1
|
Noreen S, Ishaq I, Saleem MH, Ali B, Muhammad Ali S, Iqbal J. Electrochemical biosensing in oncology: a review advancements and prospects for cancer diagnosis. Cancer Biol Ther 2025; 26:2475581. [PMID: 40079211 PMCID: PMC11913392 DOI: 10.1080/15384047.2025.2475581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/29/2024] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
Early and precise diagnosis of cancer is pivotal for effective therapeutic intervention. Traditional diagnostic methods, despite their reliability, often face limitations such as invasiveness, high costs, labor-intensive procedures, extended processing times, and reduced sensitivity for early-stage detection. Electrochemical biosensing is a revolutionary method that provides rapid, cost-effective, and highly sensitive detection of cancer biomarkers. This review discusses the use of electrochemical detection in biosensors to provide real-time insights into disease-specific molecular interactions, focusing on target recognition and signal generation mechanisms. Furthermore, the superior efficacy of electrochemical biosensors compared to conventional techniques is explored, particularly in their ability to detect cancer biomarkers with enhanced specificity and sensitivity. Advancements in electrode materials and nanostructured designs, integrating nanotechnology, microfluidics, and artificial intelligence, have the potential to overcome biological interferences and scale for clinical use. Research and innovation in oncology diagnostics hold potential for personalized medicine, despite challenges in commercial viability and real-world application.
Collapse
Affiliation(s)
- Sana Noreen
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Izwa Ishaq
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | | | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Syed Muhammad Ali
- Nursing Department, Communicable Disease Center Hamad Medical Corporation, Doha, Qatar
| | - Javed Iqbal
- Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
2
|
Gupta S, Mishra V, Aljabali AAA, Albutti A, Kanday R, El-Tanani M, Mishra Y. Breaking barriers in cancer diagnosis: unveiling the 4Ms of biosensors. RSC Adv 2025; 15:8019-8052. [PMID: 40098694 PMCID: PMC11912004 DOI: 10.1039/d4ra08212e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Cancer, an insidious affliction, continues to exact a heavy toll on humanity, necessitating early detection and nuanced comprehension of its intricacies for effective treatment. Recent strides in micro and nanoscale electronic chip fabrication have revolutionized biosensor technology, offering promising avenues for biomedical and telemedicine applications. Micro Electromechanical System (MEMS)-based integrated circuits (ICs) represent a paradigm shift in detecting chemical and biomolecular interactions pertinent to cancer diagnosis, supplanting conventional methodologies. Despite the wealth of research on biosensors, a cohesive framework integrating Material, Mechanism, Modeling, and Measurement (4M) dimensions is often lacking. This review aims to synthesize these dimensions, exploring recent breakthroughs in biosensor design and development. Categorized based on electromechanical integration, material selection, and fabrication processes, these biosensors bridge crucial knowledge gaps within the research community. A comparative analysis of sensing methods in point-of-care (PoC) technology provides insights into their practicality and efficacy. Moreover, we critically evaluate biosensor limitations, pivotal in addressing challenges hindering their global commercialization.
