1
|
Lu Y, Maimaiti S, Qin Z, Cheng X, Li J, Zhou C, Xiao Y, Abula S, Kuang L, Mai Z. Effects of Ficus carica L. polysaccharide on the intestinal immune function and microbiota of broilers. Front Immunol 2025; 16:1579046. [PMID: 40264763 PMCID: PMC12011799 DOI: 10.3389/fimmu.2025.1579046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025] Open
Abstract
Introduction Ficus carica L. polysaccharides (FLPs) are groups of biologically active compounds extracted from Ficus carica L. Methods In this study, we analyzed the structure of FLPs, predicted their immune enhancement pathway, and detected the impact of FLPs on the growth performance, immune function, and intestinal microflora of broiler chickens. Results The results showed that FLPs are comprised of monosaccharides including rhamnose, arabinose, mannose, glucose, and galactose. Feeding with FLPs significantly promoted the growth performance, slaughtering performance, and immune organs index of chickens compared to the control group (p < 0.05). Moreover, the FLP-h and FLP-m groups had increased levels of sIgA, IgG, IL-4, IL-5, IL-12, and IFN-g; improved immunity and barrier function; and a higher percentage of spleen CD4+ and CD8+ T cell differentiation compared to the control group (p < 0.05). Additionally, the FLP-h group had increased levels of various SCFAs, and increased beneficial bacteria such as Firmicutes at the phylum level and Faecalibacterium, Blautia, Phascolarctobacterium, and Alistipes at the genus level. The results of network pharmacology and KEGG pathway prediction indicate that FLPs may change the structure and metabolism of intestinal microbiota by enhancing carbon fixation pathways in prokaryotes, and promote intestinal immune barrier function through the joint action of bisphenol degradation, retinol metabolism, NODlike signaling pathways, toll-like receptor signaling pathways, and the MAPK signaling pathway. Discussion These results suggest that FLP-h supplementation effectively promotes growth performance and enhances the intestinal mucosal immune barrier function in chickens.
Collapse
Affiliation(s)
- Yabin Lu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Sajidaimu Maimaiti
- Department of Agricultural Economics, Kezilesu Vocational and Technical College, Atushi, Xinjiang, China
| | - Zhanke Qin
- Department of Agricultural Economics, Kezilesu Vocational and Technical College, Atushi, Xinjiang, China
| | - Xinke Cheng
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Jianlong Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Chuang Zhou
- Department of Agricultural Economics, Kezilesu Vocational and Technical College, Atushi, Xinjiang, China
| | - Ying Xiao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Saifuding Abula
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Ling Kuang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Zhanhai Mai
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Gleeson PJ, Camara NOS, Launay P, Lehuen A, Monteiro RC. Immunoglobulin A Antibodies: From Protection to Harmful Roles. Immunol Rev 2024; 328:171-191. [PMID: 39578936 PMCID: PMC11659943 DOI: 10.1111/imr.13424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/15/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024]
Abstract
Immunoglobulin A (IgA) is the most abundantly produced antibody in humans. IgA is a unique class of immunoglobulin due to its multiple molecular forms, and a defining difference between the two subclasses: IgA1 has a long hinge-region that is heavily O-glycosylated, whereas the IgA2 hinge-region is shorter but resistant to bacterial proteases prevalent at mucosal sites. IgA is essential for immune homeostasis and education. Mucosal IgA plays a crucial role in maintaining the integrity of the mucosal barrier by immune exclusion of pathobionts while facilitating colonization with certain commensals; a large part of the gut microbiota is coated with IgA. In the circulation, monomeric IgA that has not been engaged by antigen plays a discrete role in dampening inflammatory responses. Protective and harmful roles of IgA have been studied over several decades, but a new understanding of the complex role of this immunoglobulin in health and disease has been provided by recent studies. Here, we discuss the physiological and pathological roles of IgA with a special focus on the gut, kidneys, and autoimmunity. We also discuss new IgA-based therapeutic approaches.
