistry and Dental Material Science, Leipzig University, Liebigstraße 12, 04103 Leipzig, Germany; (F.F.); (M.W.); (M.B.S.); (S.H.); (A.R.); (A.K.)
- Correspondence:
| | - Anuschka Josephine Roesner
- Department of Prosthetic Dentistry, Faculty of Medicine, Medical Center, Center for Dental Medicine University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany;
| | - Florian Fuchs
- Department of Prosthetic Dentistry and Dental Material Science, Leipzig University, Liebigstraße 12, 04103 Leipzig, Germany; (F.F.); (M.W.); (M.B.S.); (S.H.); (A.R.); (A.K.)
| | - Maximilian Wagner
- Department of Prosthetic Dentistry and Dental Material Science, Leipzig University, Liebigstraße 12, 04103 Leipzig, Germany; (F.F.); (M.W.); (M.B.S.); (S.H.); (A.R.); (A.K.)
- Department of Functional Surfaces, Leibniz Institute for Surface Engineering, Permoserstraße 15, 04318 Leipzig, Germany
| | - Michael Benno Schmidt
- Department of Prosthetic Dentistry and Dental Material Science, Leipzig University, Liebigstraße 12, 04103 Leipzig, Germany; (F.F.); (M.W.); (M.B.S.); (S.H.); (A.R.); (A.K.)
- Department of Prosthetic Dentistry, UKR University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Sebastian Hahnel
- Department of Prosthetic Dentistry and Dental Material Science, Leipzig University, Liebigstraße 12, 04103 Leipzig, Germany; (F.F.); (M.W.); (M.B.S.); (S.H.); (A.R.); (A.K.)
- Department of Prosthetic Dentistry, UKR University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Angelika Rauch
- Department of Prosthetic Dentistry and Dental Material Science, Leipzig University, Liebigstraße 12, 04103 Leipzig, Germany; (F.F.); (M.W.); (M.B.S.); (S.H.); (A.R.); (A.K.)
- Department of Prosthetic Dentistry, UKR University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Andreas Koenig
- Department of Prosthetic Dentistry and Dental Material Science, Leipzig University, Liebigstraße 12, 04103 Leipzig, Germany; (F.F.); (M.W.); (M.B.S.); (S.H.); (A.R.); (A.K.)
| |
Collapse
|