1
|
Chen Q, Abudukeremu A, Li K, Zheng M, Li H, Huang T, Huang C, Wen K, Wang Y, Zhang Y. High-Density Lipoprotein Subclasses and Their Role in the Prevention and Treatment of Cardiovascular Disease: A Narrative Review. Int J Mol Sci 2024; 25:7856. [PMID: 39063097 PMCID: PMC11277419 DOI: 10.3390/ijms25147856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The association between high-density lipoprotein cholesterol (HDL-C) and cardiovascular disease (CVD) is controversial. HDL-C is one content type of high-density lipoprotein (HDL). HDL consists of diverse proteins and lipids and can be classified into different subclasses based on size, shape, charge, and density, and can change dynamically in disease states. Therefore, HDL-C levels alone cannot represent HDLs' cardioprotective role. In this review, we summarized the methods for separating HDL subclasses, the studies on the association between HDL subclasses and cardiovascular risk (CVR), and the impact of lipid-modifying medications and nonpharmacological approaches (exercise training, dietary omega fatty acids, and low-density lipoprotein apheresis) on HDL subclasses. As HDL is a natural nanoplatform, recombinant HDLs (rHDLs) have been used as a delivery system in vivo by loading small interfering RNA, drugs, contrast agents, etc. Therefore, we further reviewed the HDL subclasses used in rHDLs and their advantages and disadvantages. This review would provide recommendations and guidance for future studies on HDL subclasses' cardioprotective roles.
Collapse
Affiliation(s)
- Qiaofei Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; (Q.C.); (A.A.); (M.Z.); (H.L.); (T.H.); (C.H.); (K.W.); (Y.W.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, China
| | - Ayiguli Abudukeremu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; (Q.C.); (A.A.); (M.Z.); (H.L.); (T.H.); (C.H.); (K.W.); (Y.W.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, China
| | - Kaiwen Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510120, China;
| | - Minglong Zheng
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; (Q.C.); (A.A.); (M.Z.); (H.L.); (T.H.); (C.H.); (K.W.); (Y.W.)
| | - Hongwei Li
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; (Q.C.); (A.A.); (M.Z.); (H.L.); (T.H.); (C.H.); (K.W.); (Y.W.)
| | - Tongsheng Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; (Q.C.); (A.A.); (M.Z.); (H.L.); (T.H.); (C.H.); (K.W.); (Y.W.)
| | - Canxia Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; (Q.C.); (A.A.); (M.Z.); (H.L.); (T.H.); (C.H.); (K.W.); (Y.W.)
| | - Kexin Wen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; (Q.C.); (A.A.); (M.Z.); (H.L.); (T.H.); (C.H.); (K.W.); (Y.W.)
| | - Yue Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; (Q.C.); (A.A.); (M.Z.); (H.L.); (T.H.); (C.H.); (K.W.); (Y.W.)
| | - Yuling Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; (Q.C.); (A.A.); (M.Z.); (H.L.); (T.H.); (C.H.); (K.W.); (Y.W.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, China
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510080, China
| |
Collapse
|
2
|
Zhang Y, Luo S, Gao Y, Tong W, Sun S. High-Density Lipoprotein Subfractions Remodeling: A Critical Process for the Treatment of Atherosclerotic Cardiovascular Diseases. Angiology 2024; 75:441-453. [PMID: 36788038 DOI: 10.1177/00033197231157473] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Numerous studies have shown that a low level of high-density lipoprotein cholesterol (HDL-C) is an independent biomarker of cardiovascular disease. High-density lipoprotein (HDL) is considered to be a protective factor for atherosclerosis (AS). Therefore, raising HDL-C has been widely recognized as a promising strategy to treat atherosclerotic cardiovascular diseases (ASCVD). However, several studies have found that increasing HDL-C levels does not necessarily reduce the risk of ASCVD. HDL particles are highly heterogeneous in structure, composition, and biological function. Moreover, HDL particles from atherosclerotic patients exhibit impaired anti-atherogenic functions and these dysfunctional HDL particles might even promote ASCVD. This makes it uncertain that HDL-raising therapy will prevent and treat ASCVD. It is necessary to comprehensively analyze the structure and function of HDL subfractions. We review current advances related to HDL subfractions remodeling and highlight how current lipid-modifying drugs such as niacin, statins, fibrates, and cholesteryl ester transfer protein inhibitors regulate cholesterol concentration of HDL and specific HDL subfractions.
