1
|
Woźniak P, Gryta M. Bacterial Contamination of Ultrafiltration Installation Applied to Carwash Wastewater Treatment. MEMBRANES 2025; 15:71. [PMID: 40137023 PMCID: PMC11943496 DOI: 10.3390/membranes15030071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
An ultrafiltration (UF) installation was used to separate the actual wastewater from a car wash. Following these studies, the plant was washed several times; however, severe membrane fouling was observed during the filtration of sterile deionised (DI) water. As a result, the permeate flux decreased by more than 50% after 5 h of the UF process. The source of the fouling was the release of deposits, particularly bacteria, from the surfaces of plant elements such as pipes and pumps. The paper presents the effectiveness of biofilm removal from the surface of the equipment during a cyclically repeated washing process. Chemical washing was carried out using acid solutions and alkaline cleaning solutions containing NaOH (pH = 11.5-12). After installation cleaning, the filtration tests were carried out using DI water as a feed. It was determined how biofouling, which develops under these conditions, reduces permeate flux. Despite 3 h of installation washing, there was a 50% reduction in flux after 10 h of UF. Repeating the installation wash (4 h) resulted in a similar decrease in flux after 4 days of UF. Stabilisation of the flux at a level of 500 LMH was achieved after an additional 5 h of washing, including application of hot (323-333 K) alkaline cleaning solutions. The number of bacteria in the biofilm collected from the surface of the membranes, the pump inlet and the surface of the polyvinyl chloride (PVC) hoses forming the pipeline was also investigated. Despite repeated chemical cleaning, the number of bacteria on the pump and hose surfaces was 50-100 CFU/cm2. Studies were carried out to determine which bacterial species survived the chemical cleaning of the installation. Gram-positive and Gram-negative bacteria were determined, and taxonomic characteristics of the isolated bacteria were identified.
Collapse
Affiliation(s)
| | - Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland;
| |
Collapse
|
2
|
Segervald J, Malyshev D, Öberg R, Zäll E, Jia X, Wågberg T, Andersson M. Ultra-Sensitive Detection of Bacterial Spores via SERS. ACS Sens 2025; 10:1237-1248. [PMID: 39847439 PMCID: PMC11877637 DOI: 10.1021/acssensors.4c03151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/24/2025]
Abstract
Bacterial spores are highly resilient and capable of surviving extreme conditions, making them a persistent threat in contexts such as disease transmission, food safety, and bioterrorism. Their ability to withstand conventional sterilization methods necessitates rapid and accurate detection techniques to effectively mitigate the risks they present. In this study, we introduce a surface-enhanced Raman spectroscopy (SERS) approach for detecting Bacillus thuringiensis spores by targeting calcium dipicolinate acid (CaDPA), a biomarker uniquely associated with bacterial spores. Our method uses probe sonication to disrupt spores, releasing their CaDPA, which is then detected by SERS on drop-dried supernatant mixed with gold nanorods. This simple approach enables the selective detection of CaDPA, distinguishing it from other spore components and background noise. We demonstrate detection of biogenic CaDPA from concentrations as low as 103 spores/mL, with sensitivity reaching beyond CaDPA levels of a single spore. Finally, we show the method's robustness by detecting CaDPA from a realistic sample of fresh milk mixed with spores. These findings highlight the potential of SERS as a sensitive and specific technique for bacterial spore detection, with implications for fields requiring rapid and reliable spore identification.
Collapse
Affiliation(s)
- Jonas Segervald
- Department
of Physics, Umeå University, Umeå SE-901 87, Sweden
| | - Dmitry Malyshev
- Department
of Physics, Umeå University, Umeå SE-901 87, Sweden
| | - Rasmus Öberg
- Department
of Physics, Umeå University, Umeå SE-901 87, Sweden
| | - Erik Zäll
- Department
of Physics, Umeå University, Umeå SE-901 87, Sweden
| | - Xueen Jia
- Department
of Physics, Umeå University, Umeå SE-901 87, Sweden
| | - Thomas Wågberg
- Department
of Physics, Umeå University, Umeå SE-901 87, Sweden
- Wallenberg
Initiative Materials Science for Sustainability, Department of Physics, Umeå University, Umeå SE-901 87, Sweden
| | | |
Collapse
|
3
|
Li N, Siddique A, Liu N, Teng L, Ed-Dra A, Yue M, Li Y. Global Epidemiology and health risks of Bacillus cereus Infections: Special focus on infant foods. Food Res Int 2025; 201:115650. [PMID: 39849755 DOI: 10.1016/j.foodres.2024.115650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/05/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Bacillus cereus is a common pathogen responsible for gastrointestinal and other complicated disorders, yet epidemiological data and public health measures remain scarce. To bridge these gaps, a bilingual search spaning 50 years identified 266 relevant studies on global B. cereus infection, encompassing 6,135 cases. The global mortality rate for B. cereus infection is 0.9 %. Food poisoning cases account for 94.31 % (5786/6135) of the total infections, with a mortality rate of 0.05 %. B. cereus infections were primarily reported in East Asia, Europe, and North America, with frequent studies in eastern and southern China. Rice was recognized as the highest-risk food category for B. cereus-associated food poisoning, with 43 reported incidents. Younger populations, particularly infants and toddlers (<2 years) and school-age children (6-18 years), tend to exhibit more severe symptoms. These symptoms include fulminant liver failure, rhabdomyolysis, and metabolic acidosis. The outcomes of severe cases are associated with specific toxin types, with cereulide-producing strains linked to complicated clinical disorders and outcomes. These findings highlight the need for targeted epidemiological surveillance and public health interventions to mitigate B. cereus-associated infections.
Collapse
Affiliation(s)
- Na Li
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China.
| | - Abubakar Siddique
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China.
| | - Ningjun Liu
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 310058, China.
| | - Lin Teng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Abdelaziz Ed-Dra
- Laboratory of Engineering and Applied Technologies, Higher School of Technology, M'ghila Campus, Sultan Moulay Slimane University, BP: 591, Beni Mellal 23000, Morocco.
| | - Min Yue
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 310058, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 572000, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Yan Li
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 310058, China.
| |
Collapse
|
4
|
Sabur A, Khan A, Borphukan B, Razzak A, Salimullah M, Khatun M. The Unique Capability of Endolysin to Tackle Antibiotic Resistance: Cracking the Barrier. J Xenobiot 2025; 15:19. [PMID: 39997362 PMCID: PMC11856723 DOI: 10.3390/jox15010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 02/26/2025] Open
Abstract
The lack of new antibacterial medicines and the rapid rise in bacterial resistance to antibiotics pose a major threat to individuals and healthcare systems. Despite the availability of various antibiotics, bacterial resistance has emerged for almost every antibiotic discovered to date. The increasing prevalence of multidrug-resistant bacterial strains has rendered some infections nearly untreatable, posing severe challenges to health care. Thus, the development of alternatives to conventional antibiotics is critical for the treatment of both humans and food-producing animals. Endolysins, which are peptidoglycan hydrolases encoded by bacteriophages, represent a promising new class of antimicrobials. Preliminary research suggests that endolysins are more effective against Gram-positive bacteria than Gram-negative bacteria when administered exogenously, although they can still damage the cell wall of Gram-negative bacteria. Numerous endolysins have a modular domain structure that divides their binding and catalytic activity into distinct subunits, which helps maximize their bioengineering and potential drug development. Endolysins and endolysin-derived antimicrobials offer several advantages as antibiotic substitutes. They have a unique mechanism of action and efficacy against bacterial persisters (without requiring an active host metabolism); subsequently, they target both Gram-positive and Gram-negative bacteria (including antibiotic-resistant strains), and mycobacteria. Furthermore, there has been limited evidence of endolysin being resistant. Because these enzymes target highly conserved links, resistance may develop more slowly compared to traditional antibiotics. This review provides an overview and insight of the potential applications of endolysins as novel antimicrobials.
Collapse
Affiliation(s)
- Abdus Sabur
- Animal Biotechnology Division, National Institute of Biotechnology, Savar, Dhaka 1349, Bangladesh;
| | - Angkan Khan
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh, Mohakhali, Dhaka 1212, Bangladesh;
| | - B. Borphukan
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA;
| | - Abdur Razzak
- Bioassay Department, Eurofins Biopharma, Columbia, MO 65201, USA;
| | - M. Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology, Savar, Dhaka 1349, Bangladesh;
| | - Muslima Khatun
- Molecular Biotechnology Division, National Institute of Biotechnology, Savar, Dhaka 1349, Bangladesh;
| |
Collapse
|
5
|
Kim S, Mah JH. Variation in heat resistance and biofilm formation of Bacillus cereus spores in various fermented soybean foods. Int J Food Microbiol 2025; 427:110939. [PMID: 39437681 DOI: 10.1016/j.ijfoodmicro.2024.110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
This study investigated the heat resistance of Bacillus cereus spores (as well as spores in intact biofilm) in two types of Korean fermented soybean foods and presumed the potential key parameters (physicochemical and nutritional properties) associated with their heat resistance. For example, the D100°C-values of B. cereus ATCC 10987 and CH3 spores with strong heat resistance and prolific biofilm-forming capability were compared in various Jjigae-type (Cheonggukjang jjigae, Doenjang jjigae, and Gochujang jjigae) and Jang-type (Cheonggukjang, Doenjang, and Gochujang) foods commonly consumed in Korea. The D100°C-values of planktonic spores were significantly different depending on the type of food, that is, Jang and Jjigae. Compared with Jjigae-type foods, a higher heat resistance of B. cereus spores was found in Jang-type foods (particularly Doenjang and Gochujang) with low water activity and high salinity. In Jjigae-type foods, spore heat resistance showed a positive correlation with the pH of Jjigaes, indicating that an acidic environment weakens the spores. A negative correlation between the total fat content and spore heat resistance was found in Jjigae-type foods but not in Jang-type foods. Meanwhile, regarding the heat resistance of B. cereus spores in intact biofilm, the D100°C-values were significantly higher (up to 6.5-fold) than those of planktonic spores in all Jjigae-type foods. The slightly acidic pH and amount of carbohydrates are likely related to the large formation of extracellular polymeric substances and strong heat resistance of B. cereus spores in biofilm. This study may provide a comprehensive understanding of the relationship between the key parameters of foods and heat resistance of B. cereus spores with or without intact biofilm and methods to control their risks in different types of fermented soybean foods.
Collapse
Affiliation(s)
- Sohyeon Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Jae-Hyung Mah
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea.
| |
Collapse
|
6
|
Tang X, Zhang D, Malakar PK. Open Access Bacillus cereus Cocktail Secondary Growth Model for the Food Industry. Foods 2024; 13:3382. [PMID: 39517166 PMCID: PMC11545828 DOI: 10.3390/foods13213382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
A cost-effective algorithm is presented, using a virtual dataset of growth rates from a cocktail of Bacillus cereus strains, for developing an open access, extended-range secondary growth model. Extended-range growth models can span the range of processing conditions typically used in food manufacturing and are therefore more relevant for industry. The open access extended-range secondary growth model for a cocktail of B. cereus strains was created using publicly available data, and the methodology can be adapted for modelling growth of other pathogens. An extended-range model can help manage B. cereus hazards in novel food categories with non-traditional formulations as estimations of B. cereus risks in these foods become more precise. This open access model, however, needs to be validated using data from B. cereus strain cocktails isolated from production facilities. Once validated, these independent factor models are valuable tools, in a pathogen decision support platform, which are tuned to local production environments. Such a platform can address the needs of current and future food product portfolios, effectively mitigating risks associated with B. cereus and other relevant pathogens.
Collapse
Affiliation(s)
- Xiaoyang Tang
- Central Research Institute, Masterkong Holding, Shanghai 201103, China; (X.T.)
- Shanghai Kangshi Food Science and Technology Co., Ltd., Shanghai 201103, China
| | - Dingwu Zhang
- Central Research Institute, Masterkong Holding, Shanghai 201103, China; (X.T.)