Collapse
Affiliation(s)
- Sachin Gupta
- Department of Robotics and Control Engineering, School of Electronics and Electrical Engineering, Lovely Professional University Phagwara Punjab-144411 India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara Punjab-144411 India
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University Irbid Jordan
| | - Aqel Albutti
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University Buraydah 51452 Saudi Arabia
| | - Rajeev Kanday
- School of Computer Science and Engineering, Lovely Professional University Phagwara Punjab-144411 India
| | - Mohamed El-Tanani
- Ras Al Khaimah Medical and Health Sciences University Ras Al Khaimah United Arab Emirates
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University Phagwara Punjab-144411 India
| |
Collapse
|
3
|
Braz BA, Hospinal-Santiani M, Martins G, Moscardi APZ, Beirão BCB, Soccol CR, Thomaz-Soccol V, Bergamini MF, Marcolino-Junior LH. A novel electrochemical immunosensor for the determination of tuberculosis diagnosis exploiting graphene-affinity peptide. Talanta 2025; 283:127146. [PMID: 39509901 DOI: 10.1016/j.talanta.2024.127146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Conventional methods for diagnosing tuberculosis (TB), a significant global health challenge, often have drawbacks like time-consuming procedures, limited sensitivity, and the need for complex, expensive infrastructure. Hence, the development of electrochemical immunosensors has emerged as a promising strategy for TB detection due to their simplicity, speed, sensitivity, portability, and cost-effectiveness. In this study, we developed a rapid, simple, and low-cost immunosensor using a lab-made screen-printed electrode (SPE) based on the peptide TB 68-G as a recognition site. This synthetic peptide is composed of two important parts, one with an affinity for graphene materials and the other able to interact with anti-M. tuberculosis antibodies. This structural configuration allows for effective modification of the electrode surface while maintaining the ability to recognize the target. The proposed label-free electrochemical immunosensor was tested against M. tuberculosis antibodies and demonstrated a detection limit of 192 ng mL-1 with an R2 value of 0.98. The diagnostic platform exhibited selectivity against nonspecific antibodies and successfully differentiated between negative and positive human serum samples with a 95 % confidence interval. This simple and affordable immunosensor holds great potential to impact TB control by enabling effective detection and improving disease surveillance.
Collapse
Affiliation(s)
- Beatriz A Braz
- Molecular Biology Laboratory, Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), CEP 81531-980, Curitiba, PR, Brazil; Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), CP 19032, CEP 81531-980, Curitiba, PR, Brazil
| | - Manuel Hospinal-Santiani
- Molecular Biology Laboratory, Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), CEP 81531-980, Curitiba, PR, Brazil
| | - Gustavo Martins
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), CP 19032, CEP 81531-980, Curitiba, PR, Brazil
| | - Ana P Z Moscardi
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), CP 19032, CEP 81531-980, Curitiba, PR, Brazil
| | - Breno C B Beirão
- Graduate Program in Microbiology, Parasitology, and Pathology, Federal University of Paraná (UFPR), CEP 81531-980, Curitiba, PR, Brazil
| | - Carlos R Soccol
- Molecular Biology Laboratory, Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), CEP 81531-980, Curitiba, PR, Brazil
| | - Vanete Thomaz-Soccol
- Molecular Biology Laboratory, Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), CEP 81531-980, Curitiba, PR, Brazil
| | - Márcio F Bergamini
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), CP 19032, CEP 81531-980, Curitiba, PR, Brazil.
| | - Luiz H Marcolino-Junior
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), CP 19032, CEP 81531-980, Curitiba, PR, Brazil.
| |
Collapse
|
4
|
He J, Lin C, Hu Y, Gu S, Deng H, Shen Z. Research progress of graphene-based nanomaterials in the diagnosis and treatment of head and neck cancer. Sci Prog 2024; 107:368504241291342. [PMID: 39574301 PMCID: PMC11585035 DOI: 10.1177/00368504241291342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Head and neck cancer (HNC) is the sixth most common cancer in the world, and its incidence is increasing year by year. Due to the late-stage diagnosis and poor prognosis of HNC, as well as the limitations of traditional treatment methods, it is urgent to improve early detection rates and explore alternative treatment approaches. Graphene-based nanomaterials (GBNs) have been widely applied in biomedical fields due to their high surface area, excellent photothermal properties, and high loading capacity. This literature review introduces the functionalization and biocompatibility of GBNs, followed by a focus on their applications in the diagnosis and treatment of HNC. This includes their potential as bioimaging or biosensing platforms for diagnosis and monitoring, as well as their research progress in chemotherapy drug delivery, phototherapy, and gene transfection. The tremendous potential of GBNs as a platform for combination therapies is emphasized. Finally, in this literature review, we briefly discuss the toxicity and limitations of GBNs in the current research and provide an outlook on their future clinical applications in the diagnosis and treatment of HNC.