Collapse
Affiliation(s)
- Patrick J. Gleeson
- Center for Research on InflammationParis Cité UniversityParisFrance
- INSERMParisFrance
- CNRSParisFrance
- Inflamex Laboratory of ExcellenceParisFrance
- Nephrology DepartmentBichat HospitalParisFrance
| | - Niels O. S. Camara
- Department of Immunology, Institute of Biomedical SciencesUniversity of Sao PauloSao PauloBrazil
| | - Pierre Launay
- Center for Research on InflammationParis Cité UniversityParisFrance
- INSERMParisFrance
- CNRSParisFrance
- Inflamex Laboratory of ExcellenceParisFrance
| | - Agnès Lehuen
- Inflamex Laboratory of ExcellenceParisFrance
- Cochin Institute, INSERM, CNRSParis Cité UniversityParisFrance
| | - Renato C. Monteiro
- Center for Research on InflammationParis Cité UniversityParisFrance
- INSERMParisFrance
- CNRSParisFrance
- Inflamex Laboratory of ExcellenceParisFrance
| |
Collapse
|
3
|
Agafina A, Aguiar VC, Rossovskaya M, Fartoukh MS, Hajjar LA, Thiéry G, Timsit JF, Gordeev I, Protsenko D, Carbone J, Pellegrini R, Stadnik CMB, Avdeev S, Ferrer M, Heinz CC, Häder T, Langohr P, Bobenhausen I, Schüttrumpf J, Staus A, Ruehle M, Weissmüller S, Wartenburg-Demand A, Torres A. Efficacy and safety of trimodulin in patients with severe COVID-19: results from a randomised, placebo-controlled, double-blind, multicentre, phase II trial (ESsCOVID). Eur J Med Res 2024; 29:418. [PMID: 39138518 PMCID: PMC11321023 DOI: 10.1186/s40001-024-02008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Trimodulin (human polyvalent immunoglobulin [Ig] M ~ 23%, IgA ~ 21%, IgG ~ 56% preparation) has previously been associated with a lower mortality rate in a subpopulation of patients with severe community-acquired pneumonia on invasive mechanical ventilation (IMV) and with clear signs of inflammation. The hypothesis for the ESsCOVID trial was that trimodulin may prevent inflammation-driven progression of severe coronavirus disease 2019 (COVID-19) to critical disease or even death. METHODS Adults with severe COVID-19 were randomised to receive intravenous infusions of trimodulin or placebo for 5 consecutive days in addition to standard of care. The primary efficacy endpoint was a composite of clinical deterioration (Days 6-29) and 28-day all-cause mortality (Days 1-29). RESULTS One-hundred-and-sixty-six patients received trimodulin (n = 84) or placebo (n = 82). Thirty-three patients died, nine during the treatment phase. Overall, 84.9% and 76.5% of patients completed treatment and follow-up, respectively. The primary efficacy endpoint was reported in 33.3% of patients on trimodulin and 34.1% of patients on placebo (P = 0.912). No differences were observed in the proportion of patients recovered on Day 29, days of invasive mechanical ventilation, or intensive care unit-free days. Rates of treatment-emergent adverse events were comparable. A post hoc analysis was conducted in patients with early systemic inflammation by excluding those with high CRP (> 150 mg/L) and/or D-dimer (≥ 3 mg/L) and/or low platelet counts (< 130 × 109/L) at baseline. Forty-seven patients in the trimodulin group and 49 in the placebo group met these criteria. A difference of 15.5 percentage points in clinical deterioration and mortality was observed in favour of trimodulin (95% confidence interval: -4.46, 34.78; P = 0.096). CONCLUSION Although there was no difference in the primary outcome in the overall population, observations in a subgroup of patients with early systemic inflammation suggest that trimodulin may have potential in this setting that warrants further investigation. ESSCOVID WAS REGISTERED PROSPECTIVELY AT CLINICALTRIALS.GOV ON OCTOBER 6, 2020.: NCT04576728.
