1
|
Slominski RM, Chander R, Jetten AM, Slominski AT. Neuro-immuno-endocrinology of the skin: how environment regulates body homeostasis. Nat Rev Endocrinol 2025:10.1038/s41574-025-01107-x. [PMID: 40263492 DOI: 10.1038/s41574-025-01107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2025] [Indexed: 04/24/2025]
Abstract
The skin, including the hypodermis, is the largest organ of the body. The epidermis, the uppermost layer, is in direct contact with the environment and is exposed to environmental stressors, including solar radiation and biological, chemical and physical factors. These environmental factors trigger local responses within the skin that modulate homeostasis on both the cutaneous and systemic levels. Using mediators in common with brain pathways, immune and neuroendocrine systems within the skin regulate these responses to activate various signal transduction pathways and influence the systemic endocrine and immune systems in a context-dependent manner. This skin neuro-immuno-endocrine system is compartmentalized through the formation of epidermal, dermal, hypodermal and adnexal regulatory units. These units can act separately or in concert to preserve skin integrity, allow for adaptation to a changing environment and prevent the development of pathological processes. Through activation of peripheral nerve endings, the release of neurotransmitters, hormones, neuropeptides, and cytokines and/or chemokines into the circulation, or by priming circulating and resident immune cells, this system affects central coordinating centres and global homeostasis, thus adjusting the body's homeostasis and allostasis to optimally respond to the changing environment.
Collapse
Affiliation(s)
- Radomir M Slominski
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Raman Chander
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anton M Jetten
- Cell Biology Section, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, USA.
- Veteran Administration Medical Center, Birmingham, AL, USA.
| |
Collapse
|
2
|
Aitella E, De Martinis M, Romano C, Azzellino G, Ginaldi L. Neurogenic Inflammation in Allergic Contact Dermatitis. Biomedicines 2025; 13:656. [PMID: 40149632 PMCID: PMC11940366 DOI: 10.3390/biomedicines13030656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 03/29/2025] Open
Abstract
Allergic contact dermatitis (ACD) is a skin condition characterized by inflammation resulting from hypersensitivity upon contact with certain allergens. Although ACD is characterized by an immune-mediated pathomechanism, the involvement of the nervous system in this condition has increasingly been considered, particularly in the amplification and persistence of inflammation. This paper aims to present a comprehensive overview of the mechanisms involved in neurogenic inflammation in ACD, focusing on the role of sensory neurons, the release of neuropeptides, their interaction with immune cells, and the potential therapeutic implications related to neurogenic pathways, diversified by age and gender. Innovative therapies for ACD, including topical formulations, may target the mass-bound X2 G-protein-coupled receptor (MRGPRX2) and endocannabinoid systems.
Collapse
Affiliation(s)
- Ernesto Aitella
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.A.); (M.D.M.); (G.A.)
| | - Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.A.); (M.D.M.); (G.A.)
| | - Ciro Romano
- Clinical Immunology Outpatient Clinic, Division of Internal Medicine, Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy;
| | - Gianluca Azzellino
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.A.); (M.D.M.); (G.A.)
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.A.); (M.D.M.); (G.A.)
| |
Collapse
|
3
|
Wen B, Pan Y, Cheng J, Xu L, Xu J. The Role of Neuroinflammation in Complex Regional Pain Syndrome: A Comprehensive Review. J Pain Res 2023; 16:3061-3073. [PMID: 37701560 PMCID: PMC10493102 DOI: 10.2147/jpr.s423733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023] Open
Abstract
Complex Regional Pain Syndrome (CRPS) is an excess and/or prolonged pain and inflammation condition that follows an injury to a limb. The pathogenesis of CRPS is multifaceted that remains incompletely understood. Neuroinflammation is an inflammatory response in the peripheral and central nervous systems. Dysregulated neuroinflammation plays a crucial role in the initiation and maintenance of pain and nociceptive neuronal sensitization, which may contribute to the transition from acute to chronic pain and the perpetuation of chronic pain in CRPS. The key features of neuroinflammation encompass infiltration and activation of inflammatory cells and the production of inflammatory mediators in both the central and peripheral nervous systems. This article reviews the role of neuroinflammation in the onset and progression of CRPS from six perspectives: neurogenic inflammation, neuropeptides, glial cells, immune cells, cytokines, and keratinocytes. The objective is to provide insights that can inform future research and development of therapeutic targets for CRPS.