Collapse
Affiliation(s)
- Yaling Zhang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Shiyu Luo
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Yi Gao
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Wenjuan Tong
- Department of Gynecology and Obstetrics, First Affiliated Hospital, University of South China, Hengyang, China
| | - Shaowei Sun
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
3
|
Kraaijenhof JM, Tromp TR, Nurmohamed NS, Reeskamp LF, Langenkamp M, Levels JHM, Boekholdt SM, Wareham NJ, Hoekstra M, Stroes ESG, Hovingh GK, Grefhorst A. ANGPTL3 (Angiopoietin-Like 3) Preferentially Resides on High-Density Lipoprotein in the Human Circulation, Affecting Its Activity. J Am Heart Assoc 2023; 12:e030476. [PMID: 37889183 PMCID: PMC10727379 DOI: 10.1161/jaha.123.030476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/24/2023] [Indexed: 10/28/2023]
Abstract
Background ANGPTL3 (angiopoietin-like protein 3) is an acknowledged crucial regulator of lipid metabolism by virtue of its inhibitory effect on lipoprotein lipase and endothelial lipase. It is currently unknown whether and to which lipoproteins ANGPTL3 is bound and whether the ability of ANGPTL3 to inhibit lipase activity is affected by binding to lipoproteins. Methods and Results Incubation of ultracentrifugation-isolated low-density lipoprotein (LDL) and high-density lipoprotein (HDL) fractions from healthy volunteers with recombinant ANGPTL3 revealed that ANGPTL3 associates with both HDL and LDL particles ex vivo. Plasma from healthy volunteers and a patient deficient in HDL was fractionated by fast protein liquid chromatography, and ANGPTL3 distribution among lipoprotein fractions was measured. In healthy volunteers, ≈75% of lipoprotein-associated ANGPTL3 resides in HDL fractions, whereas ANGPTL3 was largely bound to LDL in the patient deficient in HDL. ANGPTL3 activity was studied by measuring lipolysis and uptake of 3H-trioleate by brown adipocyte T37i cells. Unbound ANGPTL3 did not suppress lipase activity, but when given with HDL or LDL, ANGPTL3 suppressed lipase activity by 21.4±16.4% (P=0.03) and 25.4±8.2% (P=0.006), respectively. Finally, in a subset of the EPIC (European Prospective Investigation into Cancer) Norfolk study, plasma HDL cholesterol and amount of large HDL particles were both positively associated with plasma ANGPTL3 concentrations. Moreover, plasma ANGPTL3 concentrations showed a positive association with incident coronary artery disease (odds ratio, 1.25 [95% CI, 1.01-1.55], P=0.04). Conclusions Although ANGPTL3 preferentially resides on HDL, its activity was highest once bound to LDL particles.
Collapse
Affiliation(s)
- Jordan M. Kraaijenhof
- Department of Vascular MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | - Tycho R. Tromp
- Department of Vascular MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | - Nick S. Nurmohamed
- Department of Vascular MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
- Department of CardiologyAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | - Laurens F. Reeskamp
- Department of Vascular MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | - Marije Langenkamp
- Department of Experimental Vascular MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | - Johannes H. M. Levels
- Department of Experimental Vascular MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | - S. Matthijs Boekholdt
- Department of CardiologyAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | | | - Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Erik S. G. Stroes
- Department of Vascular MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | - G. Kees Hovingh
- Department of Vascular MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | - Aldo Grefhorst
- Department of Experimental Vascular MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| |
Collapse
|
4
|
Correa Y, Del Giudice R, Waldie S, Thépaut M, Micciula S, Gerelli Y, Moulin M, Delaunay C, Fieschi F, Pichler H, Haertlein M, Forsyth VT, Le Brun A, Moir M, Russell RA, Darwish T, Brinck J, Wodaje T, Jansen M, Martín C, Roosen-Runge F, Cárdenas M. High-Density Lipoprotein function is modulated by the SARS-CoV-2 spike protein in a lipid-type dependent manner. J Colloid Interface Sci 2023; 645:627-638. [PMID: 37167912 PMCID: PMC10147446 DOI: 10.1016/j.jcis.2023.04.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/22/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
There is a close relationship between the SARS-CoV-2 virus and lipoproteins, in particular high-density lipoprotein (HDL). The severity of the coronavirus disease 2019 (COVID-19) is inversely correlated with HDL plasma levels. It is known that the SARS-CoV-2 spike (S) protein binds the HDL particle, probably depleting it of lipids and altering HDL function. Based on neutron reflectometry (NR) and the ability of HDL to efflux cholesterol from macrophages, we confirm these observations and further identify the preference of the S protein for specific lipids and the consequent effects on HDL function on lipid exchange ability. Moreover, the effect of the S protein on HDL function differs depending on the individuals lipid serum profile. Contrasting trends were observed for individuals presenting low triglycerides/high cholesterol serum levels (LTHC) compared to high triglycerides/high cholesterol (HTHC) or low triglycerides/low cholesterol serum levels (LTLC). Collectively, these results suggest that the S protein interacts with the HDL particle and, depending on the lipid profile of the infected individual, it impairs its function during COVID-19 infection, causing an imbalance in lipid metabolism.