Collapse
Affiliation(s)
- Jiali He
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Chen Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Yanghao Hu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Shanshan Gu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Hongxia Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Zhisen Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Ye C, Zhao Z, Lai P, Chen C, Jian F, Liang H, Guo Q. Strategies for the detection of site-specific DNA methylation and its application, opportunities and challenges in the field of electrochemical biosensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5496-5508. [PMID: 39051422 DOI: 10.1039/d4ay00779d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
DNA methylation is an epigenetic modification that plays a crucial role in various biological processes. Aberrant DNA methylation is closely associated with the onset of diseases, and the specific localization of methylation sites in the genome offers further insight into the connection between methylation and diseases. Currently, there are numerous methods available for site-specific methylation detection. Electrochemical biosensors have garnered significant attention due to their distinct advantages, such as rapidity, simplicity, high sensitivity, low cost, and the potential for miniaturization. In this paper, we present a systematic review of the primary sensing strategies utilized in the past decade for analyzing site-specific methylation and their applications in electrochemical sensors, from a novel perspective focusing on the localization analysis of site-specific methylation. These strategies include bisulfite treatment, restriction endonuclease treatment, other sensing strategies, and deamination without direct bisulfite treatment. We hope that this paper can offer ideas and references for establishing site-specific methylation electrochemical analysis in clinical practice.
Collapse
Affiliation(s)
- Chenliu Ye
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Zhibin Zhao
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Penghui Lai
- The Second Hospital of Longyan, Longyan 364000, China
| | - Chunmei Chen
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Fumei Jian
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Haiying Liang
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Qiongying Guo
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| |
Collapse
|
6
|
Park Y, Kim H, Song J, Kim S, Lee BC, Kim J. Dielectrophoretic force-induced wrinkling of graphene oxide: Enhancing electrical conductivity and expanding biosensing applications. Biosens Bioelectron 2024; 246:115867. [PMID: 38086307 DOI: 10.1016/j.bios.2023.115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023]
Abstract
Graphene oxide (GO) has many advantages, making it suitable for various applications. However, it has low electrical conductivity, restricting its applicability to electrochemical biosensors. This study used dielectrophoretic (DEP) force to control the movement and deformation of GO nanosheets to achieve high electrical conductivity without the chemical reduction of oxygen functional groups. Subjecting the DEP force to GO nanosheets induced physical deformation leading to the formation of wrinkled structures. A computational simulation was performed to set an appropriate electrical condition for operating a positive DEP force effect of at least 1019 v2/m3, and the interdigitated microelectrode structure was selected. The resulting wrinkled GO exhibited significantly improved electrical conductivity, reaching 21.721 μS while preserving the essential oxygen functional groups. Furthermore, a biosensor was fabricated using wrinkled GO deposited via DEP force. The biosensor demonstrated superior sensitivity, exhibiting a 9.6-fold enhancement compared with reduced GO (rGO) biosensors, as demonstrated through biological experiments targeting inducible nitric oxide synthase. This study highlights the potential of using DEP force to enhance electrical conductivity in GO-based biosensing applications, opening new avenues for high-performance diagnostics.
Collapse
Affiliation(s)
- Yejin Park
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Hyejin Kim
- Institute of Chemical Processes (ICP), Seoul National University, Seoul 08826, Republic of Korea; Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul National University, Seoul 08826, Republic of Korea
| | - Jaeyoon Song
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Sehyeon Kim
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Byung Chul Lee
- Bionics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Korea
| | - Jinsik Kim
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
7
|
Ramezani G, Stiharu I, van de Ven TGM, Nerguizian V. Advancement in Biosensor Technologies of 2D MaterialIntegrated with Cellulose-Physical Properties. MICROMACHINES 2023; 15:82. [PMID: 38258201 PMCID: PMC10819598 DOI: 10.3390/mi15010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024]
Abstract
This review paper provides an in-depth analysis of recent advancements in integrating two-dimensional (2D) materials with cellulose to enhance biosensing technology. The incorporation of 2D materials such as graphene and transition metal dichalcogenides, along with nanocellulose, improves the sensitivity, stability, and flexibility of biosensors. Practical applications of these advanced biosensors are explored in fields like medical diagnostics and environmental monitoring. This innovative approach is driving research opportunities and expanding the possibilities for diverse applications in this rapidly evolving field.
