1
|
Shi W, Qin C, Yang Y, Yang X, Fang Y, Zhang B, Wang D, Feng W, Shi D. Urolithin A Protects Porcine Oocytes from Artificially Induced Oxidative Stress Damage to Enhance Oocyte Maturation and Subsequent Embryo Development. Int J Mol Sci 2025; 26:3037. [PMID: 40243704 PMCID: PMC11989139 DOI: 10.3390/ijms26073037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Both the livestock and biomedical fields require a large supply of high-quality mature oocytes. However, the in vitro maturation (IVM) process often leads to an accumulation of reactive oxygen species (ROS), which can cause defects in oocyte meiosis and embryo development, ultimately compromising oocyte quality. Urolithin A (UA), known for its antioxidant properties, has not been thoroughly investigated for its potential to mitigate the negative effects of oxidative stress during the in vitro culturing of oocytes, and its underlying mechanism is not well understood. In this study, an in vitro oxidative stress model was established using porcine oocytes treated with H2O2, followed by exposure to varying concentrations of UA. The results revealed that 30 μM UA significantly improved both the quality of oocyte culture and the developmental potential of the resulting embryos. UA was found to enhance oocyte autophagy, reduce oxidative stress-induced mitochondrial damage, and restore mitochondrial function. Additionally, it lowered ROS and DNA damage levels in the oocytes, maintained proper spindle/chromosome alignment and actin cytoskeleton structure, promoted nuclear maturation, prevented abnormal cortical granule distribution, and supported oocyte cytoplasmic maturation. As a result, UA alleviated oxidative stress-induced defects in oocyte maturation and cumulus cell expansion, thereby improving the developmental potential and quality of parthenogenetic embryos. After supplementation with UA, pig parthenogenetic embryo pluripotency-related genes (Nanog and Sox2) and antiapoptotic genes (Bcl2) were upregulated, while proapoptotic genes (Bax) were downregulated. In conclusion, this study suggests that adding UA during IVM can effectively mitigate the adverse effects of oxidative stress on porcine oocytes, presenting a promising strategy for enhancing their developmental potential in vitro.
Collapse
Affiliation(s)
- Wen Shi
- Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (W.S.); (C.Q.); (Y.Y.); (X.Y.); (Y.F.); (B.Z.); (D.W.)
| | - Chaobin Qin
- Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (W.S.); (C.Q.); (Y.Y.); (X.Y.); (Y.F.); (B.Z.); (D.W.)
| | - Yanyan Yang
- Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (W.S.); (C.Q.); (Y.Y.); (X.Y.); (Y.F.); (B.Z.); (D.W.)
| | - Xiaofen Yang
- Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (W.S.); (C.Q.); (Y.Y.); (X.Y.); (Y.F.); (B.Z.); (D.W.)
| | - Yizhen Fang
- Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (W.S.); (C.Q.); (Y.Y.); (X.Y.); (Y.F.); (B.Z.); (D.W.)
| | - Bing Zhang
- Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (W.S.); (C.Q.); (Y.Y.); (X.Y.); (Y.F.); (B.Z.); (D.W.)
| | - Dong Wang
- Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (W.S.); (C.Q.); (Y.Y.); (X.Y.); (Y.F.); (B.Z.); (D.W.)
| | - Wanyou Feng
- School of Environmental and Life Sciences, Nanning Normal University, Nanning 530001, China
| | - Deshun Shi
- Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (W.S.); (C.Q.); (Y.Y.); (X.Y.); (Y.F.); (B.Z.); (D.W.)