- Shanghai Kangshi Food Science and Technology Co., Ltd., Shanghai 201103, China
| | - Pradeep K. Malakar
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| |
Collapse
|
7
|
Jeyaraman M, Eltzov E. Enhancing food safety: A low-cost biosensor for Bacillus licheniformis detection in food products. Talanta 2024; 276:126152. [PMID: 38718642 DOI: 10.1016/j.talanta.2024.126152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 06/14/2024]
Abstract
To enhance food safety, the need for swift and precise detection of B. licheniformis, a bacterium prevalent in various environments, including soil and food products, is paramount. This study presents an innovative and cost-effective bioassay designed to specifically identify the foodborne pathogen, B. licheniformis, utilizing a colorimetric signal approach. The biosensor, featuring a 3D-printed architecture, incorporates a casein-based liquid-proof gelatine film, selectively liquefying in response to the caseinolytic/proteolytic activity of external enzymes from the pathogen. As the sample liquefies, it progresses through a color layer, causing the migration of dye to an absorbent layer, resulting in a distinct positive signal. This bioassay exhibits exceptional sensitivity, detecting concentrations as low as 1 CFU/mL within a 9.3-h assay duration. Notably, this cost-efficient bioassay outperforms conventional methods in terms of efficacy and cost-effectiveness, offering a straightforward solution for promptly detecting B. licheniformis in food samples.
Collapse
Affiliation(s)
- Mareeswaran Jeyaraman
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Center, Agricultural Research Organization, Rishon LeZion, 7505101, Israel; Agro-Nanotechnology and Advanced Materials Research Center, Volcani Institute, Agricultural Research Organization, Rishon LeZion, 7505101, Israel
| | - Evgeni Eltzov
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Center, Agricultural Research Organization, Rishon LeZion, 7505101, Israel; Agro-Nanotechnology and Advanced Materials Research Center, Volcani Institute, Agricultural Research Organization, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
8
|
Ang B, Jirapanjawat T, Tay KP, Ashtiani D, Greening C, Tuck KL, Neild A, Cadarso VJ. Rapid Concentration and Detection of Bacteria in Milk Using a Microfluidic Surface Acoustic Wave Activated Nanosieve. ACS Sens 2024; 9:3105-3114. [PMID: 38753893 DOI: 10.1021/acssensors.4c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Rapid detection of microbes is a key feature for monitoring food quality. Unfortunately, current detection systems rely on labor-intensive and time-consuming lab-based processes that are not suitable for point-of-interest applications and typically require several days before results are available. Here, we demonstrate a microfluidic system capable of rapidly concentrating, fluorescent staining, and detecting bacteria in unprocessed complex biological media such as milk. This concentration is done using a surface acoustic wave-driven microfluidic device which operates based on the Bjerknes force, a force generated on one particle by another in its close proximity. We exploit this effect by exciting a tightly packed bed of 50 μm polystyrene microparticles temporarily with surface acoustic waves within a microfluidic device to capture and release bacterial cells on demand. The bacterial cells are fluorescently stained during capture and then detected using fluorescence microscopy upon release. This device offers a high capturing efficiency (>80%) and a 34 Colony Forming Units (CFU)/mL limit of detection, which is 1 order of magnitude below that of plate counting at 30 CFU per standard 100 μL plate (or 300 CFU/mL). This can be attained in just 1 h of processing at 10 μL/min. With this system, we demonstrate that bacterial detection from extremely low concentration samples down to the order of ∼10 CFU/mL is possible without requiring any additional external pre- or postprocessing.
Collapse
Affiliation(s)
- Bryan Ang
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3168, Victoria, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton 3168, Victoria, Australia
| | - Thanavit Jirapanjawat
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton 3168, Victoria, Australia
| | - Khai Ping Tay
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3168, Victoria, Australia
| | | | - Chris Greening
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton 3168, Victoria, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton 3168, Victoria, Australia
| | - Kellie L Tuck
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | - Adrian Neild
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3168, Victoria, Australia
| | - Victor J Cadarso
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3168, Victoria, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton 3168, Victoria, Australia
| |
Collapse
|
9
|
Manceau M, Farre C, Lagarde F, Mathey R, Buhot A, Vidic J, Léguillier V, Hou Y, Chaix C. Investigation of the Affinity of Aptamers for Bacteria by Surface Plasmon Resonance Imaging Using Nanosomes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29645-29656. [PMID: 38809175 DOI: 10.1021/acsami.4c02355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The cell-SELEX method enables efficient selection of aptamers that bind whole bacterial cells. However, after selection, it is difficult to determine their binding affinities using common screening methods because of the large size of the bacteria. Here we propose a simple surface plasmon resonance imaging method (SPRi) for aptamer characterization using bacterial membrane vesicles, called nanosomes, instead of whole cells. Nanosomes were obtained from membrane fragments after mechanical cell disruption in order to preserve the external surface epitopes of the bacterium used for their production. The study was conducted on Bacillus cereus (B. cereus), a Gram-positive bacterium commonly found in soil, rice, vegetables, and dairy products. Four aptamers and one negative control were initially grafted onto a biochip. The binding of B. cereus cells and nanosomes to immobilized aptamers was then compared. The use of nanosomes instead of cells provided a 30-fold amplification of the SPRi signal, thus allowing the selection of aptamers with higher affinities. Aptamer SP15 was found to be the most sensitive and selective for B. cereus ATCC14579 nanosomes. It was then truncated into three new sequences (SP15M, SP15S1, and SP15S2) to reduce its size while preserving the binding site. Fitting the results of the SPRi signal for B. cereus nanosomes showed a similar trend for SP15 and SP15M, and a slightly higher apparent association rate constant kon for SP15S2, which is the truncation with a high probability of a G-quadruplex structure. These observations were confirmed on nanosomes from B. cereus ATCC14579 grown in milk and from the clinical strain B. cereus J066. The developed method was validated using fluorescence microscopy on whole B. cereus cells and the SP15M aptamer labeled with a rhodamine. This study showed that nanosomes can successfully mimic the bacterial membrane with great potential for facilitating the screening of specific ligands for bacteria.
Collapse
Affiliation(s)
- Mathilde Manceau
- Université Claude Bernard Lyon 1, CNRS, ISA, UMR5280, 69100 Villeurbanne, France
| | - Carole Farre
- Université Claude Bernard Lyon 1, CNRS, ISA, UMR5280, 69100 Villeurbanne, France
| | - Florence Lagarde
- Université Claude Bernard Lyon 1, CNRS, ISA, UMR5280, 69100 Villeurbanne, France
| | - Raphaël Mathey
- Université Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000 Grenoble, France
| | - Arnaud Buhot
- Université Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000 Grenoble, France
| | - Jasmina Vidic
- Université Paris-Saclay, INRAE, AgroParisTech, UMR 1319, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Vincent Léguillier
- Université Paris-Saclay, INRAE, AgroParisTech, UMR 1319, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Yanxia Hou
- Université Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000 Grenoble, France
| | - Carole Chaix
- Université Claude Bernard Lyon 1, CNRS, ISA, UMR5280, 69100 Villeurbanne, France
| |
Collapse
|
10
|
Li X, Li Y, Zhu K, Zou K, Lei Y, Liu C, Wei H, Zhang Z. Reuterin formed by poultry-derived Limosilactobacillus reuteri HLRE05 inhibits the growth of enterotoxigenic Bacillus cereus in in vitro and fermented milk. FOOD BIOSCI 2024; 59:104078. [DOI: 10.1016/j.fbio.2024.104078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
11
|
Léguillier V, Heddi B, Vidic J. Recent Advances in Aptamer-Based Biosensors for Bacterial Detection. BIOSENSORS 2024; 14:210. [PMID: 38785684 PMCID: PMC11117931 DOI: 10.3390/bios14050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
The rapid and sensitive detection of pathogenic bacteria is becoming increasingly important for the timely prevention of contamination and the treatment of infections. Biosensors based on nucleic acid aptamers, integrated with optical, electrochemical, and mass-sensitive analytical techniques, have garnered intense interest because of their versatility, cost-efficiency, and ability to exhibit high affinity and specificity in binding bacterial biomarkers, toxins, and whole cells. This review highlights the development of aptamers, their structural characterization, and the chemical modifications enabling optimized recognition properties and enhanced stability in complex biological matrices. Furthermore, recent examples of aptasensors for the detection of bacterial cells, biomarkers, and toxins are discussed. Finally, we explore the barriers to and discuss perspectives on the application of aptamer-based bacterial detection.
Collapse
Affiliation(s)
- Vincent Léguillier
- INRAE, AgroParisTech, Micalis Institut, Université Paris-Saclay, UMR 1319, 78350 Jouy-en-Josas, France;
- ENS Paris-Saclay, Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR8113 CNRS, 91190 Gif-sur-Yvette, France
| | - Brahim Heddi
- ENS Paris-Saclay, Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR8113 CNRS, 91190 Gif-sur-Yvette, France
| | - Jasmina Vidic
- INRAE, AgroParisTech, Micalis Institut, Université Paris-Saclay, UMR 1319, 78350 Jouy-en-Josas, France;
| |
Collapse
|
12
|
Jannatin M, Yang TL, Su YY, Mai RT, Chen YC. Europium Ion-Based Magnetic-Trapping and Fluorescence-Sensing Method for Detection of Pathogenic Bacteria. Anal Chem 2024; 96:5669-5676. [PMID: 38527906 PMCID: PMC11007678 DOI: 10.1021/acs.analchem.4c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Europium ions (Eu3+) have been utilized as a fluorescence-sensing probe for a variety of analytes, including tetracycline (TC). When Eu3+ is chelated with TC, its fluorescence can be greatly enhanced. Moreover, Eu3+ possesses 6 unpaired electrons in its f orbital, which makes it paramagnetic. Being a hard acid, Eu3+ can chelate with hard bases, such as oxygen-containing functional groups (e.g., phosphates and carboxylates), present on the cell surface of pathogenic bacteria. Due to these properties, in this study, Eu3+ was explored as a magnetic-trapping and sensing probe against pathogenic bacteria present in complex samples. Eu3+ was used as a magnetic probe to trap bacteria such as Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Acinetobacter baumannii, Bacillus cereus, and Pseudomonas aeruginosa. The addition of TC facilitated the easy detection of magnetic Eu3+-bacterium conjugates through fluorescence spectroscopy, with a detection limit of approximately ∼104 CFU mL-1. Additionally, matrix-assisted laser desorption/ionization mass spectrometry was employed to differentiate bacteria tapped by our magnetic probes.
Collapse
Affiliation(s)
- Miftakhul Jannatin
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300, Taiwan
| | - Tzu-Ling Yang
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300, Taiwan
| | - Yi-Yuan Su
- Department
of Biological Science and Technology, National
Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Ru-Tsun Mai
- Department
of Biological Science and Technology, National
Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yu-Chie Chen
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300, Taiwan
- International
College of Semiconductor Technology, National
Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
13
|
Agron DS, Kim WS. 3D Printing Technology: Role in Safeguarding Food Security. Anal Chem 2024; 96:4333-4342. [PMID: 38459927 PMCID: PMC10955516 DOI: 10.1021/acs.analchem.3c05190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/11/2024]
Abstract
The rising threats to food security include several factors, such as population growth, low agricultural investment, and poor distribution systems. Consequently, food insecurity results from a confluence of issues, including diseases, processing limitations, and distribution deficiencies. Food insecurity usually occurs in vulnerable areas where certain technologies and traditional food safety testing are not a viable solution for foodborne disease detection. In this regard, 3D printing technologies and 3D printed sensors open the platform to produce portable, accurate, and low-cost sensors that address the gaps and challenges in food security. In this paper, we discuss the perspective role of 3D printed sensors in food security in terms of food safety and food quality monitoring to provide reliable access to nutritious, affordable food. In each section, we highlight the advantages of 3D printing technology in terms of cost-effectiveness, accuracy, accessibility, and reproducibility compared to traditional manufacturing methodologies. Recent developments in robotic technologies for mechanization, such as food handling with soft grippers, are also discussed. Lastly, we delve into the applications of advanced 3D printing technologies in agricultural monitoring, particularly the future of plant wearables, environmental sensing, and overall plant health monitoring.