Collapse
Affiliation(s)
- Bei Wen
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| | - Yinbing Pan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Jianguo Cheng
- Department of Pain Management, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Neuroscience, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Li Xu
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| | - Jijun Xu
- Department of Pain Management, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Inflammation and Immunity; Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
4
|
Slominski RM, Raman C, Chen JY, Slominski AT. How cancer hijacks the body's homeostasis through the neuroendocrine system. Trends Neurosci 2023; 46:263-275. [PMID: 36803800 PMCID: PMC10038913 DOI: 10.1016/j.tins.2023.01.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/30/2022] [Accepted: 01/15/2023] [Indexed: 02/19/2023]
Abstract
During oncogenesis, cancer not only escapes the body's regulatory mechanisms, but also gains the ability to affect local and systemic homeostasis. Specifically, tumors produce cytokines, immune mediators, classical neurotransmitters, hypothalamic and pituitary hormones, biogenic amines, melatonin, and glucocorticoids, as demonstrated in human and animal models of cancer. The tumor, through the release of these neurohormonal and immune mediators, can control the main neuroendocrine centers such as the hypothalamus, pituitary, adrenals, and thyroid to modulate body homeostasis through central regulatory axes. We hypothesize that the tumor-derived catecholamines, serotonin, melatonin, neuropeptides, and other neurotransmitters can affect body and brain functions. Bidirectional communication between local autonomic and sensory nerves and the tumor, with putative effects on the brain, is also envisioned. Overall, we propose that cancers can take control of the central neuroendocrine and immune systems to reset the body homeostasis in a mode favoring its expansion at the expense of the host.
Collapse
Affiliation(s)
- Radomir M Slominski
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA; Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jake Y Chen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA; Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA; Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, USA; VA Medical Center, Birmingham, AL, USA.
| |
Collapse
|
5
|
Slominski AT, Slominski RM, Raman C, Chen JY, Athar M, Elmets C. Neuroendocrine signaling in the skin with a special focus on the epidermal neuropeptides. Am J Physiol Cell Physiol 2022; 323:C1757-C1776. [PMID: 36317800 PMCID: PMC9744652 DOI: 10.1152/ajpcell.00147.2022] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Abstract
The skin, which is comprised of the epidermis, dermis, and subcutaneous tissue, is the largest organ in the human body and it plays a crucial role in the regulation of the body's homeostasis. These functions are regulated by local neuroendocrine and immune systems with a plethora of signaling molecules produced by resident and immune cells. In addition, neurotransmitters, endocrine factors, neuropeptides, and cytokines released from nerve endings play a central role in the skin's responses to stress. These molecules act on the corresponding receptors in an intra-, juxta-, para-, or autocrine fashion. The epidermis as the outer most component of skin forms a barrier directly protecting against environmental stressors. This protection is assured by an intrinsic keratinocyte differentiation program, pigmentary system, and local nervous, immune, endocrine, and microbiome elements. These constituents communicate cross-functionally among themselves and with corresponding systems in the dermis and hypodermis to secure the basic epidermal functions to maintain local (skin) and global (systemic) homeostasis. The neurohormonal mediators and cytokines used in these communications regulate physiological skin functions separately or in concert. Disturbances in the functions in these systems lead to cutaneous pathology that includes inflammatory (i.e., psoriasis, allergic, or atopic dermatitis, etc.) and keratinocytic hyperproliferative disorders (i.e., seborrheic and solar keratoses), dysfunction of adnexal structure (i.e., hair follicles, eccrine, and sebaceous glands), hypersensitivity reactions, pigmentary disorders (vitiligo, melasma, and hypo- or hyperpigmentary responses), premature aging, and malignancies (melanoma and nonmelanoma skin cancers). These cellular, molecular, and neural components preserve skin integrity and protect against skin pathologies and can act as "messengers of the skin" to the central organs, all to preserve organismal survival.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
| | - Radomir M Slominski
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jake Y Chen
- Informatics Institute, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