| |
Collapse
|
2
|
Ammar OF, Massarotti C, Mincheva M, Sharma K, Liperis G, Herraiz S, Rodríguez-Nuevo A, Zambelli F, Mihalas BP, Fraire-Zamora JJ. Oxidative stress and ovarian aging: from cellular mechanisms to diagnostics and treatment. Hum Reprod 2024; 39:1582-1586. [PMID: 38670545 DOI: 10.1093/humrep/deae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/08/2024] [Indexed: 04/28/2024] Open
Affiliation(s)
- Omar F Ammar
- IVF Department, Ar-Razzi Hospital, Ramadi, Iraq
- Department of Obstetrics and Gynaecology, College of Medicine, University of Anbar, Ramadi, Iraq
| | - Claudia Massarotti
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- DINOGMI Department, University of Genova, Genova, Italy
| | | | - Kashish Sharma
- HealthPlus Fertility Center, HealthPlus Network of Specialty Centers, Abu Dhabi, United Arab Emirates
| | - George Liperis
- Westmead Fertility Centre, Institute of Reproductive Medicine, University of Sydney, Westmead, NSW, Australia
- Embryorigin Fertility Centre, Larnaca, Cyprus
| | - Sonia Herraiz
- IVIRMA Global Research Alliance, IVI Foundation-IIS la Fe, Valencia, Spain
| | - Aida Rodríguez-Nuevo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Bettina P Mihalas
- The Oocyte Biology Research Unit, Discipline of Women's Health, School of Clinical Medicine, Faculty of Medicine and Health, The University of NSW Sydney, Randwick, NSW, Australia
| | | |
Collapse
|
3
|
Di Berardino C, Barceviciute U, Camerano Spelta Rapini C, Peserico A, Capacchietti G, Bernabò N, Russo V, Gatta V, Konstantinidou F, Donato M, Barboni B. High-fat diet-negative impact on female fertility: from mechanisms to protective actions of antioxidant matrices. Front Nutr 2024; 11:1415455. [PMID: 38915855 PMCID: PMC11194403 DOI: 10.3389/fnut.2024.1415455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction Excessive calorie intake poses a significant threat to female fertility, leading to hormonal imbalances and reproductive challenges. Overconsumption of unhealthy fats exacerbates ovarian dysfunction, with an overproduction of reactive oxygen species causing oxidative stress, impairing ovarian follicle development and leading to irregular ovulation and premature ovarian failure. Interest in biological matrices with high antioxidant properties to combat diet-related oxidative stress has grown, as they contain various bioactive factors crucial for neutralizing free radicals potentially preventing female reproductive health. This systematic review evaluates the female reproductive impact of biological matrices in mitigating oxidative damages induced by over calory habits and, in particular, high fat diets. Methods A comparative approach among mammalian models was utilized to interpret literature available data. This approach specifically investigates the antioxidant mechanisms of biological matrices on early and late ovarian folliculogenesis, under physiological and hormone-induced female reproductive cycle. Adhering to the PRISMA 2020 guidelines, only English-language publications from peer-reviewed international indexes were considered. Results The analysis of 121 publications meeting the inclusion criteria facilitated the identification of crucial components of biological matrices. These components, including carbocyclic sugars, phytonutrients, organosulfur compounds, and vitamins, were evaluated for their impact on ovarian follicle resilience, oocyte quality, and reproductive lifespan. The detrimental effects of oxidative stress on female fertility, particularly exacerbated by high saturated fat diets, are well-documented. In vivo studies across mammalian preclinical models have underscored the potential of antioxidants derived from biological matrices to mitigate diet-induced conditions. These antioxidants enhance steroidogenesis and ovarian follicle development, thereby improving oocyte quality. Additionally, discussions within these publications emphasized the clinical significance of these biological matrices, translating research findings into practical applications for female health. Conclusion Further research is essential to fully exploit the potential of these matrices in enhancing female reproduction and mitigating the effects of diets rich in fatty acids. This requires intensified in vitro studies and comprehensive collection of in vivo data before clinical trials. The promotion of ovarian resilience offers promising avenues for enhancing understanding and advancing female reproductive health world-wide.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Urte Barceviciute
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Alessia Peserico
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giulia Capacchietti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Nicola Bernabò
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Rome, Italy
| | - Valentina Russo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Fani Konstantinidou
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Marisa Donato
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
4
|
Podolska K, Mazankova D, Goboova M, Vano I. Ascorbic acid intake during pregnancy. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2023; 167:213-218. [PMID: 37691531 DOI: 10.5507/bp.2023.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023] Open
Abstract
The continuing global increase in allergic conditions and diseases in children is now a serious public health and scientific issue. Amongst other concerns is the maternal antenatal diet as intake of essential nutrients. Even small deficits in essential vitamin C can permanently impair the developing brain for example. In this article, we first review ascorbic acid deficiency in different organs of both mother and foetus. However, major emphasis is on the importance of vitamin C in foetal immunity with studies showing an inverse relationship between maternal intake of fresh fruit and vegetables and allergic conditions in childhood, inter alia. Other review results are included.