Collapse
Affiliation(s)
- Danielle
Jaye S. Agron
- Additive
Manufacturing Laboratory, School of Mechatronic Systems Engineering, Simon Fraser University, Burnaby, B.C. V3T 0N1, Canada
| | - Woo Soo Kim
- Additive
Manufacturing Laboratory, School of Mechatronic Systems Engineering, Simon Fraser University, Burnaby, B.C. V3T 0N1, Canada
| |
Collapse
|
14
|
Sundaresan A, Cheong I. Elucidating Bacterial Spore Dynamics through Lanthanide-Enhanced Live Imaging. ACS Sens 2024; 9:789-798. [PMID: 38221734 DOI: 10.1021/acssensors.3c02083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Identifying and distinguishing dormant and active bacterial spores are vital for biosecurity, food safety, and space exploration. Yet, there is a lack of simple, quick, and nondestructive methods to achieve this. The common Schaeffer-Fulton method is both sample-destructive and requires significant operator involvement. In this study, we employed lanthanide-beta-diketonate complexes to directly observe both dormant and germinated single spores. Staining is instantaneous and requires minimal sample processing. The complex stains areas outside the core of dormant spores, leaving the core hollow and nonfluorescent. However, upon germination, the complex enters the core, making it brightly fluorescent. This difference was noted in five bacterial species including Bacillus, Clostridium, and Clostridioides. Various lanthanides and beta-diketonates can be mixed to form a range of spore-visualizing complexes. Due to their low toxicity, these complexes allow for live imaging of single germinating spores. We demonstrate low-cost imaging using a USB microscope as well as imaging of spores in milk matrices. This method provides a valuable tool for studying bacterial spores.
Collapse
Affiliation(s)
- Ajitha Sundaresan
- Temasek Life Sciences Laboratory, National University of Singapore, 117604 Singapore
- Department of Biological Sciences, National University of Singapore, 117558 Singapore
| | - Ian Cheong
- Temasek Life Sciences Laboratory, National University of Singapore, 117604 Singapore
- Department of Biological Sciences, National University of Singapore, 117558 Singapore
| |
Collapse
|
15
|
Novakovic Z, Khalife M, Costache V, Camacho MJ, Cardoso S, Martins V, Gadjanski I, Radovic M, Vidic J. Rapid Detection and Identification of Vancomycin-Sensitive Bacteria Using an Electrochemical Apta-Sensor. ACS OMEGA 2024; 9:2841-2849. [PMID: 38250355 PMCID: PMC10795129 DOI: 10.1021/acsomega.3c08219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/23/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
In order to combat the complex and diverse infections caused by bacteria, it is essential to develop efficient diagnostic tools. Current techniques for bacterial detection rely on laborious multistep procedures, with high costs and extended time of analysis. To overcome these limitations, we propose here a novel portable electrochemical biosensor for the rapid detection and identification of Gram-positive bacteria that leverages the recognition capabilities of vancomycin and aptamers. A vancomycin-modified screen-printed carbon electrode was used to selectively capture Gram-positive bacteria susceptible to this antibiotic. Electrochemical impedance spectroscopy and scanning electron microscopy demonstrated that capture was achieved in 10 min, with a limit of detection of only 2 CFU/mL. We then tested the device's potential for aptamer-based bacterial identification using Staphylococcus aureus and Bacillus cereus as the test strains. Specifically, electrodes with captured bacteria were exposed to species-specific aptamers, and the resulting changes in current intensity were analyzed using differential pulse voltammetry. When used directly in untreated milk or serum, the system was able to successfully identify a small amount of S. aureus and B. cereus (100 CFU/mL) in less than 45 min. This novel biosensor has the potential to serve as an invaluable tool that could be used, even by inexperienced staff, in a broad range of settings including clinical diagnostics, food safety analysis, environmental monitoring, and security applications.
Collapse
Affiliation(s)
- Zorica Novakovic
- University of Novi Sad, BioSense Institute, 21000 Novi Sad, Serbia
| | - Majd Khalife
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, UMR 1319, 78350 Jouy-en-Josas, France
| | - Vlad Costache
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, UMR 1319, 78350 Jouy-en-Josas, France
- MIMA2 Imaging Core Facility, Microscopie et Imagerie des Microorganismes, Animaux et Aliments, INRAE, 78350 Jouy-en-Josas, France
| | - Maria Joao Camacho
- INESC Microsistemas e Nanotecnologias Rua Alves Redol, 1000-049 Lisbon, Portugal
| | - Susana Cardoso
- INESC Microsistemas e Nanotecnologias Rua Alves Redol, 1000-049 Lisbon, Portugal
| | - Veronica Martins
- INESC Microsistemas e Nanotecnologias Rua Alves Redol, 1000-049 Lisbon, Portugal
| | - Ivana Gadjanski
- University of Novi Sad, BioSense Institute, 21000 Novi Sad, Serbia
| | - Marko Radovic
- University of Novi Sad, BioSense Institute, 21000 Novi Sad, Serbia
| | - Jasmina Vidic
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, UMR 1319, 78350 Jouy-en-Josas, France
| |
Collapse
|
16
|
Su Z, Liu G, Li C, Liu X, Guo Q, Wang P, Dong L, Lu X, Zhao W, Zhang X, Qu Y, Zhang J, Mo S, Li S, Ma P. Establishment and application of quantitative detection of Bacillus velezensis HMB26553, a biocontrol agent against cotton damping-off caused by Rhizoctonia. Biotechnol J 2024; 19:e2300412. [PMID: 38375560 DOI: 10.1002/biot.202300412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024]
Abstract
A highly sensitive quantitative PCR (qPCR) method was developed for detection and quantification of Bacillus velezensis HMB26553 in cotton rhizosphere. The study aimed to develop a quantitative detection method for the strain HMB26553, and explore the relationship between its colonization of the cotton rhizosphere and its control effect. The whole genome sequence of strain HMB26553 was obtained by genome sequencing and a unique specific sequence pB-gene0026 on plasmid plaBV2 was identified by using high-throughput alignment against NCBI. Plasmid plaBV2 could be stably genetically inherited. Based on this sequence, specific primers for amplifying 106 bp and a minor groove binder (MGB) TaqMan probe for enhancing sensitivity were designed. The copy number of plaBV2 in strain HMB26553, which was 2, was confirmed by internal reference primers and the MGB TaqMan probe based on housekeeping gene gyrB. The established detection technique based on these primers and probes had high specificity and sensitivity compared to traditional plate counting method, with a detection limit of 1.5 copy genome. Using this method, the study discovered a likely correlation between the quantity of colonization in cotton rhizosphere and efficacy against cotton damping-off caused by Rhizoctonia after seed soaking and irrigation with strain HMB26553. Thus, this method provides scientific support for the rational application of strain HMB26553 in the future.
Collapse
Affiliation(s)
- Zhenhe Su
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| | - Gaoge Liu
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| | - Cong Li
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| | - Xiaomeng Liu
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| | - Qinggang Guo
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| | - Peipei Wang
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| | - Lihong Dong
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| | - Xiuyun Lu
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| | - Weisong Zhao
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| | - Xiaoyun Zhang
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| | - Yuanghang Qu
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| | - Jiaqi Zhang
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| | - Shaojing Mo
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| | - Shezeng Li
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| | - Ping Ma
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, China
| |
Collapse
|
17
|
Patil AVP, Yang PF, Yang CY, Gaur MS, Wu CC. A Critical Review on Detection of Foodborne Pathogens Using Electrochemical Biosensors. Crit Rev Biomed Eng 2024; 52:17-40. [PMID: 38523439 DOI: 10.1615/critrevbiomedeng.2023049469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
An outbreak of foodborne pathogens would cause severe consequences. Detecting and diagnosing foodborne diseases is crucial for food safety, and it is increasingly important to develop fast, sensitive, and cost-effective methods for detecting foodborne pathogens. In contrast to traditional methods, such as medium-based culture, nucleic acid amplification test, and enzyme-linked immunosorbent assay, electrochemical biosensors possess the advantages of simplicity, rapidity, high sensitivity, miniaturization, and low cost, making them ideal for developing pathogen-sensing devices. The biorecognition layer, consisting of recognition elements, such as aptamers, antibodies and bacteriophages, and other biomolecules or polymers, is the most critical component to determine the selectivity, specificity, reproducibility, and lifetime of a biosensor when detecting pathogens in a biosample. Furthermore, nanomaterials have been frequently used to improve electrochemical biosensors for sensitively detecting foodborne pathogens due to their high conductivity, surface-to-volume ratio, and electrocatalytic activity. In this review, we survey the characteristics of biorecognition elements and nanomaterials in constructing electrochemical biosensors applicable for detecting foodborne pathogens during the past five years. As well as the challenges and opportunities of electrochemical biosensors in the application of foodborne pathogen detection are discussed.
Collapse
Affiliation(s)
- Avinash V Police Patil
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan R.O.C
| | - Ping-Feng Yang
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan R.O.C
| | - Chiou-Ying Yang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan R.O.C
| | - M S Gaur
- Department of Physics, Hindustan College of Science and Technology, Farah, Mathura, 281122 U.P., India
| | | |
Collapse
|
18
|
Dos Santos VHB, de Azevedo Ximenes ECP, de Souza RAF, da Silva RPC, da Conceição Silva M, de Andrade LVM, de Souza Oliveira VM, de Melo-Júnior MR, Costa VMA, de Barros Lorena VM, de Araújo HDA, de Lima Aires A, de Azevedo Albuquerque MCP. Effects of the probiotic Bacillus cereus GM on experimental schistosomiasis mansoni. Parasitol Res 2023; 123:72. [PMID: 38148420 DOI: 10.1007/s00436-023-08090-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/09/2023] [Indexed: 12/28/2023]
Abstract
Probiotics contribute to the integrity of the intestinal mucosa and preventing dysbiosis caused by opportunistic pathogens, such as intestinal helminths. Bacillus cereus GM obtained from Biovicerin® was cultured to obtain spores for in vivo evaluation on experimental schistosomiasis. The assay was performed for 90 days, where all animals were infected with 50 cercariae of Schistosoma mansoni on the 15th day. Three experimental groups were formed, as follows: G1-saline solution from the 1st until the 90th day; G2-B. cereus GM (105 spores in 300 μL of sterile saline) from the 1st until the 90th day; and G3-B. cereus GM 35th day (onset of oviposition) until the 90th day. G2 showed a significant reduction of 43.4% of total worms, 48.8% of female worms and 42.5% of eggs in the liver tissue. In G3, the reduction was 25.2%, 29.1%, and 44% of the total number of worms, female worms, and eggs in the liver tissue, respectively. G2 and G3 showed a 25% (p < 0.001) and 22% (p < 0.001) reduction in AST levels, respectively, but ALT levels did not change. ALP levels were reduced by 23% (p < 0.001) in the G2 group, but not in the G3. The average volume of granulomas reduced (p < 0.0001) 65.2% and 46.3% in the liver tissue and 83.0% and 53.2% in the intestine, respectively, in groups G2 and G3. Th1 profile cytokine (IFN-γ, TNF-α, and IL-6) and IL-17 were significantly increased (p < 0.001) stimulated with B. cereus GM in groups G2 and G3. IL-4 showed significant values when the stimulus was mediated by ConA. By modulating the immune response, B. cereus GM reduced the burden of worms, improved some markers of liver function, and reduced the granulomatous inflammatory reaction in mice infected with S. mansoni, especially when administered before infection.
Collapse
Affiliation(s)
- Victor Hugo Barbosa Dos Santos
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Eulália Camelo Pessoa de Azevedo Ximenes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Renan Andrade Fernandes de Souza
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | | | - Valdenia Maria de Souza Oliveira
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Vlaudia Maria Assis Costa
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Patologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Hallysson Douglas Andrade de Araújo
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Laboratório de Biotecnologia e Fármacos e Laboratório de Tecnologia de Biomateriais - Centro Acadêmico de Vitória de Santo Antão, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - André de Lima Aires
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Centro de Ciências Médicas, Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Mônica Camelo Pessoa de Azevedo Albuquerque
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil.
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil.
