1
|
Liu J, Niu J, Wu W, Zhang Z, Ning Y, Zheng Q. Recent advances in the detection of microplastics in the aqueous environment by electrochemical sensors: A review. MARINE POLLUTION BULLETIN 2025; 214:117695. [PMID: 39987756 DOI: 10.1016/j.marpolbul.2025.117695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/14/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025]
Abstract
Microplastics (MPs), as an emerging contaminant, have become a serious threat to marine ecosystems due to their small size, widespread distribution and easy ingestion by organisms. Therefore, it is necessary to develop various analytical techniques to detect MPs in real water environment. Among these detection techniques, the advantages of electrochemical sensors, such as easy operation, high sensitivity and low cost, provide the possibility of online real-time detection of MPs in real water environment. The aim of this article is to analyze and compare the advantages and disadvantages of different MPs detection techniques. Compilation of various electrochemical sensors, we compiled various electrochemical sensors, evaluated the recent advances in carbon materials, metals and their oxides, biomass materials, composite materials, and microfluidic chips in electrochemical sensors for detecting MPs, and in-depth investigated their detection mechanisms and sensing performances, proposed hotspot nanomaterials for electrochemical sensors that could be used to detecting MPs and gave an outlook on the last years of electrochemical sensors in the area of microplastic detection. Finally, the challenges of electrochemical sensors for the detection of MPs are discussed and perspectives for this area are presented.
Collapse
Affiliation(s)
- Jinhui Liu
- Marine Engineering College, Dalian Maritime University, Dalian 116026, PR China
| | - Jiaqi Niu
- Marine Engineering College, Dalian Maritime University, Dalian 116026, PR China
| | - Wanqing Wu
- Marine Engineering College, Dalian Maritime University, Dalian 116026, PR China; Engineering Technology Center for Ship Safety and Pollution Control, Liaoning Province, Dalian 116026, PR China.
| | - Ziyang Zhang
- Marine Engineering College, Dalian Maritime University, Dalian 116026, PR China
| | - Ye Ning
- Marine Engineering College, Dalian Maritime University, Dalian 116026, PR China
| | - Qinggong Zheng
- Marine Engineering College, Dalian Maritime University, Dalian 116026, PR China; Engineering Technology Center for Ship Safety and Pollution Control, Liaoning Province, Dalian 116026, PR China
| |
Collapse
|
2
|
Zhang Q, Wang X, Chen Y, Song G, Zhang H, Huang K, Luo Y, Cheng N. Discovery and solution for microplastics: New risk carriers in food. Food Chem 2025; 471:142784. [PMID: 39788019 DOI: 10.1016/j.foodchem.2025.142784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/04/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Microplastics (MPs), as a kind of plastic particles with an equal volume size of less than 5 mm, similar to PM2.5 in the air, are causing severe contamination issues in food. Along with the food chain accumulation, they have been confirmed to appear in daily foods and cause serious health risks to the organisms. However, there were no unifying national and local policies on separating, extracting, and detecting MPs in food, which is an essential and imperative early-warning strategy. This review carefully and comprehensively summarized the validated contaminated food, physical and chemical characteristics, extraction methods, traditional and rapid detection techniques, as well as degradation methods of MPs. We thoroughly analyzed the differences among these traditional strategies, and innovatively generalized the existing rapid detection techniques for MPs. Finally, the shortcomings of existing research were discussed, and the possibility of novel rapid and intelligent detection techniques for MPs in food was proposed.
Collapse
Affiliation(s)
- Qi Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xin Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yang Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guangchun Song
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Hao Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Kunlun Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Yunbo Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China.
