1
|
Leroux-Roels I, Maes C, Mancini F, Jacobs B, Sarakinou E, Alhatemi A, Joye J, Grappi S, Cilio GL, Serry-Bangura A, Vitali CG, Ferruzzi P, Marchetti E, Necchi F, Rappuoli R, De Ryck I, Auerbach J, Colucci AM, Rossi O, Conti V, Scorza FB, Arora AK, Micoli F, Podda A, Nakakana UN. Safety and Immunogenicity of a 4-Component Generalized Modules for Membrane Antigens Shigella Vaccine in Healthy European Adults: Randomized, Phase 1/2 Study. J Infect Dis 2024; 230:e971-e984. [PMID: 38853614 PMCID: PMC11481318 DOI: 10.1093/infdis/jiae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND We report data from stage 1 of an ongoing 2-staged, phase 1/2 randomized clinical trial with a 4-component generalized modules for membrane antigens-based vaccine against Shigella sonnei and Shigella flexneri 1b, 2a, and 3a (altSonflex1-2-3; GSK). METHODS Europeans aged 18-50 years (N = 102) were randomized (2:1) to receive 2 injections of altSonflex1-2-3 or placebo at 3- or 6-month interval. Safety and immunogenicity were assessed at prespecified time points. RESULTS The most common solicited administration-site event (until 7 days after each injection) and unsolicited adverse event (until 28 days after each injection) were pain (altSonflex1-2-3, 97.1%; placebo, 58.8%) and headache (32.4%; 23.5%), respectively. All serotype-specific functional IgG antibodies peaked 14-28 days after injection 1 and remained substantially higher than prevaccination at 3 or 6 months postvaccination; the second injection did not boost but restored the initial immune response. The highest seroresponse rates (≥4-fold increase in titers over baseline) were obtained against S. flexneri 2a (enzyme-linked immunosorbent assay [ELISA] after injection 1, 91.0%; after injection 2 [day 113; day 197], 100%; 97.0% and serum bactericidal activity [SBA] after injection 1, 94.4%; after injection 2, 85.7%; 88.9%) followed by S. sonnei (ELISA after injection 1, 77.6%; after injection 2, 84.6%; 78.8% and SBA after injection 1, 83.3%; after injection 2, 71.4%; 88.9%). Immune responses against S. flexneri 1b and S. flexneri 3a, as measured by both ELISA and SBA, were numerically lower compared to those against S. sonnei and S. flexneri 2a. CONCLUSIONS No safety signals or concerns were identified. altSonflex1-2-3 induced functional serotype-specific immune responses, allowing further clinical development in the target population. Clinical Trials Registration . NCT05073003.
Collapse
Affiliation(s)
- Isabel Leroux-Roels
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Cathy Maes
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | | | - Bart Jacobs
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | | | - Azhar Alhatemi
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Jasper Joye
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | - Anna M Colucci
- GSK Vaccines Institute for Global Health, GSK, Siena, Italy
| | - Omar Rossi
- GSK Vaccines Institute for Global Health, GSK, Siena, Italy
| | | | | | | | | | - Audino Podda
- GSK Vaccines Institute for Global Health, GSK, Siena, Italy
| | | |
Collapse
|
2
|
Caradonna V, Pinto M, Alfini R, Giannelli C, Iturriza M, Micoli F, Rossi O, Mancini F. High-Throughput Luminescence-Based Serum Bactericidal Assay Optimization and Characterization to Assess Human Sera Functionality Against Multiple Shigella flexneri Serotypes. Int J Mol Sci 2024; 25:11123. [PMID: 39456904 PMCID: PMC11508014 DOI: 10.3390/ijms252011123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Shigellosis represents a significant global health concern particularly affecting children under 5 years in low- and middle-income countries (LMICs) and is associated with stunting and antimicrobial resistance. There is a critical need for an effective vaccine offering broad protection against the different Shigella serotypes. A correlate of protection has not yet been established but there is a general consensus about the relevant role of anti-O-Antigen-specific IgG and its functionality evaluated by the Serum Bactericidal Assay (SBA). This study aims to characterize a high-throughput luminescence-based SBA (L-SBA) against seven widespread Shigella serotypes. The assay was previously developed and characterized for S. sonnei and S. flexneri 1b, 2a, and 3a and has now been refined and extended to an additional five serotypes (S. flexneri 4a, 5b, 6, X, and Y). The characterization of the assay with human sera confirmed the repeatability, intermediate precision, and linearity of the assays; both homologous and heterologous specificity were verified as well; finally, limit of detection and quantification were established for all assays. Moreover, different sources of baby rabbit complement showed to have no impact on L-SBA output. The results obtained confirm the possibility of extending the L-SBA to multiple Shigella serotypes, thus enabling analysis of the functional response induced by natural exposure to Shigella in epidemiological studies and the ability of candidate vaccines to elicit cross-functional antibodies able to kill a broad panel of prevalent Shigella serotypes in a complement-mediated fashion.