- Centro de Ciências Médicas, Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
19
|
Mukherjee R, Vidic J, Auger S, Wen HC, Pandey RP, Chang CM. Exploring Disease Management and Control through Pathogen Diagnostics and One Health Initiative: A Concise Review. Antibiotics (Basel) 2023; 13:17. [PMID: 38247576 PMCID: PMC10812768 DOI: 10.3390/antibiotics13010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
The "One Health" initiative is a critical strategy that recognizes the interconnectedness between human, animal, and environmental health in the spread and containment of infectious pathogens. With the ease of global transportation, transboundary disease outbreaks pose a significant threat to food safety and security, endangering public health and having a negative economic impact. Traditional diagnostic techniques based on genotypic and phenotypic analyses are expensive, time-consuming, and cannot be translated into point-of-care tools, hindering effective disease management and control. However, with advancements in molecular methods, biosensors, and new generation sequencing, rapid and reliable diagnostics are now available. This review provides a comprehensive insight into emergent viral and bacterial pathogens and antimicrobial resistance, highlighting the importance of "One Health" in connecting detection and effective treatment. By emphasizing the symbiotic relationship between human and animal health, this paper underscores the critical role of "One Health" initiatives in preventing and controlling infectious diseases.
Collapse
Affiliation(s)
- Riya Mukherjee
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan;
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, Taoyuan 33302, Taiwan
| | - Jasmina Vidic
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (J.V.); (S.A.)
| | - Sandrine Auger
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (J.V.); (S.A.)
| | - Hsiao-Chuan Wen
- Department of Pet Healthcare, Yuanpei University, Hsinchu 300, Taiwan;
| | - Ramendra Pati Pandey
- School of Health Sciences and Technology (SoHST), UPES, Dehradun 248007, Uttarakhand, India
| | - Chung-Ming Chang
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 33302, Taiwan
- Laboratory Animal Center, Chang Gung University, No. 259, Wenhua 1st Road, Guishan Dist., Taoyuan 33302, Taiwan
| |
Collapse
|
20
|
Jandová M, Fišerová M, Paterová P, Cacková L, Měřička P, Malý J, Kacerovský M, Kovaříková E, Strohalm J, Demnerová K, Kadavá J, Sýkorová H, Hyšpler R, Čížková D, Bezrouk A, Houška M. High-Pressure Inactivation of Bacillus cereus in Human Breast Milk. Foods 2023; 12:4245. [PMID: 38231674 DOI: 10.3390/foods12234245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
Although Holder pasteurization is the recommended method for processing breast milk, it does affect some of its nutritional and biological properties and is ineffective at inactivating spores. The aim of this study was to find and validate an alternative methodology for processing breast milk to increase its availability for newborn babies and reduce the financial loss associated with discarding milk that has become microbiologically positive. We prepared two series of breast milk samples inoculated with the Bacillus cereus (B. cereus) strain to verify the effectiveness of two high-pressure treatments: (1) 350 MPa/5 min/38 °C in four cycles and (2) cumulative pressure of 350 MPa/20 min/38 °C. We found that the use of pressure in cycles was statistically more effective than cumulative pressure. It reduced the number of spores by three to four orders of magnitude. We verified that the method was reproducible. The routine use of this method could lead to an increased availability of milk for newborn babies, and at the same time, reduce the amount of wasted milk. In addition, high-pressure treatment preserves the nutritional quality of milk.
Collapse
Affiliation(s)
- Miroslava Jandová
- Tissue Bank, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic
| | - Michaela Fišerová
- Tissue Bank, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic
| | - Pavla Paterová
- Department of Clinical Microbiology, University Hospital and Faculty of Medicine in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| | - Lucie Cacková
- Department of Clinical Microbiology, University Hospital and Faculty of Medicine in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| | - Pavel Měřička
- Tissue Bank, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic
| | - Jan Malý
- Department of Pediatrics, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic
| | - Marian Kacerovský
- Biomedical Research Center, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic
| | | | - Jan Strohalm
- Food Research Institute Prague, 102 00 Prague, Czech Republic
| | - Kateřina Demnerová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Jana Kadavá
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Hana Sýkorová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Radomír Hyšpler
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic
| | - Dana Čížková
- Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic
| | - Aleš Bezrouk
- Department of Medical Biophysics, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic
| | - Milan Houška
- Food Research Institute Prague, 102 00 Prague, Czech Republic
| |
Collapse
|
21
|
Malek F. Flow of spore-forming bacteria between suppliers of dairy powders and users in some developing countries: challenges and perspectives. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2132-2142. [PMID: 37273561 PMCID: PMC10232714 DOI: 10.1007/s13197-022-05495-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/07/2022] [Accepted: 05/19/2022] [Indexed: 06/06/2023]
Abstract
Abstract Spore-forming bacteria are common contaminants of milk powder and processing lines and a major concern for the dairy industry. This dairy-associated microflora was studied extensively and well characterized in developed countries (exporters of milk powder), compared to developing countries (importers). Thereby, the quality issues affecting dairy powders and derived products are not fully controlled in developing countries. That is the case in Algeria, where recombined or reconstituted pasteurized milk is of low quality, reduced shelf-life, and the related dairies faced recurrent contaminations due to spores and biofilms. The transfer of spore-forming bacteria from exporters of dairy powders to importers in developing countries is an interesting topic, not thoroughly investigated. In addition, milk powder-based products are growing worldwide and their attributes, processes and technologies need to be better understood and controlled. This review analyzes issues affecting milk powder quality, based on few studies from developing countries in comparison with current knowledge, and emphasis on the case in Algeria. It provides information on how spore-forming bacteria and their biofilms affect the quality and shelf-life of recombined pasteurized milk produced in Algeria and compromise hygiene conditions in local dairy plants. Challenges and perspectives for better management of spore transfer from exporters of dairy powders to importers in developing countries are thereby outlined. Highlights The presence of spore-forming bacteria in milk powder is a serious safety issue.Spores are not well known, characterized and controlled in importers from developing countries.Spores cause recurrent contamination of pasteurized milk and biofilm issues in Algerian dairies.Challenges are how to reduce the flow of spores in milk powder trade.Perspectives on identification targeting predominant spores and improvement of biofilm removal.
Collapse
Affiliation(s)
- Fadila Malek
- Department of Biology, Faculty SNV-STU, University of Tlemcen, 13000 Tlemcen, Algeria
| |
Collapse
|
22
|
Rizzotto F, Marin M, Péchoux C, Auger S, Vidic J. Colorimetric aptasensor for detection of Bacillus cytotoxicus spores in milk and ready-to-use food. Heliyon 2023; 9:e17562. [PMID: 37449120 PMCID: PMC10336431 DOI: 10.1016/j.heliyon.2023.e17562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/09/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
The high incidence of foodborne diseases caused by pathogenic bacteria raises concerns worldwide and imposes considerable public healthcare challenges. This is especially observed with dormant spores of Bacilli, which can often survive treatments used by the food industry to kill growing bacteria. The early and rapid detection of bacterial spores is essential to ensure food safety. Commercial availability of such a test will present a high potential for food sector. We present a point-of-need colorimetric assay for detection of Bacillus cytotoxicus spores in food. The detection principle is based on spore-enhanced peroxidase-like catalytic activity of gold nanoparticles. The sensing platform consists of a microtube containing gold nanoparticles (AuNPs), and magnetic particles (MPs), both conjugated with specific aptamer BAS6R that recognize B. cytotoxicus spores. Upon the addition of the sample, spores were determined as present by the enhanced color change of the solution, due to the oxidation of tetramethylbenidine (TMB) with H2O2. The assay was evaluated by the naked eye (on/off) and quantitatively with use of a spectrophotometer. BAS6R@AuNPs aptasensor coupled to BAS6R@MPs proved to be highly sensitive, achieving the naked-eye limit of detection as low as 102 cfu/mL in water and milk, and 104 cfu/mL in mashed potatoes. Moreover, discrimination between spores of B. cytotoxicus and B. subtilis as well as bacterial vegetative cells was achieved in contaminated food samples, providing a good selectivity. This work provides a promising proof of concept for the development of instrument-free, low-cost and rapid assay for Bacillus cytotoxicus spore detection, which is able to compete in sensitivity with conventional costly and time-consuming laboratory analyses.
Collapse
Affiliation(s)
- Francesco Rizzotto
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy en Josas, France
| | - Marco Marin
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy en Josas, France
| | - Christine Péchoux
- INRAE, AgroParisTech, Université Paris-Saclay, GABI, 78350 Jouy-en-Josas, France
| | - Sandrine Auger
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy en Josas, France
| | - Jasmina Vidic
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy en Josas, France
| |
Collapse
|
23
|
Bogaerts B, Fraiture MA, Huwaert A, Van Nieuwenhuysen T, Jacobs B, Van Hoorde K, De Keersmaecker SCJ, Roosens NHC, Vanneste K. Retrospective surveillance of viable Bacillus cereus group contaminations in commercial food and feed vitamin B 2 products sold on the Belgian market using whole-genome sequencing. Front Microbiol 2023; 14:1173594. [PMID: 37415815 PMCID: PMC10321352 DOI: 10.3389/fmicb.2023.1173594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023] Open
Abstract
Bacillus cereus is a spore-forming bacterium that occurs as a contaminant in food and feed, occasionally resulting in food poisoning through the production of various toxins. In this study, we retrospectively characterized viable B. cereus sensu lato (s.l.) isolates originating from commercial vitamin B2 feed and food additives collected between 2016 and 2022 by the Belgian Federal Agency for the Safety of the Food Chain from products sold on the Belgian market. In total, 75 collected product samples were cultured on a general medium and, in case of bacterial growth, two isolates per product sample were collected and characterized using whole-genome sequencing (WGS) and subsequently characterized in terms of sequence type (ST), virulence gene profile, antimicrobial resistance (AMR) gene profile, plasmid content, and phylogenomic relationships. Viable B. cereus was identified in 18 of the 75 (24%) tested products, resulting in 36 WGS datasets, which were classified into eleven different STs, with ST165 (n = 10) and ST32 (n = 8) being the most common. All isolates carried multiple genes encoding virulence factors, including cytotoxin K-2 (52.78%) and cereulide (22.22%). Most isolates were predicted to be resistant to beta-lactam antibiotics (100%) and fosfomycin (88.89%), and a subset was predicted to be resistant to streptothricin (30.56%). Phylogenomic analysis revealed that some isolates obtained from different products were closely related or even identical indicating a likely common origin, whereas for some products the two isolates obtained did not show any close relationship to each other or other isolates found in other products. This study reveals that potentially pathogenic and drug-resistant B. cereus s.l. can be present in food and feed vitamin B2 additives that are commercially available, and that more research is warranted to assess whether their presence in these types of products poses a threat to consumers.
Collapse
Affiliation(s)
- Bert Bogaerts
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | | | | | | - Bram Jacobs
- Foodborne Pathogens, Sciensano, Brussels, Belgium
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | | | - Kevin Vanneste
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| |
Collapse
|
24
|
Porcellato D, Kristiansen H, Finton MD, Leanti La Rosa S, da Silva Duarte V, Skeie SB. Composition and fate of heat-resistant anaerobic spore-formers in the milk powder production line. Int J Food Microbiol 2023; 402:110281. [PMID: 37356408 DOI: 10.1016/j.ijfoodmicro.2023.110281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 06/27/2023]
Abstract
Anaerobic spore-forming bacteria are a continuous threat to the dairy industry due to their ability to withstand processing conditions, such as those during heat treatment. These ubiquitous microorganisms have ample opportunity for multiple entry points into the milk chain, creating food quality and safety issues. Certain spore-formers, namely bacilli and clostridia, are more problematic due to their ability to spoil dairy products and pathogenicity. In this study, we investigated how milk treatment and milk powder production influenced the composition and survival of anaerobic spore-formers. Samples were obtained on three different days (replicate blocks) during the production of dairy powders and examined in a culture-dependent manner using the most probable number method coupled with 16S rRNA amplicon sequencing and metagenomic analysis of the enriched samples. Results revealed that the milk separation greatly affected the spore-former presence and composition which were detected along the entire production line from raw material to milk powders. Throughout the various points of the production line, the occurrence of species belonging to the Bacillus cereus sensu lato was higher than that of clostridia. Sequence variants (SVs) belonging to the anaerobic spore-forming genus Clostridium were taxonomically assigned to two SVs groups and were detected in all three replicate blocks. A total of 19 metagenome-assembled genomes were recovered from nine enrichments. Four near-complete and two medium-quality genomes were found in raw milk/milk powder samples and further assigned as Clostridium tyrobutyricum and Clostridium diolis, which may constitute a problem in the finished dairy product. In conclusion, our findings highlight spore-formers' importance on dairy quality and may aid in their intervention and control in the dairy production line.