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Araújo
Oliveira Alves L, da Silva Felix JH, Menezes Ferreira A, Barroso dos Santos MT, Galvão da Silva C, Maria Santiago de Castro L, Sousa
dos Santos JC. Advances and Applications of Micro- and Mesofluidic Systems. ACS OMEGA 2025; 10:12817-12836. [PMID: 40224426 PMCID: PMC11983194 DOI: 10.1021/acsomega.4c10999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/26/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025]
Abstract
Microfabrication technology has advanced scientific understanding and expanded our molecular control capabilities, enabling the development of 3D models in micrometer structures. The sizes of the fluidic channels are arranged in descending order, starting with the macro-, followed by the meso-, micro-, and nanoscale. These advances bring advantages and speed up biological and chemical experimental processes. Such miniaturized systems show significant advances, particularly in meso- and microreactors, through high-throughput screening. This work proposes a bibliometric analysis of the advances and applications of the Web of Science (WoS) database, analyzing the main highlights of the publications, indicators, and impact on knowledge production. In the past 20 years, approximately 3,934 documents published and cited, mainly by major world powers on micro- and mesofluidic systems, are increasingly expanding in the academic and industrial sectors.
Collapse
Affiliation(s)
- Larissa Araújo
Oliveira Alves
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira, Campus Auroras, Redenção CEP 62790-970, CE, Brazil
| | - John Hebert da Silva Felix
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira, Campus Auroras, Redenção CEP 62790-970, CE, Brazil
| | - Antônio
Átila Menezes Ferreira
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira, Campus Auroras, Redenção CEP 62790-970, CE, Brazil
| | - Maria Tayane Barroso dos Santos
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira, Campus Auroras, Redenção CEP 62790-970, CE, Brazil
| | - Carlos Galvão da Silva
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira, Campus Auroras, Redenção CEP 62790-970, CE, Brazil
| | - Larysse Maria Santiago de Castro
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira, Campus Auroras, Redenção CEP 62790-970, CE, Brazil
| | - José Cleiton Sousa
dos Santos
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira, Campus Auroras, Redenção CEP 62790-970, CE, Brazil
| |
Collapse
|
4
|
Yu LJ, Koh KS, Tarawneh MA, Tan MC, Guo Y, Wang J, Ren Y. Microfluidic systems and ultrasonics for emulsion-based biopolymers: A comprehensive review of techniques, challenges, and future directions. ULTRASONICS SONOCHEMISTRY 2025; 114:107217. [PMID: 39952167 PMCID: PMC11874545 DOI: 10.1016/j.ultsonch.2024.107217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/24/2024] [Accepted: 12/30/2024] [Indexed: 02/17/2025]
Abstract
Over the past decade, the advancement of microfluidic technology associated with ultrasonics had received a considerate impact across the field, especially in biomedical and polymer synthesis applications. Nevertheless, there are much hindrance remained unsolved, to achieve simple processing, high scalability and high yield biopolymer products that stabilize during the process. In this review, we discuss the underlying physics for both microfluidic and ultrasonic integration in the synthesis of emulsion-based biopolymer and application. The current progress was outlined, focus on its related applications. We also summarized the current strengths and weakness of the microfluidic-ultrasonic integrated technology, aiming to contribute into SDG 12 for responsible consumption and production.
Collapse
Affiliation(s)
- Lih Jiun Yu
- Faculty of Engineering, Technology and Built Environment, UCSI University 56100 Kuala Lumpur, Malaysia; UCSI-Cheras Low Carbon Innovation Hub Research Consortium 56100 Kuala Lumpur, Malaysia.
| | - Kai Seng Koh
- School of Engineering and Physical Sciences, Heriot-Watt University Malaysia, Putrajaya 62200 Malaysia.
| | - Mou'ad A Tarawneh
- Department of Physics, College of Science, Al-Hussein Bin Talal University, P.O. Box 20, Ma'an, Jordan
| | - Mei Ching Tan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900 Sepang, Malaysia.
| | - Yanhong Guo
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, China; Research Group for Fluids and Thermal Engineering, University of Nottingham Ningbo China, Ningbo, China.
| | - Jing Wang
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China; Department of Electrical and Electronic Engineering, University of Nottingham Ningbo China, Ningbo, China.
| | - Yong Ren
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, China; Research Group for Fluids and Thermal Engineering, University of Nottingham Ningbo China, Ningbo, China; Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China; Key Laboratory of Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo, China.