Collapse
Affiliation(s)
- Valentina Caradonna
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| | - Marika Pinto
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| | - Renzo Alfini
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| | - Carlo Giannelli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| | - Miren Iturriza
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| | - Francesca Mancini
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| |
Collapse
|
3
|
Fantoni G, Boccadifuoco G, Verdirosa F, Molesti E, Manenti A, Montomoli E. Current challenges and improvements in assessing the immunogenicity of bacterial vaccines. Front Microbiol 2024; 15:1404637. [PMID: 39044946 PMCID: PMC11263209 DOI: 10.3389/fmicb.2024.1404637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
The increase in antimicrobial-resistant bacterial strains has highlighted the need for a new vaccine strategy. The primary goal of a candidate vaccine is to prevent disease, by inducing a persistent immunologic memory, through the activation of pathogen-specific immune response. Antibody titer is the main parameter used to assess the immunogenicity of bacterial vaccine candidates and it is the most widely used as a correlate of protection. On the other hand, the antibody titer alone cannot provide complete information on all the activity mediated by antibodies which can only be assessed by functional assays, like the serum bactericidal assay and the opsonophagocytosis assay. However, due to the involvement of many biological factors, these assays are difficult to standardize. Some improvements have been achieved in recent years, but further optimizations are needed to minimize inter- and intra-laboratories variability and to allow the applicability of these functional assays for the vaccine immunogenicity assessment on a larger scale.
Collapse
Affiliation(s)
- Giulia Fantoni
- VisMederi S.r.l., Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | | | | | | | - Emanuele Montomoli
- VisMederi S.r.l., Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
4
|
Di Benedetto R, Mancini F, Caradonna V, Aruta MG, Giannelli C, Rossi O, Micoli F. Comparison of Shigella GMMA and glycoconjugate four-component formulations in animals. Front Mol Biosci 2023; 10:1284515. [PMID: 38046812 PMCID: PMC10690372 DOI: 10.3389/fmolb.2023.1284515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
Shigellosis is leading bacterial cause of diarrhea with high prevalence in children younger than 5 years in low- and middle-income countries, and increasing number of reports of Shigella cases associated to anti-microbial resistance. No vaccines against Shigella are still licensed, but different candidates based on the O-antigen portion of lipopolysaccharides are in clinic. Generalized Modules for Membrane Antigens (GMMA) have been proposed as an alternative delivery system for the O-antigen, and a 4-component vaccine candidate (altSonflex1-2-3), containing GMMA from S. sonnei and S. flexneri 1b, 2a and 3a is being tested in a phase 1/2 clinical trial, with the aim to elicit broad protection against the most prevalent Shigella serotypes. Here, the 4-component GMMA vaccine candidate has been compared to a more traditional glycoconjugate formulation for the ability to induce functional antibodies in mice and rabbits. In mice, in the absence of Alhydrogel, GMMA induce higher IgG antibodies than glycoconjugates and stronger bactericidal titers against all Shigella serotypes. In the presence of Alhydrogel, GMMA induce O-antigen specific IgG levels similar to traditional glycoconjugates, but with a broader range of IgG subclasses, resulting in stronger bactericidal activity. In rabbits, GMMA elicit higher functional antibodies than glycoconjugates against S. sonnei, and similar responses to S. flexneri 1b, 2a and 3a, independently from the presence of Alhydrogel. Different O-antigen based vaccines against Shigella are now in clinical stage and it will be of particular interest to understand how the preclinical findings in the different animal models translate in humans.