Collapse
Affiliation(s)
- Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, P.O. Box 5003, N-1432 Ås, Norway.
| | - Hanne Kristiansen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, P.O. Box 5003, N-1432 Ås, Norway
| | - Misti D Finton
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, P.O. Box 5003, N-1432 Ås, Norway
| | - Sabina Leanti La Rosa
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, P.O. Box 5003, N-1432 Ås, Norway
| | - Vinicius da Silva Duarte
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, P.O. Box 5003, N-1432 Ås, Norway
| | - Siv Borghild Skeie
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, P.O. Box 5003, N-1432 Ås, Norway
| |
Collapse
|
25
|
Ashraf D, Ombarak RA, Samir A, Abdel-Salam AB. Characterization of multidrug-resistant potential pathogens isolated from milk and some dairy products in Egypt. J Adv Vet Anim Res 2023; 10:275-283. [PMID: 37534087 PMCID: PMC10390681 DOI: 10.5455/javar.2023.j679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 08/04/2023] Open
Abstract
Objective This study aimed to explore the incidence and antimicrobial resistance (AMR) of Escherichia coli, Staphylococcus aureus, and Bacillus cereus in raw milk and some Egyptian dairy products, namely Kariesh cheese and rice with milk. Material and Methods 112 samples (70 raw milk, 30 Kariesh cheese, and 12 rice with milk) were randomly collected from different districts in Cairo and Giza, Egypt. The samples were examined for E. coli, S. aureus, and B. cereus presence. The susceptibility of the obtained isolates was tested against 11 antimicrobials using the disk diffusion method, and further, the presence of AMR genes was examined. Results The incidences of E. coli, S. aureus, and B. cereus were 69.64%, 12.5%, and 16.7% in the examined samples, respectively. The antibiogram indicated that E. coli isolates (n = 60) were resistant to gentamycin (73.33%), ampicillin (AM, 53.3%), and cefotaxime (CTX, 16.66%). Multidrug-resistant (MDR) E. coli strains (n = 5) were tested for β-lactams resistance genes. blaTEM was detected in all isolates, and two of them additionally carried blaCTX-M. Staphylococcus aureus isolates (n = 10) were resistant to AM (100%), followed by tetracycline (TE), CTX, and gentamycin (60% each). All MDR S. aureus strains (n = 4) carried blaZ and tetK, and three of them additionally carried aac(6')-aph (2''). Bacillus cereus isolates (n = 30) showed resistance to AM (100%), amoxicillin (20%), and TE (6.66%). bla and tetA genes were detected in all MDR B. cereus isolates (n = 6). Conclusion Our findings denote the high incidence of potential health hazards in raw milk and some of its products and the existence of AMR bacteria, including MDR strains, which can cause human illnesses that are difficult to treat.
Collapse
Affiliation(s)
- Dina Ashraf
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Rabee A. Ombarak
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Ahmed Samir
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Ayah B. Abdel-Salam
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
26
|
Wang Y, Shen J, Meng F, Lu Z, Lv F, Zhou L, Zhao H. Effects of monolauroyl-galactosylglycerol on membrane fatty acids and properties of Bacillus cereus. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12567-4. [PMID: 37204449 DOI: 10.1007/s00253-023-12567-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/28/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023]
Abstract
The purpose of this study was to provide new ideas for the antibacterial mechanism of monolauroyl-galactosylglycerol (MLGG) from the perspective of cell membranes. The changes in cell membrane properties of Bacillus cereus (B. cereus) CMCC 66,301 exposed to different concentrations (1 × MIC (minimum inhibitory concentration), 2 × MIC, 1 × MBC (minimum bacterial concentration)) of MLGG were evaluated. It was found that the lag phase of B. cereus cells was prolonged at low concentration MLGG (1 × MIC and 2 × MIC), while about 2 log CFU/mL reduction in B. cereus populations were observed when exposed to high concentration MLGG (1 × MBC). MLGG treated B. cereus displayed obvious membrane depolarization, while membrane permeability had no change using PI (propidium iodide) staining. Significant increase in the membrane fluidity in response to MLGG exposure occurred, which was consistent with the modification of membrane fatty acids compositions, where the relative content of straight-chain fatty acids (SCFAs) and unsaturated fatty acids (UFAs) increased, while branched-chain fatty acids (BCFAs) decreased significantly. The decreased transition Tm value and cell surface hydrophobicity was also observed. Additionally, effect of MLGG on bacterial membrane compositions were explored at the submolecular level by infrared spectroscopy. Resistance tests of B. cereus to MLGG had demonstrated the advantages of MLGG as a bacteriostatic agent. Collectively, these studies indicate that modifying the fatty acid composition and properties of cellular membranes through MLGG exposure is crucial for inhibiting bacteria growth, providing new insights into the antimicrobial mechanisms of MLGG. KEY POINTS: • Monolauroyl-galactosylglycerol inserted into B. cereus lipid bilayer membrane • Monolauroyl-galactosylglycerol treatment caused B. cereus membrane depolarization • Monolauroyl-galactosylglycerol resulted in B. cereus membrane fatty acids alteration.
Collapse
Affiliation(s)
- Ying Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Juan Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Fengxia Lv
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Libang Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
27
|
Esa SS, El-Sayed AF, El-Khonezy MI, Zhang S. Recombinant production, purification, and biochemical characterization of a novel L-lactate dehydrogenase from Bacillus cereus NRC1 and inhibition study of mangiferin. Front Bioeng Biotechnol 2023; 11:1165465. [PMID: 37091329 PMCID: PMC10117910 DOI: 10.3389/fbioe.2023.1165465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
Lactate dehydrogenase (LDH, EC 1.1.1.27) is one of the vital glycolytic conditions, especially during anaerobic conditions. It is a significant diagnostic, prognostic, and monitoring biomarker parameter. A 950-bp DNA fragment containing the gene (LDH) encoding LDH was amplified from Bacillus cereus NRC1. The deduced amino acid sequence reveals that B. cereus LDH (Bc-LDH) is highly homologous to the LDHs of Bacillus organisms. All LDH enzymes have a significant degree of conservation in their active site and several additional domains with unidentified functions. The gene for LDH, which catalyzes lactate synthesis, was cloned, sequenced (accession number: LC706200.1), and expressed in Escherichia coli BL21 (DE3). In this investigation, Bc-LDH was purified to homogeneity with a specific activity of 22.7 units/mg protein and a molecular weight of 35 kDa. It works optimally at pH 8.0. The purified enzyme was inhibited by FeCl2, CuCl2, ZnCl2, and NiCl, whereas CoCl2 was found to boost the activity of Bc-LDH. The molecular docking of the 3D model of the Bc-LDH structure with a natural inhibitor, mangiferin, demonstrated excellent LDH inhibition, with a free binding energy of −10.2 kcal/mol. Moreover, mangiferin is a potent Bc-LDH inhibitor that inhibits Bc-LDH competitively and has one binding site with a Ki value of 0.075 mM. The LDH-mangiferin interaction exhibits a low RMSF value (>1.5 Å), indicating a stable contact at the residues. This study will pave the way for more studies to improve the understanding of mangiferin, which could be considered an intriguing candidate for creating novel and improved LDH inhibitors.
Collapse
Affiliation(s)
- Sayed S. Esa
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Ahmed F. El-Sayed
- Microbial Genetics Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Mohamed I. El-Khonezy
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
- *Correspondence: Shubing Zhang,
| |
Collapse
|
28
|
Zhou Z, Lan X, Zhu L, Zhang Y, Chen K, Zhang W, Xu W. Portable dual-aptamer microfluidic chip biosensor for Bacillus cereus based on aptamer tailoring and dumbbell-shaped probes. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130545. [PMID: 36493638 DOI: 10.1016/j.jhazmat.2022.130545] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
As food-borne pathogens, Bacillus cereus not only produce toxins that contaminate food and threaten human health, but also rely on spores to resist extreme environments. At present, the detection of B. cereus is still at the genome level and it is not easily distinguished from other Bacilli of the same group. Herein, we obtained the aptamers of B. cereus in different phases through Cell-SELEX technology. Then, through step-by-step tailoring and molecular docking, the two best performing aptamers were ascertained and the interaction revealed between the repeated G bases in the aptamer and the polar amino acids in the α-helix of the epiprotein. Based on these aptamers, a multifunctional dumbbell-shaped probe and an ultrasensitive microfluidic chip biosensor were designed. Tests showed that the novel sensor is able to complete detection within 1 h with a limit of detection (LOD) of 9.27 CFU/mL. Moreover, the sensor can be used in complex food environments, such as milk and rice, is able to detect both vegetative cells and spores, and it can also distinguish B. thuringiensis from the same flora. This study can provide a reference for the future development of food-borne pathogenic bacteria aptamer selecting, target interaction analysis, detection methods and equipment.
Collapse
Affiliation(s)
- Ziqi Zhou
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xinyue Lan
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yangzi Zhang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Kehan Chen
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; Department of Mechanical Design and Manufacturing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Wenqiang Zhang
- Department of Mechanical Design and Manufacturing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
29
|
Navaneethan Y, Effarizah ME. Post-Cooking Growth and Survival of Bacillus cereus Spores in Rice and Their Enzymatic Activities Leading to Food Spoilage Potential. Foods 2023; 12:foods12030626. [PMID: 36766153 PMCID: PMC9914848 DOI: 10.3390/foods12030626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/25/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Bacillus cereus strains vary in their heat resistance, post-processing survival and growth capacity in foods. Hence, this study was carried out to determine the effect of cooking on the survival and growth of eight B. cereus spores in rice at different temperatures in terms of their toxigenic profiles and extracellular enzyme activity. Samples of rice inoculated with different B. cereus spores were cooked and stored at 4 °C, 25 °C and 30 °C for up to 7 days, 48 h and 24 h, respectively. Out of eight B. cereus strains, four and three spore strains were able to grow at 30 °C and 25 °C post-cooking, respectively. Rapid growth was observed after a minimum of 6 h of incubation at 30 °C. All strains possessed proteolytic activity, whereas lipolytic and amylolytic activities were exhibited by 50% and 12.5% of the strains, respectively. The post-cooking survival and growth capacity of the B. cereus strains appeared to be independent of their toxigenic profiles, whereas extracellular enzymatic activities were required for their vegetative growth. Due to the B. cereus spores' abilities to survive cooking and return to their active cellular form, great care should be taken when handling ready-to-eat foods.