| |
Collapse
|
5
|
Ece E, Aslan Y, Hacıosmanoğlu N, Inci F. MicroMetaSense: Coupling Plasmonic Metasurfaces with Fluorescence for Enhanced Detection of Microplastics in Real Samples. ACS Sens 2025; 10:725-740. [PMID: 39729532 PMCID: PMC11877509 DOI: 10.1021/acssensors.4c02070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/29/2024]
Abstract
Diverse analytical techniques are employed to scrutinize microplastics (MPs)─pervasive at hazardous concentrations across diverse sources ranging from water reservoirs to consumable substances. The limitations inherent in existing methods, such as their diminished detection capacities, render them inadequate for analyzing MPs of diminutive dimensions (microplastics: 1-5 μm; nanoplastics: < 1 μm). Consequently, there is an imperative need to devise methodologies that afford improved sensitivity and lower detection limits for analyzing these pollutants. In this study, we introduce a holistic strategy, i.e., MicroMetaSense, reliant on a metal-enhanced fluorescence (MEF) phenomenon in detecting a myriad size and types of MPs (i.e., poly(methyl methacrylate) (PMMA) and poly(ethylene terephthalate) (PET)) down to 183-205 fg, as well as validated the system with real samples (tap and lake) and artificial ocean samples as a real-world scenario. To obtain precise size distribution in nanometer scale, MPs are initially processed with an ultrafiltration on-a-chip method, and subsequently, the MPs stained with Nile Red dye are subjected to meticulous analysis under a fluorescence microscope, utilizing both a conventional method (glass substrate) and the MicroMetaSense platform. Our approach employs a metasurface to augment fluorescence signals, leveraging the MEF phenomenon, and it demonstrates an enhancement rate of 36.56-fold in detecting MPs compared to the standardized protocols. This low-cost ($2), time-saving (under 30 min), and highly sensitive (183-205 femtogram) strategy presents a promising method for precise size distribution and notable improvements in detection efficacy not only for laboratory samples but also in real environmental samples; hence, signifying a pivotal advancement in conventional methodologies in MP detection.
Collapse
Affiliation(s)
- Emre Ece
- UNAM-National
Nanotechnology Research Center, Bilkent
University, 06800 Ankara, Turkey
- Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Yusuf Aslan
- UNAM-National
Nanotechnology Research Center, Bilkent
University, 06800 Ankara, Turkey
- Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Nedim Hacıosmanoğlu
- UNAM-National
Nanotechnology Research Center, Bilkent
University, 06800 Ankara, Turkey
- Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Fatih Inci
- UNAM-National
Nanotechnology Research Center, Bilkent
University, 06800 Ankara, Turkey
- Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
6
|
Kumar P, Kumar A, Kumar D, Prajapati KB, Mahajan AK, Pant D, Yadav A, Giri A, Manda S, Bhandari S, Panjla R. Microplastics influencing aquatic environment and human health: A review of source, determination, distribution, removal, degradation, management strategy and future perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124249. [PMID: 39869960 DOI: 10.1016/j.jenvman.2025.124249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 12/15/2024] [Accepted: 01/19/2025] [Indexed: 01/29/2025]
Abstract
Microplastics (MPs) are produced from various primary and secondary sources and pose multifaceted environmental problems. They are of non-biodegradable nature and may stay in aquatic environments for a long time period. The present review has covered novel aspects pertaining to MPs that were not covered in earlier studies. It has been observed that several methods are being employed for samples collection, extraction and identification of MPs and polymer types using various equipment, chemicals and instrumental techniques. Aquatic species mistakenly ingest MPs, considering them prey and through food-chain, and then suffer from various metabolic disorders. The consumption of seafood and fish may consequently cause health implications in humans. Certain plasticizers are added during manufacturing to provide colour, durability, flexibility, and strength to plastics, but they leach out during usage, storage, and transport, as well as after entering the bodies of aquatic species and human beings. The leached chemicals (bisphenol-A, triclosan, phthalates, etc.) act as endocrine disrupting chemicals (EDCs), which effect on homeostasis; thereby causing neurotoxicity, cytotoxicity, reproductive problems, adverse behaviour and autism. Negative influence of MPs on carbon sequestration potential of water bodies is also observed, however more studies are required to understand it with a detail mechanism under natural conditions. The wastewater treatment plants are found to remove a large amount of MPs, but in turn, also act as significant sources of their release in sludge and effluents. Further, it is covered that how advanced oxidation processes, thermal- and photo-oxidation, fungi, algae and microbes degrade the plastics and increase their numbers in the surrounding environment. The management strategy comprising recovery of energy and other valuable by-products from plastic wastes, recycling and regulatory framework; are also described in detail. The future perspectives can be of paramount importance to control MPs generation and their abundance in the aquatic and other types of environments. The studies in future need to focus on advanced filtration techniques, advanced oxidation processes, energy recovery from plastic wastes and influences of MPs on carbon sequestration in aquatic environment and human health.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Natural Resources Management, Maharana Pratap Horticultural University, Karnal, Haryana, 132001, India.