Collapse
Affiliation(s)
- Kristina Podolska
- Department of Applied Pharmacy, Faculty of Pharmacy, Masaryk University, 612 00 Brno, Czech Republic
| | - Dana Mazankova
- Department of Applied Pharmacy, Faculty of Pharmacy, Masaryk University, 612 00 Brno, Czech Republic
| | - Maria Goboova
- Department of Internal Medicine, Teaching Hospital Nitra, 949 01 Nitra, Slovak Republic
| | - Ivan Vano
- Department of Internal Medicine, Teaching Hospital Nitra, 949 01 Nitra, Slovak Republic
| |
Collapse
|
5
|
Sadeghi N, Boissonneault G, Tavalaee M, Nasr-Esfahani MH. Oxidative versus reductive stress: a delicate balance for sperm integrity. Syst Biol Reprod Med 2023; 69:20-31. [PMID: 36215401 DOI: 10.1080/19396368.2022.2119181] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Despite the long-standing notion of "oxidative stress," as the main mediator of many diseases including male infertility induced by increased reactive oxygen species (ROS), recent evidence suggests that ROS levels are also increased by "reductive stress," due to over-accumulation of reductants. Damaging mechanisms, like guanidine oxidation followed by DNA fragmentation, could be observed following reductive stress. Excessive accumulation of the reductants may arise from excess dietary supplementation over driving the one-carbon cycle and transsulfuration pathway, overproduction of NADPH through the pentose phosphate pathway (PPP), elevated levels of GSH leading to impaired mitochondrial oxidation, or as a result NADH accumulation. In addition, lower availability of oxidized reductants like NAD+, oxidized glutathione (GSSG), and oxidized thioredoxins (Trx-S2) induce electron leakage leading to the formation of hydrogen peroxide (H2O2). In addition, a lower level of NAD+ impairs poly (ADP-ribose) polymerase (PARP)-regulated DNA repair essential for proper chromatin integrity of sperm. Because of the limited studies regarding the possible involvement of reductive stress, antioxidant therapy remains a central approach in the treatment of male infertility. This review put forward the concept of reductive stress and highlights the potential role played by reductive vs oxidative stress at pre-and post-testicular levels and considering dietary supplementation.
Collapse
Affiliation(s)
- Niloofar Sadeghi
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Guylain Boissonneault
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
6
|
Dong L, Teh DBL, Kennedy BK, Huang Z. Unraveling female reproductive senescence to enhance healthy longevity. Cell Res 2023; 33:11-29. [PMID: 36588114 PMCID: PMC9810745 DOI: 10.1038/s41422-022-00718-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/19/2022] [Indexed: 01/03/2023] Open
Abstract
In a society where women often want successful careers and equal opportunities to men, the early nature of ovarian aging often forces women to make difficult life choices between career and family development. Fertility in women begins to decline after the age of 37 years and it is rare for pregnancies to occur after 45. This reproductive decline in women is inevitable and culminates in menopause, which is a major driver of age-related diseases. In a world where biomedical advances are leading to modifiable biological outcomes, it is time to focus on mitigating female reproductive senescence to maintain fertility and preserve age-related hormonal functions, with the goal of providing increased life choices and enhancing healthspan. To date, reproductive longevity research remains an understudied field. More needs to be done to unravel the biology of the ovarian follicles, which are the functional units of reproductive lifespan and are comprised of cell types including the oocyte (female gamete) and a group of specialized supporting somatic cells. Biological attempts to maintain the quality and quantity of follicles in animal models through manipulating pathways involved in aging can potentially prolong female reproductive lifespan and healthspan. Here, we summarize the molecular events driving ovarian aging and menopause and the interventional strategies to offset these events. Developing solutions to female reproductive senescence will open doors to discover ways to enhance true healthy longevity for both men and women.