Collapse
|
30
|
Nelli A, Venardou B, Skoufos I, Voidarou C(C, Lagkouvardos I, Tzora A. An Insight into Goat Cheese: The Tales of Artisanal and Industrial Gidotyri Microbiota. Microorganisms 2023; 11:123. [PMID: 36677415 PMCID: PMC9863150 DOI: 10.3390/microorganisms11010123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
The purpose of this study was to determine for the first time the microbiota in artisanal-type and industrial-type Gidotyri cheeses and investigate the influence of the cheese-making practices on their composition using culture-independent techniques. The microbiota present in artisanal with commercial starters (Artisanal_CS, n = 15), artisanal with in-house starters (Artisanal_IHS, n = 10) and industrial (Ind., n = 9) Gidotyri cheese samples were analyzed using a targeted metagenomic approach (16S rRNA gene). The Ind. Gidotyri cheese microbiota were less complex, dominated by the Streptococcaceae family (91%) that was more abundant compared to the artisanal Gidotyri cheeses (p < 0.05). Artisanal cheeses were more diverse compositionally with specific bacterial species being prevalent to each subtype. Particularly, Loigolactobacillus coryniformis (OTU 175), Secundilactobacillus malefermentans (OTU 48), and Streptococcus parauberis (OTU 50) were more prevalent in Artisanal_IHS cheeses compared to Artisanal_CS (p ≤ 0.001) and Ind. (p < 0.01) Gidotyri cheeses. Carnobacterium maltaromaticum (OTU 23) and Enterobacter hormaechei subsp. hoffmannii (OTU 268) were more prevalent in Artisanal_CS cheeses compared to Artisanal_IHS cheeses (p < 0.05) and Ind. cheeses (p < 0.05). Hafnia alvei (OTU 13) and Acinetobacter colistiniresistens (OTU 111) tended to be more prevalent in Artisanal_CS compared to the other two cheese groups (p < 0.10). In conclusion, higher microbial diversity was observed in the artisanal-type Gidotyri cheeses, with possible bacterial markers specific to each subtype identified with potential application to traceability of the manufacturing processes’ authenticity and cheese quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece
| |
Collapse
|
31
|
Marin M, Rizzotto F, Léguillier V, Péchoux C, Borezee-Durant E, Vidic J. Naked-eye detection of Staphylococcus aureus in powdered milk and infant formula using gold nanoparticles. J Microbiol Methods 2022; 201:106578. [PMID: 36108985 DOI: 10.1016/j.mimet.2022.106578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 12/27/2022]
Abstract
Nonspecific binding of proteins from complex food matrices is a significant challenge associated with a biosensor using gold nanoparticles (AuNPs). To overcome this, we developed an efficient EDTA chelating treatment to denature milk proteins and prevent their adsorption on AuNPs. The use of EDTA to solubilize proteins enabled a sensitive label-free apta-sensor platform for colorimetric detection of Staphylococcus aureus in milk and infant formula. In the assay, S. aureus depleted aptamers from the test solution, and the reduction of aptamers enabled aggregation of AuNPs upon salt addition, a process characterized by a color change from red to purple. Under optimized conditions, S. aureus could be visually detected within 30 min with the detection limit of 7.5 × 104 CFU/mL and 8.4 × 104 CFU/mL in milk and infant formula, respectively. The EDTA treatment provides new opportunities for monitoring milk contamination and may prove valuable for biosensor point-of-need applications.
Collapse
Affiliation(s)
- Marco Marin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Francesco Rizzotto
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Vincent Léguillier
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | | | - Elise Borezee-Durant
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Jasmina Vidic
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
32
|
Optimization and Multifunctional Applications of Polypyrrole-Modified Copper Oxide–Zinc Oxide Nanocomposites. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Zhang J, Wang J, Jin J, Li X, Zhang H, Zhao C. Prevalence, antibiotic resistance, and enterotoxin genes of Staphylococcus aureus isolated from milk and dairy products worldwide: A systematic review and meta-analysis. Food Res Int 2022; 162:111969. [DOI: 10.1016/j.foodres.2022.111969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/02/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022]
|
34
|
Moteshareie H, Hassen WM, Dirieh Y, Groulx E, Dubowski JJ, Tayabali AF. Rapid, Sensitive, and Selective Quantification of Bacillus cereus Spores Using xMAP Technology. Microorganisms 2022; 10:microorganisms10071408. [PMID: 35889128 PMCID: PMC9319878 DOI: 10.3390/microorganisms10071408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022] Open
Abstract
Bacillus cereus is a spore-forming ubiquitous bacterium notable as a food poisoning agent. Detection of B. cereus spores using selective media is laborious and non-specific. Herein, the quantitative detection of B. cereus spores was investigated with commercial antibodies and published aptamer sequences. Several detection reagents were screened for affinity to Bacillus collagen-like protein A (BclA), an abundant exosporium glycoprotein. Sensitivity and selectivity toward B. cereus spores were tested using immunoassays and multi-analyte profiling (xMAP). A recombinant antibody developed in llama against BclA protein showed B. cereus spore selectivity and sensitivity between 102 and 105 spores/mL using xMAP. DNA aptamer sequences demonstrated sensitivity from 103 to 107 spores/mL and no cross-reaction to B. megaterium and B. subtilis. Selectivity for B. cereus spores was also demonstrated in a mixture of several diverse microorganisms and within a food sample with no compromise of sensitivity. As proof of concept for multiplexed measurement of human pathogens, B. cereus and three other microorganisms, E. coli, P. aeruginosa, and S. cerevisiae, were simultaneously detected using xMAP. These data support the development of a rapid, sensitive, and selective system for quantitation of B. cereus spores and multiplexed monitoring of human pathogens in complex matrices.
Collapse
Affiliation(s)
- Houman Moteshareie
- Department of Electrical and Computer Engineering, Interdisciplinary Institute for Technological Innovation (3IT), Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (H.M.); (W.M.H.); (J.J.D.)
| | - Walid M. Hassen
- Department of Electrical and Computer Engineering, Interdisciplinary Institute for Technological Innovation (3IT), Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (H.M.); (W.M.H.); (J.J.D.)
| | - Yasmine Dirieh
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Environmental Health Centre, Health Canada, Ottawa, ON K1A 0K9, Canada; (Y.D.); (E.G.)
| | - Emma Groulx
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Environmental Health Centre, Health Canada, Ottawa, ON K1A 0K9, Canada; (Y.D.); (E.G.)
| | - Jan J. Dubowski
- Department of Electrical and Computer Engineering, Interdisciplinary Institute for Technological Innovation (3IT), Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (H.M.); (W.M.H.); (J.J.D.)
| | - Azam F. Tayabali
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Environmental Health Centre, Health Canada, Ottawa, ON K1A 0K9, Canada; (Y.D.); (E.G.)
- Correspondence:
| |
Collapse
|
35
|
Castulo-Arcos DA, Adame-Gómez R, Castro-Alarcón N, Galán-Luciano A, Santiago Dionisio MC, Leyva-Vázquez MA, Perez-Olais JH, Toribio-Jiménez J, Ramirez-Peralta A. Genetic diversity of enterotoxigenic Bacillus cereus strains in coriander in southwestern Mexico. PeerJ 2022; 10:e13667. [PMID: 35795180 PMCID: PMC9252179 DOI: 10.7717/peerj.13667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/10/2022] [Indexed: 01/17/2023] Open
Abstract
Background Coriander, like other leafy green vegetables, is available all year round and is commonly consumed raw in Mexico as in other countries in the preparation of street or homemade food. Bacillus cereus (B. cereus) is a microorganism that can reach coriander because it is usually found in the soil and in some regions the vegetables are irrigated with polluted water. Therefore, the aim of this study was to determinate the presence of B. cereus in coriander used for human consumption in southwestern Mexico and determine the toxigenic profile, biofilm production, genes associated with the production of biofilms, sporulation rates, enzymatic profile, psychotropic properties, and genetic diversity of B. cereus. Methods Fresh coriander samples were collected from several vegetable retailers in different markets, microbiological analysis was performed. Molecular identification, genes related to the production of biofilm, and toxin gene profiling of B. cereus isolates were determined by PCR. The biofilm formation was measured by performing a crystal violet assay. The genetic diversity of B. cereus strains was determined by PCR of repetitive elements using oligonucleotide (GTG) 5. Results We found a frequency of B. cereus in vegetables was 20% (13/65). In this study, no strains with genes for the HBL toxin were found. In the case of genes related to biofilms, the frequency was low for sipW [5.8%, (1/17)] and tasA [11.7%, (2/17)]. B. cereus strains produce a low amount of biofilm with sporulation rates around 80%. As for genetic diversity, we observed that strains isolated from the same market, but different vegetable retailers are grouped into clusters. In the coriander marketed in southwestern Mexico, were found B. cereus strains with genes associated with the production of diarrheal toxins. Together, these results show actual information about the state of art of B. cereus strains circulating in the southwestern of Mexico.
Collapse
Affiliation(s)
- Daniel Alexander Castulo-Arcos
- Laboratorio de Investigación en Patometabolismo Microbiano/Facultad de Ciencias Químico Biológicas, Universidad Autonoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Roberto Adame-Gómez
- Laboratorio de Investigación en Patometabolismo Microbiano/Facultad de Ciencias Químico Biológicas, Universidad Autonoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Natividad Castro-Alarcón
- Laboratorio de Investigación en Microbiología/Facultad de Ciencias Químico Biológicas, Universidad Autonoma de Guerrero, Chilpancingo, Guerrero, México
| | - Aketzalli Galán-Luciano
- Laboratorio de Investigación en Patometabolismo Microbiano/Facultad de Ciencias Químico Biológicas, Universidad Autonoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - María Cristina Santiago Dionisio
- Laboratorio de Investigación en Análisis Microbiológicos/Facultad de Ciencias Químico Biológicas, Universidad Autonoma de Guerrero, Chilpancingo, Guerrero, México
| | - Marco A. Leyva-Vázquez
- Laboratorio de Investigación en Biomedicina Molecular/Facultad de Ciencias Químico Biológicas, Universidad Autonoma de Guerrero, Chilpancingo, Guerrero, México
| | - Jose-Humberto Perez-Olais
- Laboratorio de Biología Celular/Unidad Cuajimalpa, Universidad Autonoma Metropolitana, Ciudad de México, Ciudad de México, México
| | - Jeiry Toribio-Jiménez
- Laboratorio de Investigacion en Microbiologia Molecular y Biotecnologia Ambiental/Facultad de Ciencias Químico Biológicas, Universidad Autonoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Arturo Ramirez-Peralta
- Laboratorio de Investigación en Patometabolismo Microbiano/Facultad de Ciencias Químico Biológicas, Universidad Autonoma de Guerrero, Chilpancingo, Guerrero, Mexico
| |
Collapse
|
36
|
Optimizing the Growth Conditions of the Selected Plant-Growth-Promoting Rhizobacteria Paenibacillus sp. MVY-024 for Industrial Scale Production. BIOLOGY 2022; 11:biology11050745. [PMID: 35625473 PMCID: PMC9138474 DOI: 10.3390/biology11050745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary Nitrogen is one of the most important elements for plant growth and development. However, irrational fertilization causes many environmental problems: high rates of nitrogen fertilizers change the soil pH, encourage nitrate and nitrite accumulation in plants and the soil, leached nitrogen compounds cause water eutrophication and drinking water contamination, and gaseous losses of nitrogen contribute to global warming. The biological nitrogen fixation (BNF) process, in which atmospheric nitrogen is converted to ammonia by microorganisms, has a significant role in the global nitrogen cycle and agriculture. Nitrogen-fixing-bacteria inoculants could help to reduce the losses of consistently rising prices of mineral fertilizers and help to implement green revolution strategies. In this research, we found the bacteria strain Paenibacillus sp. MVY-024 that has a positive impact on nitrogen accumulation in spring wheat and was easily applied on an industrial scale. Abstract In this study, thirteen isolates, which were possibly expected to fix nitrogen, were isolated from soil and pea root nodules and identified by the gene analysis of 16S rDNA sequences. Two of these isolates that were able to form endospores and grow on nitrogen-free media were selected for spring wheat development research. The isolate Paenibacillus sp. S7 identified as Paenibacillus polymyxa was found to significantly increase the amount of ammonium and mineral N amounts in the soil. Furthermore, increased nitrogen accumulation in grains and a chlorophyll index were obtained after wheat treatment. Paenibacillus sp. S7 isolate was selected for further studies and the accession number MT900581 and strain name MVY-024 in NCBI nucleotide bank for this isolate were assigned. During the cultivation of Paenibacillus sp. MVY-024, sugarcane molasses and a yeast extract were determined as the most suitable carbon and nitrogen sources, whose optimal concentrations were 100 g L−1 and 10 g L−1, respectively. The optimal pH range for the cell culture was between 6.5 and 7.0, and the optimal air flow rate was 0.4 vvm. It was found that the air flow has an effect on biomass production and endospore formation. After Paenibacillus sp. MVY-024 biomass cultivation optimization, the cultured cell number was, on average, 2.2 × 109 cfu m L−1.