| | - Anil Kumar
- Forest Ecology and Climate Change Division, ICFRE-Himalayan Forest Research Institute, Panthaghati, Shimla, Himachal Pradesh, 171013, India
| | - Deepak Kumar
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Kalp Bhusan Prajapati
- Department of Environmental Studies, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, India
| | - Ambrish Kumar Mahajan
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| | - Deepak Pant
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| | - Anoop Yadav
- Department of Environmental Studies, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, India
| | - Anand Giri
- School of Civil and Environmental Engineering, Indian Institute of Technology Mandi, Himachal Pradesh, 171013, India
| | - Satish Manda
- Department of Natural Resources Management, Maharana Pratap Horticultural University, Karnal, Haryana, 132001, India
| | - Soniya Bhandari
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| | - Richa Panjla
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| |
Collapse
|
7
|
Liu M, Liu HM, Yang K, Li J, Huang C, Yang J, Chen W, Ying K, Leung KMY, Zhang K, Xu X, Liao R, Yan M. Advancing the Understanding of Microplastic Weathering: Insights from a Novel Polarized Light Scattering Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19004-19015. [PMID: 39388491 DOI: 10.1021/acs.est.4c08711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Weathering is a significant process that alters the properties of microplastics (MPs) and consequently affects their environmental behaviors. In this study, we introduced a novel approach based on polarized light scattering technique, which offers advantages in terms of rapid, high-throughput, and submicron-sized detection. This technique was successfully applied to characterize the weathered MPs after a 180-day laboratory simulation of coastal environments. By employing polarization measurements, we obtained a 46-dimensional matrix data set for the weathered MP fragments and subsequently processed them using a backpropagation neural network. The successful extraction of effective polarization pulses confirmed the presence of MP fragments within the size range of 0.2-60 μm, yielding total accuracies for size classification ranging from 78.9 to 86.9%. Furthermore, this technique achieved an overall accuracy of 93.8% in classifying MPs with different weathering degrees and polymer types, revealing polarization parameters associated with size and morphological changes play a dominant role in characterizing the weathering process of MPs. Compared with conventional approaches, the novel polarized light scattering approach holds great promise for rapid, high-throughput, and accurate characterization of MPs with small sizes. The findings of this study provided new insights into how MPs change after long-term weathering in aquatic environments.
Collapse
Affiliation(s)
- Mengyang Liu
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Hoi Man Liu
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Keran Yang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Jiajin Li
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Chengqi Huang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jianxiong Yang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Wenqing Chen
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | | | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Kai Zhang
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Macao 999078, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Ran Liao
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Meng Yan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
8
|
Lee KCM, Chung BMF, Siu DMD, Ho SCK, Ng DKH, Tsia KK. Dispersion-free inertial focusing (DIF) for high-yield polydisperse micro-particle filtration and analysis. LAB ON A CHIP 2024; 24:4182-4197. [PMID: 39101363 DOI: 10.1039/d4lc00275j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Inertial focusing excels at the precise spatial ordering and separation of microparticles by size within fluid flows. However, this advantage, resulting from its inherent size-dependent dispersion, could turn into a drawback that challenges applications requiring consistent and uniform positioning of polydisperse particles, such as microfiltration and flow cytometry. To overcome this fundamental challenge, we introduce Dispersion-Free Inertial Focusing (DIF). This new method minimizes particle size-dependent dispersion while maintaining the high throughput and precision of standard inertial focusing, even in a highly polydisperse scenario. We demonstrate a rule-of-thumb principle to reinvent an inertial focusing system and achieve an efficient focusing of particles ranging from 6 to 30 μm in diameter onto a single plane with less than 3 μm variance and over 95% focusing efficiency at highly scalable throughput (2.4-30 mL h-1) - a stark contrast to existing technologies that struggle with polydispersity. We demonstrated that DIF could be applied in a broad range of applications, particularly enabling high-yield continuous microparticle filtration and large-scale high-resolution single-cell morphological analysis of heterogeneous cell populations. This new technique is also readily compatible with the existing inertial microfluidic design and thus could unleash more diverse systems and applications.