Collapse
Affiliation(s)
- Yubexi Correa
- Biofilm - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
| | - Rita Del Giudice
- Biofilm - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
| | - Sarah Waldie
- Biofilm - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden; Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Partnership for Structural Biology, Grenoble F-38042, France
| | - Michel Thépaut
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Samantha Micciula
- Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Large Scale Structures, Institut Laue Langevin (ILL), Grenoble F-38042, France
| | - Yuri Gerelli
- Marche Polytechnic University, Department of Life and Environmental Sciences, Via Brecce Bianche 12, 60131 Ancona, Italy; CNR-ISC and Department of Physics, Sapienza University of Rome, Piazzale A. Moro 2, Rome, Italy
| | - Martine Moulin
- Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Partnership for Structural Biology, Grenoble F-38042, France
| | - Clara Delaunay
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Franck Fieschi
- Partnership for Structural Biology, Grenoble F-38042, France; Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France; Institut universitaire de France (IUF), Paris, France
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria; Graz University of Technology, Institute of Molecular Biotechnology, NAWI Graz, BioTechMed Graz, Petersgasse 14, 8010 Graz, Austria
| | - Michael Haertlein
- Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Partnership for Structural Biology, Grenoble F-38042, France
| | - V Trevor Forsyth
- Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Partnership for Structural Biology, Grenoble F-38042, France; Faculty of Medicine, Lund University, 22184 Lund, Sweden; LINXS Institute for Advanced Neutron and X-ray Science, Scheelevagen 19, 22370 Lund, Sweden
| | - Anton Le Brun
- National Deuteration Facility, Australian Nuclear Science and Technology Organization (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Michael Moir
- National Deuteration Facility, Australian Nuclear Science and Technology Organization (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Robert A Russell
- National Deuteration Facility, Australian Nuclear Science and Technology Organization (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Tamim Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organization (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | | | | | - Martin Jansen
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Centre, University of Freiburg, Freiburg Im Breisgau, Germany
| | - César Martín
- Department of Molecular Biophysics, Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)), 48940 Leioa, Spain
| | - Felix Roosen-Runge
- Biofilm - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
| | - Marité Cárdenas
- Biofilm - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden; Department of Molecular Biophysics, Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)), 48940 Leioa, Spain; School of Biological Sciences, Nanyang Technological University, Singapore; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
5
|
Lee HC, Akhmedov A, Chen CH. Spotlight on very-low-density lipoprotein as a driver of cardiometabolic disorders: Implications for disease progression and mechanistic insights. Front Cardiovasc Med 2022; 9:993633. [PMID: 36267630 PMCID: PMC9577298 DOI: 10.3389/fcvm.2022.993633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
Very-low-density lipoprotein (VLDL) is the only lipoprotein containing apolipoprotein B that is secreted from the liver, where VLDL is assembled from apolipoproteins, cholesterol, and triglycerides. The primary function of VLDL is to transport cholesterol and other lipids to organs and cells for utilization. Apart from its role in normal biologic processes, VLDL is also known to contribute to the development of atherosclerotic cardiovascular disease. Large VLDL particles, which are subclassified according to their size by nuclear magnetic resonance spectrometry, are significantly correlated not only with atherosclerosis, but also with insulin resistance and diabetes incidence. VLDL can also be subclassified according to surface electrical charge by using anion-exchange chromatography. The most electronegative VLDL subclass is highly cytotoxic to endothelial cells and may contribute to coronary heart disease. In addition, electronegative VLDL contributes to the development of atrial remodeling, especially in patients with metabolic syndrome, which is an established risk factor for atrial fibrillation. In this review, we focus on the VLDL subclasses that are associated with apolipoprotein alterations and are involved in cardiometabolic disease. The postprandial enhancement of VLDL’s pathogenicity is a critical medical issue, especially in patients with metabolic syndrome. Therefore, the significance of the postprandial modification of VLDL’s chemical and functional properties is extensively discussed.