Collapse
Affiliation(s)
- Roberta Di Benedetto
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | | | | | - Carlo Giannelli
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | | |
Collapse
|
5
|
Boero E, Vezzani G, Micoli F, Pizza M, Rossi O. Functional assays to evaluate antibody-mediated responses against Shigella: a review. Front Cell Infect Microbiol 2023; 13:1171213. [PMID: 37260708 PMCID: PMC10227456 DOI: 10.3389/fcimb.2023.1171213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/27/2023] [Indexed: 06/02/2023] Open
Abstract
Shigella is a major global pathogen and the etiological agent of shigellosis, a diarrheal disease that primarily affects low- and middle-income countries. Shigellosis is characterized by a complex, multistep pathogenesis during which bacteria use multiple invasion proteins to manipulate and invade the intestinal epithelium. Antibodies, especially against the O-antigen and some invasion proteins, play a protective role as titres against specific antigens inversely correlate with disease severity; however, the context of antibody action during pathogenesis remains to be elucidated, especially with Shigella being mostly an intracellular pathogen. In the absence of a correlate of protection, functional assays rebuilding salient moments of Shigella pathogenesis can improve our understanding of the role of protective antibodies in blocking infection and disease. In vitro assays are important tools to build correlates of protection. Only recently animal models to recapitulate human pathogenesis, often not in full, have been established. This review aims to discuss in vitro assays to evaluate the functionality of anti-Shigella antibodies in polyclonal sera in light of the multistep and multifaced Shigella infection process. Indeed, measurement of antibody level alone may limit the evaluation of full vaccine potential. Serum bactericidal assay (SBA), and other functional assays such as opsonophagocytic killing assays (OPKA), and adhesion/invasion inhibition assays (AIA), are instead physiologically relevant and may provide important information regarding the role played by these effector mechanisms in protective immunity. Ultimately, the review aims at providing scientists in the field with new points of view regarding the significance of functional assays of choice which may be more representative of immune-mediated protection mechanisms.
Collapse
Affiliation(s)
- Elena Boero
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Giacomo Vezzani
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Mariagrazia Pizza
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| |
Collapse
|
6
|
Mancini F, Alfini R, Caradonna V, Monaci V, Carducci M, Gasperini G, Piccioli D, Biagini M, Giannelli C, Rossi O, Pizza M, Micoli F. Exploring the Role of GMMA Components in the Immunogenicity of a 4-Valent Vaccine against Shigella. Int J Mol Sci 2023; 24:2742. [PMID: 36769063 PMCID: PMC9916818 DOI: 10.3390/ijms24032742] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Shigellosis is the leading cause of diarrheal disease, especially in children of low- and middle-income countries, and is often associated with anti-microbial resistance. Currently, there are no licensed vaccines widely available against Shigella, but several candidates based on the O-antigen (OAg) portion of lipopolysaccharides are in development. We have proposed Generalized Modules for Membrane Antigens (GMMA) as an innovative delivery system for OAg, and a quadrivalent vaccine candidate containing GMMA from S. sonnei and three prevalent S. flexneri serotypes (1b, 2a and 3a) is moving to a phase II clinical trial, with the aim to elicit broad protection against Shigella. GMMA are able to induce anti-OAg-specific functional IgG responses in animal models and healthy adults. We have previously demonstrated that antibodies against protein antigens are also generated upon immunization with S. sonnei GMMA. In this work, we show that a quadrivalent Shigella GMMA-based vaccine is able to promote a humoral response against OAg and proteins of all GMMA types contained in the investigational vaccine. Proteins contained in GMMA provide T cell help as GMMA elicit a stronger anti-OAg IgG response in wild type than in T cell-deficient mice. Additionally, we observed that only the trigger of Toll-like Receptor (TLR) 4 and not of TLR2 contributed to GMMA immunogenicity. In conclusion, when tested in mice, GMMA of a quadrivalent Shigella vaccine candidate combine both adjuvant and carrier activities which allow an increase in the low immunogenic properties of carbohydrate antigens.
Collapse
Affiliation(s)
- Francesca Mancini
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy
| | - Renzo Alfini
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy
| | - Valentina Caradonna
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy
| | - Valentina Monaci
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy
| | - Martina Carducci
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy
| | - Gianmarco Gasperini
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy
| | | | | | - Carlo Giannelli
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy
| | - Mariagrazia Pizza
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|