Collapse
Affiliation(s)
- Kelvin C M Lee
- The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Bob M F Chung
- The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Dickson M D Siu
- The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Sam C K Ho
- The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong.
| | - Daniel K H Ng
- The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong.
| | - Kevin K Tsia
- The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| |
Collapse
|
9
|
Costa M, Hammarström B, van der Geer L, Tanriverdi S, Joensson HN, Wiklund M, Russom A. EchoGrid: High-Throughput Acoustic Trapping for Enrichment of Environmental Microplastics. Anal Chem 2024; 96:9493-9502. [PMID: 38790145 PMCID: PMC11170556 DOI: 10.1021/acs.analchem.4c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
The health hazards of micro- and nanoplastic contaminants in drinking water has recently emerged as an area of concern to policy makers and industry. Plastic contaminants range in size from micro- (5 mm to 1 μm) to nanoplastics (<1 μm). Microfluidics provides many tools for particle manipulation at the microscale, particularly in diagnostics and biomedicine, but has in general a limited capacity to process large volumes. Drinking water and environmental samples with low-level contamination of microplastics require processing of deciliter to liter sample volumes to achieve statistically relevant particle counts. Here, we introduce the EchoGrid, an acoustofluidics device for high throughput continuous flow particle enrichment into a robust array of particle clusters. The EchoGrid takes advantage of highly efficient particle capture through the integration of a micropatterned transducer for surface displacement-based acoustic trapping in a glass and polymer microchannel. Silica seed particles were used as anchor particles to improve capture performance at low particle concentrations and high flow rates. The device was able to maintain the silica grids at a flow rate of 50 mL/min. In terms of enrichment, the device is able to double the final pellet's microplastic concentration every 78 s for 23 μm particles and every 51 s for 10 μm particles at a flow rate of 5 mL/min. In conclusion, we demonstrate the usefulness of the EchoGrid by capturing microplastics in challenging conditions, such as large sample volumes with low microparticle concentrations, without sacrificing the potential of integration with downstream analysis for environmental monitoring.
Collapse
Affiliation(s)
- Martim Costa
- KTH
Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science
for Life Laboratory, 171
65 Solna, Sweden
| | - Björn Hammarström
- KTH
Royal Institute of Technology, Department
of Applied Physics, Science for Life Laboratory, 171 65 Solna, Sweden
| | - Liselotte van der Geer
- KTH
Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science
for Life Laboratory, 171
65 Solna, Sweden
| | - Selim Tanriverdi
- KTH
Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science
for Life Laboratory, 171
65 Solna, Sweden
| | - Haakan N. Joensson
- KTH
Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science
for Life Laboratory, 171
65 Solna, Sweden
| | - Martin Wiklund
- KTH
Royal Institute of Technology, Department
of Applied Physics, Science for Life Laboratory, 171 65 Solna, Sweden
| | - Aman Russom
- KTH
Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science
for Life Laboratory, 171
65 Solna, Sweden
- AIMES
− Center for the Advancement of Integrated Medical and Engineering
Sciences at Karolinska Institutet and KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
| |
Collapse
|
10
|