Collapse
Affiliation(s)
| | | | | | - Muriel Sarah Fartoukh
- Assistance Publique-Hôpitaux de Paris, Service de Médecine Intensive Réanimation, Hôpital Tenon, and DMU APPROCHES, Sorbonne Université, Paris, France
| | - Ludhmila Abrahao Hajjar
- Instituto Do Coração InCor, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Jean-François Timsit
- Medical and Infectious Diseases ICU (M12) APHP, Hôpital Bichat-Claude Bernard, Paris, France
| | | | | | - Javier Carbone
- Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | | | | | - Sergey Avdeev
- First Moscow State Medical University, Moscow, Russia
| | - Miquel Ferrer
- Hospital Clinic of Barcelona, IDIBAPS, CibeRes (CB06/06/0028) University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | - Antoni Torres
- Respiratory and Intensive Care Unit, Hospital Clinic of Barcelona, IDIBAPS, CibeRes (CB06/06/0028), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
4
|
Manafu Z, Zhang Z, Malajiang X, Abula S, Guo Q, Wu Y, Wusiman A, Bake B. Effects of Alhagi camelorum Fisch polysaccharide from different regions on growth performance and gastrointestinal microbiota of sheep lambs. Front Pharmacol 2024; 15:1379394. [PMID: 38746008 PMCID: PMC11091474 DOI: 10.3389/fphar.2024.1379394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Polysaccharides derived from Alhagi camelorum Fisch possess diverse activities, making them a potential prebiotic candidates for enhancing lamb health. This study investigated the immunomodulatory effects of Alhagi camelorum Fisch polysaccharides from Aksu (AK) and Shanshan (SS) regions on sheep lambs. The results showed that sheep lambs in the SS group exhibited significantly increased (p < 0.05) average daily gain, levels of growth hormone (GH), insulin (INS), IgA and IgM, and cytokines IL-4, IL-10, IL-17, TNF-α and IFN-γ compared to those in the control check (CK) group. Moreover, the SS treatment significantly increased the diversity and abundance of beneficial bacteria, while concurrently diminishing the prevalence of harmful bacteria. Additionally, it modulated various metabolic pathways, promoted lamb growth, improved immunity, reduced the risk of gastrointestinal disease and improved the composition of gastrointestinal microbiota. In summary, our findings highlight the potential of SS treatment in enhancing gastrointestinal health of sheep lambs by improving intestinal function, immunity, and gut microbiome. Consequently, these results suggest that Alhagi camelorum Fisch polysaccharides derived from Shanshan regions holds promising potential as a valuable intervention for optimizing growth performance in sheep lambs.
Collapse
Affiliation(s)
- Zulikeyan Manafu
- College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Zhenping Zhang
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Xieraili Malajiang
- College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
| | - Saifuding Abula
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Qingyong Guo
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Yi Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Adelijaing Wusiman
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Batur Bake
- College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
5
|
Moheteer A, Li J, Abulikemu X, Lakho SA, Meng Y, Zhang J, Khand FM, Leghari A, Abula S, Guo Q, Liu D, Mai Z, Tuersong W, Wusiman A. Preparation and activity study of Ruoqiang jujube polysaccharide copper chelate. Front Pharmacol 2024; 14:1347817. [PMID: 38273828 PMCID: PMC10809154 DOI: 10.3389/fphar.2023.1347817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Background: Polysaccharide metal chelate exhibit both immunoregulatory activity and metal element supplementation effects. Methods: In this study, Ruoqiang jujube polysaccharide copper chelate (RJP-Cu) was prepared and the preparation conditions were optimized using the response surface method. Subsequently, RJP-Cu was administered to lambs to evaluate its impact on growth performance, copper ion (Cu2+) supplementation, immune enhancement, and intestinal flora was evaluated. Results: The results indicated that optimal RJP-Cu chelation conditions included a sodium citrate content of 0.5 g, a reaction temperature of 50°C, and a solution pH of 8.0, resulting in a Cu2+ concentration of 583°mg/kg in RJP-Cu. Scanning electron microscopy (SEM) revealed significant structural changes in RJP before and after chelation. RJP-Cu displaying characteristic peaks of both polysaccharides and Cu2+ chelates. Blood routine indexes showed no significant differences among the RJP-Cu-High dose group (RJP-Cu-H), RJP-Cu-Medium dose group (RJP-Cu-M), RJP-Cu-low dose group (RJP-Cu-L) and the control group (p > 0.05). However, compared with the control group, the RJP-Cu-H, M, and L dose groups significantly enhanced lamb production performance (p < 0.05). Furthermore, RJP-Cu-H, M, and L dose groups significantly increased serum Cu2+ concentration, total antioxidant capacity (T-AOC), catalase (CAT), and total superoxide dismutase (T-SOD) contents compared with control group (p < 0.05). The RJP-Cu-H group exhibited significant increases in serum IgA and IgG antibodies, as well as the secretion of cytokines IL-2, IL-4, and TNF-α compared to the control group (p < 0.05). Furthermore, RJP-Cu-H group increased the species abundance of lamb intestinal microbiota, abundance and quantity of beneficial bacteria, and decrease the abundance and quantity of harmful bacteria. The RJP-Cu-H led to the promotion of the synthesis of various Short Chain Fatty Acids (SCFAs), improvements in atrazine degradation and clavulanic acid biosynthesis in lambs, while reducing cell apoptosis and lipopolysaccharide biosynthesis. Conclusion: Thus, these findings demonstrate that RJP-Cu, as a metal chelate, could effectively promote lamb growth performance, increase Cu2+ content, and potentially induce positive immunomodulatory effects by regulating antioxidant enzymes, antibodies, cytokines, intestinal flora, and related metabolic pathways.