Collapse
Affiliation(s)
- Ghazaleh Ramezani
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Ion Stiharu
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Theo G. M. van de Ven
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada;
| | - Vahe Nerguizian
- Department of Electrical Engineering, École de Technologie Supérieure, 1100 Notre Dame West, Montreal, QC H3C 1K3, Canada;
| |
Collapse
|
8
|
Zhao Y, Chen Y, Wan Q, Xiao C, Guo Z, Du X, Hu Y, Zheng A, Cao Z. Identification of SAA1 as a novel metastasis marker in ovarian cancer and development of a graphene-based detection platform for early assessment. J Cancer Res Clin Oncol 2023; 149:16391-16406. [PMID: 37707574 DOI: 10.1007/s00432-023-05296-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Ovarian cancer (OC) is a prevalent gynecological malignancy with the highest mortality rate, which generally diagnosed at late stages due to the lack of effective early screening methods and the nonspecific symptoms. Hence, here we aim to identify new metastasis markers and develop a novel detection method with the characteristics of high sensitivity, rapid detection, high specificity, and low cost when compared with other conventional detection technologies. METHODS Blood from OC patients with or without metastasis were collected and analyzed by 4D Label free LC - MS/MS. Surgically resect samples from OC patients were collected for Single cell RNA sequencing (sc-RNA seq). Short hairpin RNA (shRNA) was used to silence SAA1 expression in SKOV3 and ID8 to verify the relationship between endogenous SAA1 and tumor invasion or metastasis. The functional graphene chips prepared by covalent binding were used for SAA1 detection. RESULTS In our study, we identified Serum Amyloid A1 (SAA1) as a hematological marker of OC metastasis by comprehensive analysis of proteins in plasma from OC patients with or without metastasis using 4D Label free LC - MS/MS and gene expression patterns from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Further validation using tumor tissues and plasma from human OC and mouse OC model confirmed the correlation between SAA1 and tumor metastasis. Importantly, sc-RNA seq of human OC samples revealed that SAA1 was specifically expressed in tumor cells and upregulated in the metastasis group. The functional role of SAA1 in metastasis was demonstrated through experiments in vitro and in vivo. Based on these findings, we designed and investigated a graphene-based platform for SAA1 detection to predict the risk of metastasis of OC patients. CONCLUSION Our study suggests that SAA1 is a biomarker of OC metastasis, and we have developed a rapid and highly sensitive platform using graphene chips to detection of plasma SAA1 for the early assessment of metastasis in OC patients.
Collapse
Affiliation(s)
- Yilin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 Section 3, Renmin South Road, Chengdu, 610041, People's Republic of China
| | - Yao Chen
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qi Wan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 Section 3, Renmin South Road, Chengdu, 610041, People's Republic of China
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Chengju Xiao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 Section 3, Renmin South Road, Chengdu, 610041, People's Republic of China
| | - Zhiqing Guo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 Section 3, Renmin South Road, Chengdu, 610041, People's Republic of China
| | - Xinjie Du
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 Section 3, Renmin South Road, Chengdu, 610041, People's Republic of China
| | - Yan Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 Section 3, Renmin South Road, Chengdu, 610041, People's Republic of China.
| | - Ai Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 Section 3, Renmin South Road, Chengdu, 610041, People's Republic of China.