Collapse
|
37
|
Mezian L, Chincha AI, Vecchione A, Ghelardi E, Bonatto JMC, Marsaioli AJ, Campelo PH, Benamar I, Allah MA, Sant'Ana AS, Boumediene MB. Aerobic spore-forming bacteria in powdered infant formula: Enumeration, identification by MALDI-TOF mass spectrometry (MS), presence of toxin genes and rpoB gene typing. Int J Food Microbiol 2022; 368:109613. [DOI: 10.1016/j.ijfoodmicro.2022.109613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 12/28/2021] [Accepted: 03/04/2022] [Indexed: 11/16/2022]
|
38
|
Jandová M, Měřička P, Fišerová M, Landfeld A, Paterová P, Hobzová L, Jarkovská E, Kacerovský M, Houška M. Quantitative Risk Assessment of Bacillus cereus Growth during the Warming of Thawed Pasteurized Human Banked Milk Using a Predictive Mathematical Model. Foods 2022; 11:foods11071037. [PMID: 35407124 PMCID: PMC8997632 DOI: 10.3390/foods11071037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Bacillus cereus is relatively resistant to pasteurization. We assessed the risk of B. cereus growth during warming and subsequent storage of pasteurized banked milk (PBM) in the warmed state using a predictive mathematical model. Holder pasteurization followed by storage below −18 °C was used. Temperature maps, water activity values, and B. cereus growth in artificially inoculated PBM were obtained during a simulation of manipulation of PBM after its release from a Human Milk Bank. As a real risk level, we chose a B. cereus concentration of 100 CFU/mL; the risk was assessed for three cases: 1. For an immediate post-pasteurization B. cereus concentration below 1 CFU/mL (level of detection); 2. For a B. cereus concentration of 10 CFU/mL, which is allowed in some countries; 3. For a B. cereus concentration of 50 CFU/mL, which is approved for milk formulas. In the first and second cases, no risk was detected after 1 h of storage in the warmed state, while after 2 h of storage, B. cereus concentrations of 102 CFU/mL were occasionally encountered. In the third case, exceeding the B. cereus concentration of 102 CFU/mL could be regularly expected after 2 h of storage. Based on these results, we recommend that post-pasteurization bacteriological analysis be performed as recommended by the European Milk Bank Association (EMBA) and using warmed PBM within 1 h after warming (no exceptions).
Collapse
Affiliation(s)
- Miroslava Jandová
- Tissue Bank, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic; (P.M.); (M.F.)
- Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic
- Correspondence: ; Tel.: +420-739-569-340
| | - Pavel Měřička
- Tissue Bank, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic; (P.M.); (M.F.)
| | - Michaela Fišerová
- Tissue Bank, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic; (P.M.); (M.F.)
| | - Aleš Landfeld
- Food Research Institute Prague, 102 00 Prague, Czech Republic; (A.L.); (M.H.)
| | - Pavla Paterová
- Department of Clinical Microbiology, University Hospital Hradec Králové, 500 05 and Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic;
| | - Lenka Hobzová
- Department of Hospital Hygiene, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic;
| | - Eva Jarkovská
- Department of Pediatrics, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic;
| | - Marian Kacerovský
- Department of Obstetrics and Gynecology, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic;
| | - Milan Houška
- Food Research Institute Prague, 102 00 Prague, Czech Republic; (A.L.); (M.H.)
| |
Collapse
|
39
|
Kashif M, Lu Z, Sang Y, Yan B, Shah SJ, Khan S, Azhar Hussain M, Tang H, Jiang C. Whole-Genome and Transcriptome Sequencing-Based Characterization of Bacillus Cereus NR1 From Subtropical Marine Mangrove and Its Potential Role in Sulfur Metabolism. Front Microbiol 2022; 13:856092. [PMID: 35356521 PMCID: PMC8959591 DOI: 10.3389/fmicb.2022.856092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Sulfur, organosulfur compounds, and sulfides are essential parts of life. Microbial sulfate assimilation is among the most active and ancient metabolic activities in the sulfur cycle that operates in various ecosystems. We analyzed the molecular basis of bacterial characterization. NR1 was isolated and purified from mangrove sediments. Whole-genome sequencing indicated that the NR1 isolate was closely related to Bacillus cereus. The genome contained 5,305 functional genes with a total length of 5,420,664 bp, a GC content of 35.62%, 42 rRNA, and 107 tRNA. DBT-grown cultures exhibited DBT utilization, fleeting emergence of DBT sulfone (DBTO2), and formation of 2-hydroxybiphenyl (2-HBP). Molecular analysis of the PCR products' dsz operon revealed the presence of dszA, dszB, and dszC genes, which encoded for NR1's 90% DBT desulfurization activity. Furthermore, 17 sulfur metabolism-related genes, including genes involved in assimilation sulfate reduction, APS and PAPS, and the cys, ssu, and TST gene families, were identified. In sulfate media, alkenesulfonate was converted to sulfite and inhibited ssu enzymes. Downregulated cysK variants were associated with nrnA expression and the regulation of L-cysteine synthesis. These findings established a scientific foundation for further research and application of bacteria to mangrove rehabilitation and ecological treatment by evaluating the bacterial characterization and sulfur degradation metabolic pathway. We used whole-genome and transcriptome sequencing to examine their genetic characteristics.
Collapse
Affiliation(s)
- Muhammad Kashif
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Zhaomei Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yimeng Sang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Bing Yan
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Syed Jalil Shah
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Sohail Khan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | | | - Hongzhen Tang
- Key Laboratory and Cultivation Base of Prevention and Treatment of Traditional Chinese Medicine on Obesity, Guangxi University of Chinese Medicine, Nanning, China
| | - Chengjian Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
40
|
A novel Bacillus cereus bacteriophage DLn1 and its endolysin as biocontrol agents against Bacillus cereus in milk. Int J Food Microbiol 2022; 369:109615. [DOI: 10.1016/j.ijfoodmicro.2022.109615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/29/2022] [Accepted: 03/04/2022] [Indexed: 11/21/2022]
|
41
|
Lactobacillus rhamnosus Ameliorates Multi-Drug-Resistant Bacillus cereus-Induced Cell Damage through Inhibition of NLRP3 Inflammasomes and Apoptosis in Bovine Endometritis. Microorganisms 2022; 10:microorganisms10010137. [PMID: 35056585 PMCID: PMC8777719 DOI: 10.3390/microorganisms10010137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 01/09/2023] Open
Abstract
Bacillus cereus, considered a worldwide human food-borne pathogen, has brought serious health risks to humans and animals and huge losses to animal husbandry. The plethora of diverse toxins and drug resistance are the focus for B. cereus. As an alternative treatment to antibiotics, probiotics can effectively alleviate the hazards of super bacteria, food safety, and antibiotic resistance. This study aimed to investigate the frequency and distribution of B. cereus in dairy cows and to evaluate the effects of Lactobacillus rhamnosus in a model of endometritis induced by multi-drug-resistant B. cereus. A strong poisonous strain with a variety of drug resistances was used to establish an endometrial epithelial cell infection model. B. cereus was shown to cause damage to the internal structure, impair the integrity of cells, and activate the inflammatory response, while L. rhamnosus could inhibit cell apoptosis and alleviate this damage. This study indicates that the B. cereus-induced activation of the NLRP3 signal pathway involves K+ efflux. We conclude that LGR-1 may relieve cell destruction by reducing K+ efflux to the extracellular caused by the perforation of the toxins secreted by B. cereus on the cell membrane surface.
Collapse
|
42
|
Kwon SW, Kwon EA, Hong YG, Kim SS. Germination of Bacillus cereus ATCC 14579 spore at various conditions and inactivation of the germinated cells with microwave heating and UVC treatment in milk samples. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Moteshareie H, Hassen WM, Vermette J, Dubowski JJ, Tayabali AF. Strategies for capturing Bacillus thuringiensis spores on surfaces of (001) GaAs-based biosensors. Talanta 2022; 236:122813. [PMID: 34635209 DOI: 10.1016/j.talanta.2021.122813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/18/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022]
Abstract
Bacillus thuringiensis (Bt) is used as a bioinsecticide since it effectively kills insect larvae. Bt is also genetically similar to Bacillus cereus (Bc), a well recognized foodborne human pathogen; they are both members of the Bacillus cereus group (BC group). Although approved Bt bioinsecticide products have been confirmed to be non-pathogenic to humans, close monitoring of Bt during dissemination is important for cost considerations and to limit impact on biodiversity towards nontarget organisms. As such, developing rapid, sensitive, and specific tools for quantitative detection of Bt spores during and following spray operations is highly desirable. The goals of this study were to investigate commercially available detection reagents for sensitivity and selectivity in detecting Bt spores, and then functionalize a surface of (001) GaAs used in photonic biosensing. To achieve these goals, we (1) screened commercial antibodies for their capacity to bind recombinant proteins from Bt spores, (2) screened antibodies and aptamers for their sensitivity and selectivity against Bt spores, and (3) tested the efficiency of selected antibodies and aptamers in capturing Bt spores on the surface of functionalized GaAs biochips. Seven genes encoding Bt spore proteins were cloned and expressed in Escherichia coli. The binding of each purified spore antigen was tested by commercially available polyclonal and monoclonal antibodies claimed to exclusively target spores. Of the seven targets, Bacillus collagen-like protein A, was the most abundant protein on Bt spores and demonstrated the strongest binding affinity to all test antibodies. The commercial antibodies (Abs) were also tested for specificity to BC Group versus non-BC Group spores. Three of six commercial antibodies showed selectivity to Bt spores, with recombinant Abs providing the most robust lower range of detection (102 to 6 × 103 spores/mL). The sensitivity and selectivity of three published DNA aptamer sequences demonstrated a wide range of detection sensitivity for Bt spores. Two of the three test aptamers also showed reasonable selectivity towards Bt spores while the third demonstrated reactivity to non-BC Group B. megaterium and B. subtilis. Of the reagents tested, a thiolated aptamer and llama recombinant Ab showed highest Bt spore capture efficiency as measured by spore coverage of the GaAs surface. These results confirm that the selected aptamer and llama rAb can be considered strong candidates for the development of GaAs-based biosensing devices.
Collapse
Affiliation(s)
- Houman Moteshareie
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada; Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Laboratory for Quantum Semiconductors and Photon-based BioNanotechnology, Department of Electrical and Computer Engineering, Sherbrooke, Québec, Canada.
| | - Walid M Hassen
- Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Laboratory for Quantum Semiconductors and Photon-based BioNanotechnology, Department of Electrical and Computer Engineering, Sherbrooke, Québec, Canada
| | - Jonathan Vermette
- Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Laboratory for Quantum Semiconductors and Photon-based BioNanotechnology, Department of Electrical and Computer Engineering, Sherbrooke, Québec, Canada
| | - Jan J Dubowski
- Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Laboratory for Quantum Semiconductors and Photon-based BioNanotechnology, Department of Electrical and Computer Engineering, Sherbrooke, Québec, Canada.
| | - Azam F Tayabali
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada; Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Laboratory for Quantum Semiconductors and Photon-based BioNanotechnology, Department of Electrical and Computer Engineering, Sherbrooke, Québec, Canada.
| |
Collapse
|
44
|
Bacillus cereus as a Major Cause of Discarded Pasteurized Human Banked Milk: A Single Human Milk Bank Experience. Foods 2021; 10:foods10122955. [PMID: 34945507 PMCID: PMC8700665 DOI: 10.3390/foods10122955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/17/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023] Open
Abstract
A systematic study, performed from 2017–2020 looked at the rate of positive post-pasteurization B. cereus findings, the quantity of B. cereus in pasteurized banked human milk (PBM), and the rate of B. cereus toxicogenic isolates from PBM. During the study period, 6815.71 L (30,943 tested bottles) of PBM were tested, with an average amount per year of 1703.93 L (7736 tested bottles). The PBM discard rate per year due to bacterial contamination varied between 8.7–10.0% and contamination with B. cereus was the most frequent reason. The total number of B. cereus positive tests was 2739 and the proportion of its positivity from all positive tests was between 56.7–66.6%. The prevalence of B. cereus positive tests rose significantly in the summer months. The production of enterotoxin was found in 3 of the 20 tested samples (15.0%). The B. cereus CFU-quantities in the PBM were below 10 CFU/mL in 80% of cases (16 of 20 samples tested). The quantitative data can be used in the risk assessment of cold storage of PBM at temperatures above zero and manipulation of PBM prior to its administration.