Collapse
Affiliation(s)
- Hsiang-Chun Lee
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan,Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,Lipid Science and Aging Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,Institute/Center of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan,Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX, United States,*Correspondence: Chu-Huang Chen,
| |
Collapse
|
6
|
Huang JK, Lee HC. Emerging Evidence of Pathological Roles of Very-Low-Density Lipoprotein (VLDL). Int J Mol Sci 2022; 23:4300. [PMID: 35457118 PMCID: PMC9031540 DOI: 10.3390/ijms23084300] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/18/2022] Open
Abstract
Embraced with apolipoproteins (Apo) B and Apo E, triglyceride-enriched very-low-density lipoprotein (VLDL) is secreted by the liver into circulation, mainly during post-meal hours. Here, we present a brief review of the physiological role of VLDL and a systemic review of the emerging evidence supporting its pathological roles. VLDL promotes atherosclerosis in metabolic syndrome (MetS). VLDL isolated from subjects with MetS exhibits cytotoxicity to atrial myocytes, induces atrial myopathy, and promotes vulnerability to atrial fibrillation. VLDL levels are affected by a number of endocrinological disorders and can be increased by therapeutic supplementation with cortisol, growth hormone, progesterone, and estrogen. VLDL promotes aldosterone secretion, which contributes to hypertension. VLDL induces neuroinflammation, leading to cognitive dysfunction. VLDL levels are also correlated with chronic kidney disease, autoimmune disorders, and some dermatological diseases. The extra-hepatic secretion of VLDL derived from intestinal dysbiosis is suggested to be harmful. Emerging evidence suggests disturbed VLDL metabolism in sleep disorders and in cancer development and progression. In addition to VLDL, the VLDL receptor (VLDLR) may affect both VLDL metabolism and carcinogenesis. Overall, emerging evidence supports the pathological roles of VLDL in multi-organ diseases. To better understand the fundamental mechanisms of how VLDL promotes disease development, elucidation of the quality control of VLDL and of the regulation and signaling of VLDLR should be indispensable. With this, successful VLDL-targeted therapies can be discovered in the future.
Collapse
Affiliation(s)
- Jih-Kai Huang
- Department of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Hsiang-Chun Lee
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Lipid Science and Aging Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80708, Taiwan
- Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
7
|
Juhász I, Ujfalusi S, Seres I, Lőrincz H, Varga VE, Paragh G, Somodi S, Harangi M, Paragh G. Afamin Levels and Their Correlation with Oxidative and Lipid Parameters in Non-diabetic, Obese Patients. Biomolecules 2022; 12:biom12010116. [PMID: 35053264 PMCID: PMC8773538 DOI: 10.3390/biom12010116] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Background: Afamin is a liver-produced bioactive protein and features α- and γ-tocopherol binding sites. Afamin levels are elevated in metabolic syndrome and obesity and correlate well with components of metabolic syndrome. Afamin concentrations, correlations between afamin and vitamin E, afamin and lipoprotein subfractions in non-diabetic, obese patients have not been fully examined. Methods: Fifty non-diabetic, morbidly obese patients and thirty-two healthy, normal-weight individuals were involved in our study. The afamin concentrations were measured by ELISA. Lipoprotein subfractions were determined with gel electrophoresis. Gas chromatography–mass spectrometry was used to measure α- and γ tocopherol levels. Results: Afamin concentrations were significantly higher in the obese patients compared to the healthy control (70.4 ± 12.8 vs. 47.6 ± 8.5 μg/mL, p < 0.001). Positive correlations were found between afamin and fasting glucose, HbA1c, hsCRP, triglyceride, and oxidized LDL level, as well as the amount and ratio of small HDL subfractions. Negative correlations were observed between afamin and mean LDL size, as well as the amount and ratio of large HDL subfractions. After multiple regression analysis, HbA1c levels and small HDL turned out to be independent predictors of afamin. Conclusions: Afamin may be involved in the development of obesity-related oxidative stress via the development of insulin resistance and not by affecting α- and γ-tocopherol levels.
Collapse
Affiliation(s)
- Imre Juhász
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.J.); (S.S.)
- Doctoral School of Health Sciences, Faculty of Public Health, University of Debrecen, 4032 Debrecen, Hungary;
| | - Szilvia Ujfalusi
- Doctoral School of Health Sciences, Faculty of Public Health, University of Debrecen, 4032 Debrecen, Hungary;
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (H.L.); (V.E.V.); (M.H.)
| | - Ildikó Seres
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (H.L.); (V.E.V.); (M.H.)
| | - Hajnalka Lőrincz
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (H.L.); (V.E.V.); (M.H.)
| | - Viktória Evelin Varga
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (H.L.); (V.E.V.); (M.H.)
| | - György Paragh
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA;
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Sándor Somodi
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.J.); (S.S.)
| | - Mariann Harangi
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (H.L.); (V.E.V.); (M.H.)
| | - György Paragh
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (H.L.); (V.E.V.); (M.H.)
- Correspondence: ; Tel./Fax: +36-52-442-101
| |
Collapse
|