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zhongwei Cao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 Section 3, Renmin South Road, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
9
|
Rashid M, Kouser R, Arjmand F, Tabassum S. New graphene oxide-loaded probe as a highly selective fluorescent chemosensor for the detection of iron ions in water samples using optical methods. OPTICAL MATERIALS 2023; 142:114077. [DOI: 10.1016/j.optmat.2023.114077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
|
10
|
Karbelkar A, Ahlmark R, Zhou X, Austin K, Fan G, Yang VY, Furst A. Carbon Electrode-Based Biosensing Enabled by Biocompatible Surface Modification with DNA and Proteins. Bioconjug Chem 2023; 34:358-365. [PMID: 36633230 DOI: 10.1021/acs.bioconjchem.2c00542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Modification of electrodes with biomolecules is an essential first step for the development of bioelectrochemical systems, which are used in a variety of applications ranging from sensors to fuel cells. Gold is often used because of its ease of modification with thiolated biomolecules, but carbon screen-printed electrodes (SPEs) are gaining popularity due to their low cost and fabrication from abundant resources. However, their effective modification with biomolecules remains a challenge; the majority of work to-date relies on nonspecific adhesion or broad amide bond formation to chemical handles on the electrode surface. By combining facile electrochemical modification to add an aniline handle to electrodes with a specific and biocompatible oxidative coupling reaction, we can readily modify carbon electrodes with a variety of biomolecules. Importantly, both proteins and DNA maintain bioactive conformations following coupling. We have then used biomolecule-modified electrodes to generate microbial monolayers through DNA-directed immobilization. This work provides an easy, general strategy to modify inexpensive carbon electrodes, significantly expanding their potential as bioelectrochemical systems.
Collapse
Affiliation(s)
- Amruta Karbelkar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Rachel Ahlmark
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Xingcheng Zhou
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Katherine Austin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Gang Fan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Victoria Y Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Ariel Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| |
Collapse
|
11
|
Early detection of tumour-associated antigens: Assessment of point-of-care electrochemical immunoassays. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
12
|
Koyappayil A, Yagati AK, Lee MH. Recent Trends in Metal Nanoparticles Decorated 2D Materials for Electrochemical Biomarker Detection. BIOSENSORS 2023; 13:91. [PMID: 36671926 PMCID: PMC9855691 DOI: 10.3390/bios13010091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/27/2022] [Accepted: 01/01/2023] [Indexed: 05/29/2023]
Abstract
Technological advancements in the healthcare sector have pushed for improved sensors and devices for disease diagnosis and treatment. Recently, with the discovery of numerous biomarkers for various specific physiological conditions, early disease screening has become a possibility. Biomarkers are the body's early warning systems, which are indicators of a biological state that provides a standardized and precise way of evaluating the progression of disease or infection. Owing to the extremely low concentrations of various biomarkers in bodily fluids, signal amplification strategies have become crucial for the detection of biomarkers. Metal nanoparticles are commonly applied on 2D platforms to anchor antibodies and enhance the signals for electrochemical biomarker detection. In this context, this review will discuss the recent trends and advances in metal nanoparticle decorated 2D materials for electrochemical biomarker detection. The prospects, advantages, and limitations of this strategy also will be discussed in the concluding section of this review.
Collapse
Affiliation(s)
| | | | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| |
Collapse
|
13
|
Mikheev IV, Byvsheva SM, Sozarukova MM, Kottsov SY, Proskurnina EV, Proskurnin MA. High-Throughput Preparation of Uncontaminated Graphene-Oxide Aqueous Dispersions with Antioxidant Properties by Semi-Automated Diffusion Dialysis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4159. [PMID: 36500782 PMCID: PMC9739863 DOI: 10.3390/nano12234159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
A semi-automated diffusion-dialysis purification procedure is proposed for the preparation of uncontaminated graphene oxide (GO) aqueous dispersions. The purification process is integrated with analytical-signal processing to control the purification degree online by several channels: oxidation-reduction potential, conductivity, and absorbance. This approach reduces the amounts of reagents for chemical treatment during dialysis. The total transition metal (Mn and Ti) content was reduced to a sub-ppb level (assessed by slurry nebulization in inductively coupled plasma optical atomic emission spectroscopy). Purified aqueous GO samples possess good stability for about a year with a zeta-potential of ca. -40 mV and a lateral size of ca. sub-µm. Purified GO samples showed increased antioxidant properties (up to five times compared to initial samples according to chemiluminometry by superoxide-radical (O2-) generated in situ from xanthine and xanthine oxidase with the lucigenin probe) and significantly decreased peroxidase-like activity (assessed by the H2O2-L-012 system).
Collapse
Affiliation(s)
- Ivan V. Mikheev
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sofiya M. Byvsheva
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Madina M. Sozarukova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 117901, Russia
| | - Sergey Yu. Kottsov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 117901, Russia
| | | | | |
Collapse
|