Cecchi T, Poletto D, Berbecaru AC, Cârstea EM, Râpă M. Assessing Microplastics and Nanoparticles in the Surface Seawater of Venice Lagoon-Part I: Methodology of Research. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1759. [PMID: 38673116 PMCID: PMC11051501 DOI: 10.3390/ma17081759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Microplastics (MPs) and nanoplastics (NPs) both represent significant concerns in environmental sciences. This paper aims to develop a convenient and efficient methodology for the detection and measurement of MPs and nanoparticles from surface seawater and to apply it to the water samples collected from the UNESCO site of Venice and its lagoon, more precisely in the Venice-Lido Port Inlet, Grand Canal under Rialto Bridge, and Saint Marc basin. In this study, MPs were analyzed through optical microscopy for their relative abundance and characterized based on their color, shape, and size classes, while the concentration and the mean of nanoparticles were estimated via the Nanoparticle Tracking Analysis technique. Bulk seawater sampling, combined with filtration through a cascade of stainless-steel sieves and subsequent digestion, facilitates the detection of MPs of relatively small sizes (size classes distribution: >1 mm, 1000-250 μm, 250-125 μm, 125-90 μm, and 90-32 μm), similar to the size of MPs ingested by marine invertebrates and fishes. A protocol for minimizing interference from non-plastic nanoparticles through evaporation, digestion, and filtration processes was proposed to enrich the sample for NPs. The findings contribute to the understanding of the extent and characteristics of MPs and nanoparticle pollution in the Venice Lagoon seawater, highlighting the potential environmental risks associated with these pollutants and the need for coordinated approaches to mitigate them. This article is based on scientific research carried out within the framework of the H2020 In-No-Plastic-Innovative approaches towards prevention, removal and reuse of marine plastic litter project (G.A. ID no. 101000612).
Collapse
Affiliation(s)
- Teresa Cecchi
- Chemistry Department, Istituto Technico Technologico, Via Montani 7, 63900 Fermo, Italy;
| | - Davide Poletto
- Venice Lagoon Plastic Free, Castello 2641, 30122 Venice, Italy
| | - Andrei Constantin Berbecaru
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | - Elfrida Mihaela Cârstea
- National Institute of R&D for Optoelectronics INOE 2000, Atomistilor 409, 077125 Magurele, Romania;
| | - Maria Râpă
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| |
Collapse
|
11
|
Chiang CC, Yeh H, Shiu RF, Chin WC, Yen TH. Impact of microplastics and nanoplastics on liver health: Current understanding and future research directions. World J Gastroenterol 2024; 30:1011-1017. [PMID: 38577182 PMCID: PMC10989496 DOI: 10.3748/wjg.v30.i9.1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/26/2024] [Accepted: 02/18/2024] [Indexed: 03/06/2024] Open
Abstract
With continuous population and economic growth in the 21st century, plastic pollution is a major global issue. However, the health concern of microplastics/ nanoplastics (MPs/NPs) decomposed from plastic wastes has drawn public attention only in the recent decade. This article summarizes recent works dedicated to understanding the impact of MPs/NPs on the liver-the largest digestive organ, which is one of the primary routes that MPs/NPs enter human bodies. The interrelated mechanisms including oxidative stress, hepatocyte energy re-distribution, cell death and autophagy, as well as immune responses and inflammation, were also featured. In addition, the disturbance of microbiome and gut-liver axis, and the association with clinical diseases such as metabolic dysfunction-associated fatty liver disease, steatohepatitis, liver fibrosis, and cirrhosis were briefly discussed. Finally, we discussed potential directions in regard to this trending topic, highlighted current challenges in research, and proposed possible solutions.