Collapse
|
45
|
Bobrinetskiy I, Radovic M, Rizzotto F, Vizzini P, Jaric S, Pavlovic Z, Radonic V, Nikolic MV, Vidic J. Advances in Nanomaterials-Based Electrochemical Biosensors for Foodborne Pathogen Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2700. [PMID: 34685143 PMCID: PMC8538910 DOI: 10.3390/nano11102700] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/26/2022]
Abstract
Electrochemical biosensors utilizing nanomaterials have received widespread attention in pathogen detection and monitoring. Here, the potential of different nanomaterials and electrochemical technologies is reviewed for the development of novel diagnostic devices for the detection of foodborne pathogens and their biomarkers. The overview covers basic electrochemical methods and means for electrode functionalization, utilization of nanomaterials that include quantum dots, gold, silver and magnetic nanoparticles, carbon nanomaterials (carbon and graphene quantum dots, carbon nanotubes, graphene and reduced graphene oxide, graphene nanoplatelets, laser-induced graphene), metal oxides (nanoparticles, 2D and 3D nanostructures) and other 2D nanomaterials. Moreover, the current and future landscape of synergic effects of nanocomposites combining different nanomaterials is provided to illustrate how the limitations of traditional technologies can be overcome to design rapid, ultrasensitive, specific and affordable biosensors.
Collapse
Affiliation(s)
- Ivan Bobrinetskiy
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Marko Radovic
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Francesco Rizzotto
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France;
| | - Priya Vizzini
- Department of Agriculture Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy;
| | - Stefan Jaric
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Zoran Pavlovic
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Vasa Radonic
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Maria Vesna Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade, Serbia
| | - Jasmina Vidic
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France;
| |
Collapse
|
46
|
Marin M, Nikolic MV, Vidic J. Rapid point-of-need detection of bacteria and their toxins in food using gold nanoparticles. Compr Rev Food Sci Food Saf 2021; 20:5880-5900. [PMID: 34596343 DOI: 10.1111/1541-4337.12839] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Biosensors need to meet the rising food industry demand for sensitive, selective, safe, and fast food safety quality control. Disposable colorimetric sensors based on gold nanoparticles (AuNPs) and localized surface plasmon resonance are low-cost and easy-to-perform devices intended for rapid point-of-need measurements. Recent studies demonstrate various facile and versatile AuNPs-based analytical platforms for the detection of bacteria and their toxins in milk, meat, and other foods. In this review, we introduce the general characteristics and mechanisms of AuNPs calorimetric biosensors, and highlight optimizations needed to strengthen and improve the quality of devices for their application in food matrices.
Collapse
Affiliation(s)
- Marco Marin
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Maria Vesna Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Jasmina Vidic
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| |
Collapse
|
47
|
Pan-Genome Portrait of Bacillus mycoides Provides Insights into the Species Ecology and Evolution. Microbiol Spectr 2021; 9:e0031121. [PMID: 34287030 PMCID: PMC8552610 DOI: 10.1128/spectrum.00311-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacillus mycoides is poorly known despite its frequent occurrence in a wide variety of environments. To provide direct insight into its ecology and evolutionary history, a comparative investigation of the species pan-genome and the functional gene categorization of 35 isolates obtained from soil samples from northeastern Poland was performed. The pan-genome of these isolates is composed of 20,175 genes and is characterized by a strong predominance of adaptive genes (∼83%), a significant amount of plasmid genes (∼37%), and a great contribution of prophages and insertion sequences. The pan-genome structure and phylodynamic studies had suggested a wide genomic diversity among the isolates, but no correlation between lineages and the bacillus origin was found. Nevertheless, the two B. mycoides populations, one from Białowieża National Park, the last European natural primeval forest with soil classified as organic, and the second from mineral soil samples taken in a farm in Jasienówka, a place with strong anthropogenic pressure, differ significantly in the frequency of genes encoding proteins enabling bacillus adaptation to specific stress conditions and production of a set of compounds, thus facilitating their colonization of various ecological niches. Furthermore, differences in the prevalence of essential stress sigma factors might be an important trail of this process. Due to these numerous adaptive genes, B. mycoides is able to quickly adapt to changing environmental conditions. IMPORTANCE This research allows deeper understanding of the genetic organization of natural bacterial populations, specifically, Bacillus mycoides, a psychrotrophic member of the Bacillus cereus group that is widely distributed worldwide, especially in areas with continental cold climates. These thorough analyses made it possible to describe, for the first time, the B. mycoides pan-genome, phylogenetic relationship within this species, and the mechanisms behind the species ecology and evolutionary history. Our study indicates a set of functional properties and adaptive genes, in particular, those encoding sigma factors, associated with B. mycoides acclimatization to specific ecological niches and changing environmental conditions.
Collapse
|
48
|
Antequera‐Gómez ML, Díaz‐Martínez L, Guadix JA, Sánchez‐Tévar AM, Sopeña‐Torres S, Hierrezuelo J, Doan HK, Leveau JH, de Vicente A, Romero D. Sporulation is dispensable for the vegetable-associated life cycle of the human pathogen Bacillus cereus. Microb Biotechnol 2021; 14:1550-1565. [PMID: 33955675 PMCID: PMC8313275 DOI: 10.1111/1751-7915.13816] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/18/2021] [Accepted: 04/03/2021] [Indexed: 11/28/2022] Open
Abstract
Bacillus cereus is a common food-borne pathogen that is responsible for important outbreaks of food poisoning in humans. Diseases caused by B. cereus usually exhibit two major symptoms, emetic or diarrheic, depending on the toxins produced. It is assumed that after the ingestion of contaminated vegetables or processed food, spores of enterotoxigenic B. cereus reach the intestine, where they germinate and produce the enterotoxins that are responsible for food poisoning. In our study, we observed that sporulation is required for the survival of B. cereus in leaves but is dispensable in ready-to-eat vegetables, such as endives. We demonstrate that vegetative cells of B. cereus that are originally impaired in sporulation but not biofilm formation are able to reach the intestine and cause severe disorders in a murine model. Furthermore, our findings emphasise that the number of food poisoning cases associated with B. cereus is underestimated and suggest the need to revise the detection protocols, which are based primarily on spores and toxins.
Collapse
Affiliation(s)
- María Luisa Antequera‐Gómez
- Departamento de MicrobiologíaInstituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Universidad de MálagaBulevar Louis Pasteur 31 (Campus Universitario de teatinos)Málaga29071Spain
| | - Luis Díaz‐Martínez
- Departamento de MicrobiologíaInstituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Universidad de MálagaBulevar Louis Pasteur 31 (Campus Universitario de teatinos)Málaga29071Spain
| | - Juan Antonio Guadix
- Departamento de Biología AnimalFacultad de CienciasUniversidad de Málaga ‐ IBIMACampus de Teatinos s/nMálaga29071Spain
- Centro Andaluz de Nanomedicina y Biotecnología (BIONAND)Junta de AndalucíaUniversidad de MálagaC/ Severo Ochoa 35Campanillas (Málaga)29590Spain
| | - Ana María Sánchez‐Tévar
- Departamento de Biología AnimalFacultad de CienciasUniversidad de Málaga ‐ IBIMACampus de Teatinos s/nMálaga29071Spain
- Centro Andaluz de Nanomedicina y Biotecnología (BIONAND)Junta de AndalucíaUniversidad de MálagaC/ Severo Ochoa 35Campanillas (Málaga)29590Spain
| | - Sara Sopeña‐Torres
- Departamento de MicrobiologíaInstituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Universidad de MálagaBulevar Louis Pasteur 31 (Campus Universitario de teatinos)Málaga29071Spain
| | - Jesús Hierrezuelo
- Departamento de MicrobiologíaInstituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Universidad de MálagaBulevar Louis Pasteur 31 (Campus Universitario de teatinos)Málaga29071Spain
| | - Hung K. Doan
- Department of Plant PathologyUniversity of CaliforniaDavisCAUSA
| | | | - Antonio de Vicente
- Departamento de MicrobiologíaInstituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Universidad de MálagaBulevar Louis Pasteur 31 (Campus Universitario de teatinos)Málaga29071Spain
| | - Diego Romero
- Departamento de MicrobiologíaInstituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Universidad de MálagaBulevar Louis Pasteur 31 (Campus Universitario de teatinos)Málaga29071Spain
| |
Collapse
|
49
|
Jovanovic J, Ornelis VFM, Madder A, Rajkovic A. Bacillus cereus food intoxication and toxicoinfection. Compr Rev Food Sci Food Saf 2021; 20:3719-3761. [PMID: 34160120 DOI: 10.1111/1541-4337.12785] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022]
Abstract
Bacillus cereus is one of the leading etiological agents of toxin-induced foodborne diseases. Its omnipresence in different environments, spore formation, and its ability to adapt to varying conditions and produce harmful toxins make this pathogen a health hazard that should not be underestimated. Food poisoning by B. cereus can manifest itself as an emetic or diarrheal syndrome. The former is caused by the release of the potent peptide toxin cereulide, whereas the latter is the result of proteinaceous enterotoxins (e.g., hemolysin BL, nonhemolytic enterotoxin, and cytotoxin K). The final harmful effect is not only toxin and strain dependent, but is also affected by the stress responses, accessory virulence factors, and phenotypic properties under extrinsic, intrinsic, and explicit food conditions and host-related environment. Infamous portrait of B. cereus as a foodborne pathogen, as well as a causative agent of nongastrointestinal infections and even nosocomial complications, has inspired vast volumes of multidisciplinary research in food and clinical domains. As a result, extensive original data became available asking for a new, both broad and deep, multifaceted look into the current state-of-the art regarding the role of B. cereus in food safety. In this review, we first provide an overview of the latest knowledge on B. cereus toxins and accessory virulence factors. Second, we describe the novel taxonomy and some of the most pertinent phenotypic characteristics of B. cereus related to food safety. We link these aspects to toxin production, overall pathogenesis, and interactions with its human host. Then we reflect on the prevalence of different toxinotypes in foods opening the scene for epidemiological aspects of B. cereus foodborne diseases and methods available to prevent food poisoning including overview of the different available methods to detect B. cereus and its toxins.
Collapse
Affiliation(s)
- Jelena Jovanovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Vincent F M Ornelis
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Annemieke Madder
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
50
|
Fay M, Salazar JK, Ramachandran P, Stewart D. Microbiomes of commercially-available pine nuts and sesame seeds. PLoS One 2021; 16:e0252605. [PMID: 34153055 PMCID: PMC8216511 DOI: 10.1371/journal.pone.0252605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/23/2021] [Indexed: 01/21/2023] Open
Abstract
Metagenomic analysis of food is becoming more routine and can provide important information pertaining to the shelf life potential and the safety of these products. However, less information is available on the microbiomes associated with low water activity foods. Pine nuts and sesame seeds, and food products which contain these ingredients, have been associated with recalls due to contamination with bacterial foodborne pathogens. The objective of this study was to identify the microbial community of pine nuts and sesame seeds using targeted 16S rRNA sequencing technology. Ten different brands of each seed type were assessed, and core microbiomes were determined. A total of 21 and 16 unique taxa with proportional abundances >1% in at least one brand were identified in the pine nuts and sesame seeds, respectively. Members of the core pine nut microbiome included the genera Alishewanella, Aminivibrio, Mycoplasma, Streptococcus, and unassigned OTUs in the families of Desulfobacteraceae and Xanthomonadaceae. For sesame seeds, the core microbiome included Aminivibrio, Chryseolina, Okibacterium, and unassigned OTUs in the family Flavobacteriaceae. The microbiomes of these seeds revealed that these products are dominated by environmental bacterial genera commonly isolated from soil, water, and plants; bacterial genera containing species known as commensal organisms were also identified. Understanding these microbiomes can aid in the risk assessment of these products by identifying food spoilage potential and community members which may co-enrich with foodborne bacterial pathogens.
Collapse
Affiliation(s)
- Megan Fay
- Division of Food Processing Science and Technology, U. S. Food and Drug Administration, Bedford Park, Illinois, United States of America
| | - Joelle K. Salazar
- Division of Food Processing Science and Technology, U. S. Food and Drug Administration, Bedford Park, Illinois, United States of America
| | - Padmini Ramachandran
- Division of Microbiology, U. S. Food and Drug Administration, College Park, Maryland, United States of America
| | - Diana Stewart
- Division of Food Processing Science and Technology, U. S. Food and Drug Administration, Bedford Park, Illinois, United States of America
| |
Collapse
|