Collapse
Affiliation(s)
- Lu Dong
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore
- NUS Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniel Boon Loong Teh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Bia Echo Asia Centre for Reproductive Longevity and Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Brian Keith Kennedy
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore.
- NUS Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- NUS Bia Echo Asia Centre for Reproductive Longevity and Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Zhongwei Huang
- NUS Bia Echo Asia Centre for Reproductive Longevity and Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore.
| |
Collapse
|
7
|
Mohebbi A, Hojati V, Majidi Zolbin M, Aflatoonian R. Histopathologic evaluation of the inflammatory factors and stromal cells in the endometriosis lesions: A case-control study. Int J Reprod Biomed 2022; 20:819-830. [PMID: 36381357 PMCID: PMC9644650 DOI: 10.18502/ijrm.v20i10.12266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/06/2022] [Accepted: 08/16/2022] [Indexed: 09/08/2024] Open
Abstract
Background Endometriosis is a multifaceted gynecological disorder defined as a benign estrogen-dependent chronic inflammatory process in which endometrial glands and stroma-like tissues are located outside the uterine cavity. It affects around 2-10% of all women during their reproductive years. Objective This study aimed to evaluate the traffic of mesenchymal stem cells and inflammatory factors toward the lesions. Materials and Methods Ten samples of normal endometrium and eutopic endometrium were studied as a control group and 10 ectopic samples were considered as a case group. Hematoxylin and eosin staining was used to evaluate stromal cells and inflammatory cells. Immunohistochemical staining was performed to show the presence of proliferating cell nuclear antigen in the lesions. The cells were digested and cultured in the laboratory to study cell proliferation. The number of cells and vessels were counted with Image J software, and data analysis was performed with Prism software. Results Data analysis showed that the number of stromal cells and vessels in ectopic tissue were significantly higher than the control group (p < 0.001). Also, the number of inflammatory cells, including neutrophils, monocytes, lymphocytes, and macrophages, in the ectopic group was much higher than in the control group (p < 0.005). Conclusion By expanding the number of blood vessels, blood flow increases, and cell migration to tissues is facilitated. The accumulation of inflammatory cells, especially macrophages, stimulates the growth of stem cells and helps implant cells by creating an inflammatory process.
Collapse
Affiliation(s)
- Ali Mohebbi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Vida Hojati
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell, and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
8
|
Ghasemian Nafchi H, Azizi Y, Halvaei I. The role of growth factors in human sperm parameters: A review of in vitro studies. Int J Reprod Biomed 2022; 20:807-818. [PMID: 36381356 PMCID: PMC9644651 DOI: 10.18502/ijrm.v20i10.12265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/19/2022] [Accepted: 03/29/2022] [Indexed: 11/26/2024] Open
Abstract
In vitro sperm preparation/incubation and cryopreservation are associated with oxidative stress as the main cause of sperm damage, and different strategies are used to improve sperm quality in in vitro conditions to treat male infertility. Growth factors (GFs) are biological molecules that play different roles in various cellular processes such as growth, proliferation, and differentiation. Many studies have shown that GFs and their receptors are expressed in the male reproductive system. In vitro supplementation of GFs to improve sperm parameters has yielded useful results. There are many studies on the effects of GFs on sperm quality improvement and subsequent assisted reproductive technology results. Hence, this study will review the in vitro results of various GFs including brain-derived neurotrophic factor, nerve growth factor, fibroblast growth factor, insulin-like growth factor I, and vascular endothelial growth factor to improve sperm quality.