| | - Craig Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
| |
Collapse
|
6
|
Liu T, Xiao W, Chen M, Mao R, San X, Peng Q, Zhao Z, Wang Q, Xie H, Deng Z, Li J. Aberrant amino acid metabolism promotes neurovascular reactivity in rosacea. JCI Insight 2022; 7:161870. [PMID: 36219476 DOI: 10.1172/jci.insight.161870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/05/2022] [Indexed: 12/15/2022] Open
Abstract
Rosacea is a chronic skin disorder characterized by abnormal neurovascular and inflammatory conditions on the central face. Despite increasing evidence suggesting that rosacea is associated with metabolic disorders, the role of metabolism in rosacea pathogenesis remains unknown. Here, via a targeted metabolomics approach, we characterized significantly altered metabolic signatures in patients with rosacea, especially for amino acid-related metabolic pathways. Among these, glutamic acid and aspartic acid were highlighted and positively correlated with the disease severity in patients with rosacea. We further demonstrated that glutamic acid and aspartic acid can facilitate the development of erythema and telangiectasia, typical features of rosacea, in the skin of mice. Mechanistically, glutamic acid and aspartic acid stimulated the production of vasodilation-related neuropeptides from peripheral neurons and keratinocytes and induced the release of nitric oxide from endothelial cells and keratinocytes. Interestingly, we provided evidence showing that doxycycline can improve the symptoms of patients with rosacea possibly by targeting the amino acid metabolic pathway. These findings reveal that abnormal amino acid metabolism promotes neurovascular reactivity in rosacea and raise the possibility of targeting dysregulated metabolism as a promising strategy for clinical treatment.
Collapse
Affiliation(s)
- Tangxiele Liu
- Department of Dermatology.,Hunan Key Laboratory of Aging Biology, and.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenqin Xiao
- Department of Dermatology.,Hunan Key Laboratory of Aging Biology, and.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mengting Chen
- Department of Dermatology.,Hunan Key Laboratory of Aging Biology, and.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Rui Mao
- Department of Dermatology.,Hunan Key Laboratory of Aging Biology, and.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xu San
- Department of Dermatology.,Hunan Key Laboratory of Aging Biology, and.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qinqin Peng
- Department of Dermatology.,Hunan Key Laboratory of Aging Biology, and.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiang Zhao
- Department of Dermatology.,Hunan Key Laboratory of Aging Biology, and.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Wang
- Hunan Binsis Biotechnology Co., Ltd, Changsha, China
| | - Hongfu Xie
- Department of Dermatology.,Hunan Key Laboratory of Aging Biology, and.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology.,Hunan Key Laboratory of Aging Biology, and.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ji Li
- Department of Dermatology.,Hunan Key Laboratory of Aging Biology, and.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Wu L, Xu S, Yang B, Yang J, Yee C, Cirillo N. The Hypothalamic-Pituitary-Thyroid Axis Equivalent in Normal and Cancerous Oral Tissues: A Scoping Review. Int J Mol Sci 2022; 23:14096. [PMID: 36430573 PMCID: PMC9695915 DOI: 10.3390/ijms232214096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
The hypothalamic-pituitary-thyroid (HPT) axis is crucial in regulating thyroid hormone levels that contribute to the development and homeostasis of the human body. Current literature supports the presence of a local HPT axis equivalent within keratinocytes of the skin, with thyroid hormones playing a potential role in cancer progression. However, this remains to be seen within oral tissue cells. An electronic search of Scopus and PubMed/Medline databases was conducted to identify all original publications that reported data on the production or effects of HPT axis components in normal or malignant cells of the oral cavity. The search identified 221 studies, of which 14 were eligible. Eight studies were retrospective analyses of clinical samples, one study involved both in vivo and in vitro experiments, and the remaining five studies were conducted in vitro using cell lines. The search identified evidence of effects of HPT components on oral cancer cells. However, there were limited data for the production of HPT axis components by oral tissues. We conclude that a possible role of the local HPT axis equivalent in the oral mucosa may not be established at present. The gaps in knowledge identified in this scoping review, particularly regarding the production of HPT components by oral tissues, warrant further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| |
Collapse
|
8
|