Collapse
Affiliation(s)
- Chun-Cheng Chiang
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, United States
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Hsuan Yeh
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Ruei-Feng Shiu
- Center of Excellence for The Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Wei-Chun Chin
- Department of Materials Science and Engineering, University of California Merced, Merced, CA 95343, United States
| | - Tzung-Hai Yen
- Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
12
|
Ece E, Ölmez K, Hacıosmanoğlu N, Atabay M, Inci F. Advancing 3D printed microfluidics with computational methods for sweat analysis. Mikrochim Acta 2024; 191:162. [PMID: 38411762 PMCID: PMC10899357 DOI: 10.1007/s00604-024-06231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 02/28/2024]
Abstract
The intricate tapestry of biomarkers, including proteins, lipids, carbohydrates, vesicles, and nucleic acids within sweat, exhibits a profound correlation with the ones in the bloodstream. The facile extraction of samples from sweat glands has recently positioned sweat sampling at the forefront of non-invasive health monitoring and diagnostics. While extant platforms for sweat analysis exist, the imperative for portability, cost-effectiveness, ease of manufacture, and expeditious turnaround underscores the necessity for parameters that transcend conventional considerations. In this regard, 3D printed microfluidic devices emerge as promising systems, offering a harmonious fusion of attributes such as multifunctional integration, flexibility, biocompatibility, a controlled closed environment, and a minimal requisite analyte volume-features that leverage their prominence in the realm of sweat analysis. However, formidable challenges, including high throughput demands, chemical interactions intrinsic to the printing materials, size constraints, and durability concerns, beset the landscape of 3D printed microfluidic devices. Within this paradigm, we expound upon the foundational aspects of 3D printed microfluidic devices and proffer a distinctive perspective by delving into the computational study of printing materials utilizing density functional theory (DFT) and molecular dynamics (MD) methodologies. This multifaceted approach serves manifold purposes: (i) understanding the complexity of microfluidic systems, (ii) facilitating comprehensive analyses, (iii) saving both cost and time, (iv) improving design optimization, and (v) augmenting resolution. In a nutshell, the allure of 3D printing lies in its capacity for affordable and expeditious production, offering seamless integration of diverse components into microfluidic devices-a testament to their inherent utility in the domain of sweat analysis. The synergistic fusion of computational assessment methodologies with materials science not only optimizes analysis and production processes, but also expedites their widespread accessibility, ensuring continuous biomarker monitoring from sweat for end-users.
Collapse
Affiliation(s)
- Emre Ece
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Kadriye Ölmez
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Nedim Hacıosmanoğlu
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Maryam Atabay
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Department of Chemistry, Hacettepe University, 06800, Ankara, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey.
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey.
| |
Collapse
|
13
|
Azeem I, Shakoor N, Chaudhary S, Adeel M, Zain M, Ahmad MA, Li Y, Zhu G, Shah SAA, Khan K, Khan AA, Xu M, Rui Y. Analytical challenges in detecting microplastics and nanoplastics in soil-plant systems. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108132. [PMID: 37918078 DOI: 10.1016/j.plaphy.2023.108132] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/20/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Microplastics (MPx) and nanoplastics (NPx) are increasingly accumulating in terrestrial ecosystems, heightening concerns about their potential adverse effects on human health via the food chain. Techniques aimed at recovering the most challenging colloidal fractions of MPx and NPx, especially for analytical purposes, are limited. This systematic review emphasises the absence of a universal, efficient, and cost-effective analytical method as the primary hindrance to studying MPx and NPx in soil and plant samples. The study reveals that several methods, including density separation, organic matter removal, and filtration, are utilized to detect MPx or NPx in soil through vibrational spectroscopy and visual identification. Instruments such as Pyrolysis Gas Chromatography Mass Spectrometry (Py-GCMS), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) Spectroscopy, and fluorescence microscopy are employed to identify MPx and NPx in plant tissue. In extraction procedures, organic solvents and sonication are used to isolate NPx from plant tissues, while Pyrolysis GC-MS quantifies the plastics. SEM and TEM serve to observe and characterize NPx within plant tissues. Additionally, FTIR and fluorescence microscopy are utilized to identify polymers of MPx and NPx based on their spectral characteristics and fluorescence signals. The findings from this review clarify the identification and quantification methods for MPx and NPx in soil and plant systems and provide a comprehensive methodology for assessing MPx/NPx in the environment.
Collapse
Affiliation(s)
- Imran Azeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Sadaf Chaudhary
- Department of Botany, University of Agriculture Faisalabad, Pakistan
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 18 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, PR China.
| | - Muhammad Zain
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Crop Cultivation and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, 225009, PR China
| | - Muhammad Arslan Ahmad
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, PR China
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Guikai Zhu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Syed Aizaz Ali Shah
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China
| | - Kashif Khan
- College of Harbin, Northeast Forestry University, Harbin, PR China
| | - Adnan Anwar Khan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Ming Xu
- Department of Botany, University of Agriculture Faisalabad, Pakistan
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|