Collapse
Affiliation(s)
| | - Yaser Azizi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| | - Iman Halvaei
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
9
|
Tesarik J, Mendoza-Tesarik R. Molecular Clues to Understanding Causes of Human-Assisted Reproduction Treatment Failures and Possible Treatment Options. Int J Mol Sci 2022; 23:10357. [PMID: 36142268 PMCID: PMC9499616 DOI: 10.3390/ijms231810357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
More than forty years after the first birth following in vitro fertilization (IVF), the success rates of IVF and of IVF-derived assisted reproduction techniques (ART) still remain relatively low. Interindividual differences between infertile couples and the nature of the problems underlying their infertility appear to be underestimated nowadays. Consequently, the molecular basis of each couple's reproductive function and of its disturbances is needed to offer an individualized diagnostic and therapeutic approaches to each couple, instead of applying a standard or minimally adapted protocols to everybody. Interindividual differences include sperm and oocyte function and health status, early (preimplantation) embryonic development, the optimal window of uterine receptivity for the implanting embryo, the function of the corpus luteum as the main source of progesterone production during the first days of pregnancy, the timing of the subsequent luteoplacental shift in progesterone production, and aberrant reactions of the uterine immune cells to the implanting and recently implanted embryos. In this article, the molecular basis that underlies each of these abnormalities is reviewed and discussed, with the aim to design specific treatment options to be used for each of them.
Collapse
|
10
|
Lin HY, Yang YN, Chen YF, Huang TY, Crawford DR, Chuang HY, Chin YT, Chu HR, Li ZL, Shih YJ, Chen YR, Yang YCSH, Ho Y, Davis PJ, Whang-Peng J, Wang K. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-Glucoside improves female ovarian aging. Front Cell Dev Biol 2022; 10:862045. [PMID: 36111333 PMCID: PMC9469098 DOI: 10.3389/fcell.2022.862045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Reduced fertility associated with normal aging may reflect the over-maturity of oocytes. It is increasingly important to reduce aging-induced infertility since recent trends show people marrying at later ages. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside (THSG), a polyphenol extracted from Polygonum multiflorum, has been reported to have anti-inflammatory and anti-aging properties. To evaluate whether THSG can reduce aging-related ovarian damage in a female mouse model of aging, THSG was administered by gavage at a dose of 10 mg/kg twice weekly, starting at 4 weeks of age in a group of young mice. In addition, the effect of THSG in a group of aged mice was also studied in mice starting at 24 weeks of age. The number of oocytes in the THSG-fed group was higher than in the untreated control group. Although the percentage of secondary polar bodies (PB2) decreased during aging in the THSG-fed group, it decreased much more slowly than in the age-matched control group. THSG administration increased the quality of ovaries in young mice becoming aged. Western blotting analyses also indicated that CYP19, PR-B, and ER-β expressions were significantly increased in 36-week-old mice. THSG also increased oocyte numbers in aged mice compared to mice without THSG fed. Studies of qPCR and immunohistochemistry (IHC) analyses of ovaries in the aged mice groups were conducted. THSG increased gene expression of anti-Müllerian hormone (AMH), a biomarker of oocyte number, and protein accumulation in 40-week-old mice. THSG increased the expression of pgc1α and atp6, mitochondrial biogenesis-related genes, and their protein expression. THSG also attenuated the fading rate of CYP11a and CYP19 associated with sex hormone synthesis. And THSG maintains a high level of ER-β expression, thereby enhancing the sensitivity of estrogen. Our findings indicated that THSG increased or extended gene expression involved in ovarian maintenance and rejuvenation in young and aged mice. On the other hand, THSG treatments significantly maintained oocyte quantity and quality in both groups of young and aged mice compared to each age-matched control group. In conclusion, THSG can delay aging-related menopause, and the antioxidant properties of THSG may make it suitable for preventing aging-induced infertility.