Collapse
Affiliation(s)
- Aierpati Moheteer
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Jianlong Li
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Xireli Abulikemu
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Shakeel Ahmed Lakho
- Veterinary and Animal Sciences Sakrand, Shaheed Benazir Bhutto University, Sakrand, Pakistan
| | - Yan Meng
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Jiayi Zhang
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Faiz Muhammad Khand
- Veterinary and Animal Sciences Sakrand, Shaheed Benazir Bhutto University, Sakrand, Pakistan
| | - Ambreen Leghari
- Veterinary and Animal Sciences Sakrand, Shaheed Benazir Bhutto University, Sakrand, Pakistan
| | - Saifuding Abula
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Qingyong Guo
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Dandan Liu
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Zhanhai Mai
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Waresi Tuersong
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Adelijiang Wusiman
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
6
|
Schmidt C, Weißmüller S, Heinz CC. Multifaceted Tissue-Protective Functions of Polyvalent Immunoglobulin Preparations in Severe Infections-Interactions with Neutrophils, Complement, and Coagulation Pathways. Biomedicines 2023; 11:3022. [PMID: 38002022 PMCID: PMC10669904 DOI: 10.3390/biomedicines11113022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Severe infections induce immune defense mechanisms and initial tissue damage, which produce an inflammatory neutrophil response. Upon dysregulation of these responses, inflammation, further tissue damage, and systemic spread of the pathogen may occur. Subsequent vascular inflammation and activation of coagulation processes may cause microvascular obstruction at sites distal to the primary site of infection. Low immunoglobulin (Ig) M and IgG levels have been detected in patients with severe infections like sCAP and sepsis, associated with increased severity and mortality. Based on Ig's modes of action, supplementation with polyvalent intravenous Ig preparations (standard IVIg or IgM/IgA-enriched Ig preparations) has long been discussed as a treatment option for severe infections. A prerequisite seems to be the timely administration of Ig preparations before excessive tissue damage has occurred and coagulopathy has developed. This review focuses on nonclinical and clinical studies that evaluated tissue-protective activities resulting from interactions of Igs with neutrophils, complement, and the coagulation system. The data indicate that coagulopathy, organ failure, and even death of patients can possibly be prevented by the timely combined interactions of (natural) IgM, IgA, and IgG with neutrophils and complement.