Xu X, Yu C, Xu L, Xu J. Emerging roles of keratinocytes in nociceptive transduction and regulation. Front Mol Neurosci 2022; 15:982202. [PMID: 36157074 PMCID: PMC9500148 DOI: 10.3389/fnmol.2022.982202] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/23/2022] [Indexed: 01/07/2023] Open
Abstract
Keratinocytes are the predominant block-building cells in the epidermis. Emerging evidence has elucidated the roles of keratinocytes in a wide range of pathophysiological processes including cutaneous nociception, pruritus, and inflammation. Intraepidermal free nerve endings are entirely enwrapped within the gutters of keratinocyte cytoplasm and form en passant synaptic-like contacts with keratinocytes. Keratinocytes can detect thermal, mechanical, and chemical stimuli through transient receptor potential ion channels and other sensory receptors. The activated keratinocytes elicit calcium influx and release ATP, which binds to P2 receptors on free nerve endings and excites sensory neurons. This process is modulated by the endogenous opioid system and endothelin. Keratinocytes also express neurotransmitter receptors of adrenaline, acetylcholine, glutamate, and γ-aminobutyric acid, which are involved in regulating the activation and migration, of keratinocytes. Furthermore, keratinocytes serve as both sources and targets of neurotrophic factors, pro-inflammatory cytokines, and neuropeptides. The autocrine and/or paracrine mechanisms of these mediators create a bidirectional feedback loop that amplifies neuroinflammation and contributes to peripheral sensitization.
Collapse
Affiliation(s)
- Xiaohan Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing, China
| | - Catherine Yu
- Department of Pain Management, Anesthesiology Institute, Cleveland, OH, United States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, United States
- Cleveland Clinic, Case Western Reserve University, Cleveland, OH, United States
| | - Li Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing, China
| | - Jijun Xu
- Department of Pain Management, Anesthesiology Institute, Cleveland, OH, United States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, United States
- Cleveland Clinic, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
9
|
El-Serafi AT, El-Serafi I, Steinvall I, Sjöberg F, Elmasry M. A Systematic Review of Keratinocyte Secretions: A Regenerative Perspective. Int J Mol Sci 2022; 23:7934. [PMID: 35887279 PMCID: PMC9323141 DOI: 10.3390/ijms23147934] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/03/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
Cell regenerative therapy is a modern solution for difficult-to-heal wounds. Keratinocytes, the most common cell type in the skin, are difficult to obtain without the creation of another wound. Stem cell differentiation towards keratinocytes is a challenging process, and it is difficult to reproduce in chemically defined media. Nevertheless, a co-culture of keratinocytes with stem cells usually achieves efficient differentiation. This systematic review aims to identify the secretions of normal human keratinocytes reported in the literature and correlate them with the differentiation process. An online search revealed 338 references, of which 100 met the selection criteria. A total of 80 different keratinocyte secretions were reported, which can be grouped mainly into cytokines, growth factors, and antimicrobial peptides. The growth-factor group mostly affects stem cell differentiation into keratinocytes, especially epidermal growth factor and members of the transforming growth factor family. Nevertheless, the reported secretions reflected the nature of the involved studies, as most of them focused on keratinocyte interaction with inflammation. This review highlights the secretory function of keratinocytes, as well as the need for intense investigation to characterize these secretions and evaluate their regenerative capacities.
Collapse
Affiliation(s)
- Ahmed T. El-Serafi
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linkoping, Sweden; (I.S.); (F.S.); (M.E.)
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58183 Linkoping, Sweden;
| | - Ibrahim El-Serafi
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58183 Linkoping, Sweden;
- Basic Medical Sciences Department, College of Medicine, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Ingrid Steinvall
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linkoping, Sweden; (I.S.); (F.S.); (M.E.)
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58183 Linkoping, Sweden;
| | - Folke Sjöberg
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linkoping, Sweden; (I.S.); (F.S.); (M.E.)
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58183 Linkoping, Sweden;
| | - Moustafa Elmasry
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linkoping, Sweden; (I.S.); (F.S.); (M.E.)
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58183 Linkoping, Sweden;
| |
Collapse
|