Collapse
Affiliation(s)
- Hung-Yun Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Ning Yang
- School of Medicine, I-Shou University, Kaohsiung, Taiwan
- Department of Pediatrics, E-DA Hospital, Kaohsiung, Taiwan
| | - Yi-Fong Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tung-Yung Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Dana R. Crawford
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Hui-Yu Chuang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Tang Chin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Ru Chu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Zi-Lin Li
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ya-Jung Shih
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ru Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen S. H. Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Yih Ho
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- *Correspondence: Yih Ho,
| | - Paul J. Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
- Department of Medicine, Albany Medical College, Albany, NY, United States
| | - Jacqueline Whang-Peng
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
11
|
Tesarik J, Mendoza-Tesarik R. Patient-tailored reproductive health care. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:917159. [PMID: 36303620 PMCID: PMC9580787 DOI: 10.3389/frph.2022.917159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Patient-tailored reproductive health care represents an important challenge for the current practice of infertility prevention, diagnosis and treatment. This approach is based on the concept of precision medicine, taking into account genetic, epigenetic, metabolic and lifestyle characteristics of each individual patient. Even though this goal is still far from being wholly achieved, some aspects can already be put into practice nowadays. Personalization can be based on a comprehensive analysis and synthesis of the patients' personal and familial history, taking into account outcomes of previous assisted reproduction technique (ART) attempts, if available, and confronting these data with the past and the latest clinical and laboratory examination outcomes. As to the male fertility status, there is an urgent need for the inclusion of an accurate diagnostic workup of infertile men leading to the choice of the most adequate follow-up for each particular pathological condition. The follow-up of women who have become pregnant as a result of the ART attempt has also to be personalized. This should be done taking into account both the basic data extracted from the patient's file and those derived from the experience gathered during the latest attempt. Last but not least, the individual condition of each couple has to be taken into account when counseling the patients as to the urgency of the actions to be taken to resolve their fertility problem.
Collapse
Affiliation(s)
- Jan Tesarik
- MARGen Clinic, Molecular Assisted Reproduction and Genetics, Granada, Spain
| | | |
Collapse
|
12
|
Pan C, Chen J, Chen Y, Lu Y, Liang X, Xiong B, Lu Y. Mogroside V ameliorates the oxidative stress-induced meiotic defects in porcine oocytes in vitro. Reprod Toxicol 2022; 111:148-157. [PMID: 35597324 DOI: 10.1016/j.reprotox.2022.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 01/18/2023]
Abstract
It has been reported that environmental factors, such as industrial pollution, environmental toxins, environmental hormones, and global warming contribute to the oxidative stress-induced deterioration of oocyte quality and female fertility. However, the prevention or improvement approaches have not been fully elucidated. Here, we explored the mechanism regarding how Mogroside V (MV), a main extract of Siraitia grosvenorii, improves the oxidative stress-induced meiotic defects in porcine oocytes. Our results showed that MV supplementation restores the defective oocyte maturation and cumulus cell expansion caused by H2O2 treatment. We further found that MV supplementation promoted the oocyte cytoplasmic maturation through preventing cortical granules from the aberrant distribution, and drove the nuclear maturation by maintaining the cytoskeleton structure. Notably, our single-cell RNA sequencing data indicated that H2O2-treated oocytes led to the oxidative stress primarily through two pathways 'meiosis' and 'oxidative phosphorylation'. Lastly, we evaluated the effects of MV supplementation on the mitochondrial distribution pattern and membrane potential in H2O2-treated oocytes, revealing that MV supplementation eliminated the excessive ROS induced by the mitochondrial abnormalities and consequently suppressed the apoptosis. In conclusion, our study demonstrates that MV supplementation is an effective approach to ameliorate the oxidative stress-induced meiotic defects via recovering the mitochondrial integrity in porcine oocytes.
Collapse
Affiliation(s)
- Chen Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Jingyue Chen
- State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Ying Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yajuan Lu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, Jiangsu, China
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|