Collapse
Affiliation(s)
- Carolin Schmidt
- Department of Corporate Clinical Research and Development, Biotest AG, 63303 Dreieich, Germany
| | | | - Corina C Heinz
- Department of Corporate Clinical Research and Development, Biotest AG, 63303 Dreieich, Germany
| |
Collapse
|
7
|
Singer M, Torres A, Heinz CC, Weißmüller S, Staus A, Kistner S, Jakubczyk K, Häder T, Langohr P, Wartenberg-Demand A, Schüttrumpf J, Vincent JL, Welte T. The immunomodulating activity of trimodulin (polyvalent IgM, IgA, IgG solution): a post hoc analysis of the phase II CIGMA trial. Crit Care 2023; 27:436. [PMID: 37946226 PMCID: PMC10634136 DOI: 10.1186/s13054-023-04719-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The phase II CIGMA trial performed in 160 patients with severe community-acquired pneumonia (sCAP) found treatment with trimodulin (human polyvalent immunoglobulin [Ig]: ~ 23% IgM, ~ 21% IgA, ~ 56% IgG) was associated with a lower mortality in those patients with elevated baseline serum levels of C-reactive protein (CRP) and/or subnormal IgM. METHODS In this post hoc analysis, the pharmacodynamic effects of trimodulin treatment (182.6 mg/kg/day for 5 days) were investigated on Ig replenishment, cellular markers of inflammation (absolute neutrophil [ANC] and lymphocyte [ALC] count, neutrophil-to-lymphocyte ratio [NLR]), and soluble markers of inflammation (procalcitonin [PCT] and CRP). The impact of these pharmacodynamic effects on mortality was also evaluated. RESULTS Compared with healthy subjects, baseline serum levels of IgM, IgG, and ALC were significantly lower, and ANC, NLR, PCT and CRP significantly higher in sCAP patients (p < 0.0001). Low Ig concentrations increased with trimodulin. Normalization of ANC (analysis of variance [ANOVA] p = 0.016) and PCT (ANOVA p = 0.027) was more rapid with trimodulin compared with placebo. These and other effects were more evident in patients with low baseline IgM levels. Normalization of PCT and CRP levels was both steadier and faster with trimodulin treatment. In patients with low baseline ALC, trimodulin was associated with a lower 28-day all-cause mortality rate (14.5% vs 32.1% in placebo, p = 0.043) and more ventilator-free days ([VFD]; median VFD: 3.5 vs 11 in placebo, p = 0.043). These numerical differences were greater if baseline IgM was also low (low ALC, low IgM: 8.1% mortality vs 34.1% placebo, p = 0.006; 3 VFD vs 15 VFD, p = 0.009, respectively). Results were consistent in patients with high baseline CRP (low ALC, high CRP: 10.9% mortality vs 34.1% placebo, p = 0.011). CONCLUSIONS This post hoc pharmacodynamic analysis of a blinded phase II trial suggests that trimodulin compensates for, and more rapidly modifies, the dysregulated inflammatory response seen in sCAP patients. Trimodulin was associated with significantly lower mortality and more VFD in subgroups with high CRP and low ALC. This effect was particularly marked in patients who also had low baseline IgM values. These findings require confirmation in prospective trials.
Collapse
Affiliation(s)
- Mervyn Singer
- Division of Medicine, Bloomsbury Institute of Intensive Care Medicine, University College London, London, UK
| | - Antoni Torres
- Hospital Clínic, Servei de Pneumologia I Allèrgia Respiratòria, Catedràtic de Medicina, Universitat de Barcelona, Barcelona, Spain.
- IDIBAPS, ICREA, CIBER de Enfermedades Respiratorias, Barcelona, Spain.
| | - Corina C Heinz
- Biotest AG, Landsteinerstraße 5, 63303, Dreieich, Germany
| | | | | | | | | | - Thomas Häder
- Biotest AG, Landsteinerstraße 5, 63303, Dreieich, Germany
| | | | | | | | - Jean-Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Brussels, Belgium
| | - Tobias Welte
- Klinik für Pneumologie, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
8
|
Bohländer F. A new hope? Possibilities of therapeutic IgA antibodies in the treatment of inflammatory lung diseases. Front Immunol 2023; 14:1127339. [PMID: 37051237 PMCID: PMC10083398 DOI: 10.3389/fimmu.2023.1127339] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Inflammatory lung diseases represent a persistent burden for patients and the global healthcare system. The combination of high morbidity, (partially) high mortality and limited innovations in the last decades, have resulted in a great demand for new therapeutics. Are therapeutic IgA antibodies possibly a new hope in the treatment of inflammatory lung diseases? Current research increasingly unravels the elementary functions of IgA as protector against infections and as modulator of overwhelming inflammation. With a focus on IgA, this review describes the pathological alterations in mucosal immunity and how they contribute to chronic inflammation in the most common inflammatory lung diseases. The current knowledge of IgA functions in the circulation, and particularly in the respiratory mucosa, are summarized. The interplay between neutrophils and IgA seems to be key in control of inflammation. In addition, the hurdles and benefits of therapeutic IgA antibodies, as well as the currently known clinically used IgA preparations are described. The data highlighted here, together with upcoming research strategies aiming at circumventing the current pitfalls in IgA research may pave the way for this promising antibody class in the application of inflammatory lung diseases.
Collapse
Affiliation(s)
- Fabian Bohländer
- Department of Translational Research, Biotest AG, Dreieich, Germany
| |
Collapse
|