1
|
Johnson BW, Strand NH, Raynak JC, Jara C, Habtegiorgis K, Hand BA, Hong S, Maloney JA. Cannabinoids in Chronic Pain Management: A Review of the History, Efficacy, Applications, and Risks. Biomedicines 2025; 13:530. [PMID: 40149508 PMCID: PMC11940634 DOI: 10.3390/biomedicines13030530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Chronic pain remains a pervasive and challenging public health issue, often resistant to conventional treatments such as opioids, which carry substantial risks of dependency and adverse effects. Cannabinoids, bioactive compounds derived from the Cannabis sativa plant and their synthetic analogs, have emerged as a potential alternative for pain management, leveraging their interaction with the endocannabinoid system to modulate pain and inflammation. Methods: The current, evolving literature regarding the history, efficacy, applications, and safety of cannabinoids in the treatment of chronic pain was reviewed and summarized to provide the most current review of cannabinoids. Results: Evidence suggests that cannabinoids provide moderate efficacy in managing neuropathic pain, fibromyalgia, cancer-related pain, and multiple sclerosis-related spasticity. Patient-reported outcomes further indicate widespread perceptions of cannabinoids as a safer alternative to opioids, with potential opioid-sparing effects. However, the quality of existing evidence is limited by small sample sizes and methodological inconsistencies. Regulatory barriers, including the classification of cannabis as a Schedule I substance in the United States, continue to hinder robust research and clinical integration. Moreover, the risks associated with cannabinoids, such as psychiatric effects, addiction potential, and drug interactions, necessitate cautious application. Conclusions: Cannabinoids represent a promising, albeit complex, alternative for chronic pain management, particularly given the limitations and risks of traditional therapies such as opioids. However, significant deficiencies remain in the research. While smaller trials and systematic reviews indicate therapeutic potential, the quality of evidence is often low due to limited sample sizes, short study durations, and methodological inconsistencies. Large-scale, randomized controlled trials with long-term follow-up are urgently needed to confirm efficacy and safety across diverse patient populations and pain etiologies.
Collapse
Affiliation(s)
- Brooks W. Johnson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ 85054, USA (J.C.R.); (J.A.M.)
| | - Natalie H. Strand
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ 85054, USA (J.C.R.); (J.A.M.)
| | - John C. Raynak
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ 85054, USA (J.C.R.); (J.A.M.)
| | - Christian Jara
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ 85054, USA (J.C.R.); (J.A.M.)
| | - Kisanet Habtegiorgis
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ 85054, USA (J.C.R.); (J.A.M.)
| | | | - Sang Hong
- Creighton University School of Medicine, Phoenix, AZ 85012, USA;
| | - Jillian A. Maloney
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ 85054, USA (J.C.R.); (J.A.M.)
| |
Collapse
|
2
|
Zorrilla E, Krivoshein G, Kuburas A, Schenke M, Piña CL, van Heiningen SH, Waite JS, Dehghani A, Castonguay WC, Flinn HC, van den Maagdenberg AMJM, Russo AF, Tolner EA, Wattiez AS. Combined effects of cannabidiol and Δ9-tetrahydrocannabinol alleviate migraine-like symptoms in mice. Cephalalgia 2025; 45:3331024251314487. [PMID: 39988876 DOI: 10.1177/03331024251314487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
BACKGROUND The therapeutic use of cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) to treat migraine has been understudied. Using three mouse models, we examined the impact of CBD and THC on migraine-relevant behaviors triggered by: 1) calcitonin gene-related peptide (CGRP), 2) sodium nitroprusside (SNP), and 3) cortical spreading depolarization (CSD). METHODS Both male and female CD1 mice were treated with CBD (100 mg/kg) or THC (1 mg/kg) alone or in combinations of CBD (1, 30 or 100 mg/kg) and THC (1 mg/kg) prior to injection of CGRP or SNP. The mice were assessed for light aversion (photophobia), squint (non-evoked pain), and periorbital tactile hypersensitivity, as well as possible adverse effects. In a separate set of experiments, CSD events were optogenetically induced in familial hemiplegic migraine 1 (FHM1) mutant and wildtype littermates (WT) mice (C57BL/6 background), followed by grimace and motor assessments with and without combinations of CBD (30 or 100 mg/kg) and THC (1 mg/kg). RESULTS In CD1 mice, a 100:1 CBD:THC combination mitigated light aversion induced by CGRP and SNP in males and females. Rescue of CGRP- and SNP-induced squint was observed only in male mice with 100:1 CBD:THC. None of the treatments rescued periorbital tactile hypersensitivity in either sex. In FHM1 mutant and WT mice, the 100:1 CBD:THC ratio did not affect CSD characteristics but did reduce CSD-induced grimace features (i.e., head pain mimic). No adverse effects of any of the cannabinoid treatments were observed using cognitive, emotional, or motor tests. CONCLUSIONS A 100:1 ratio of CBD:THC has a beneficial effect on some of the most bothersome migraine-related symptoms in three mouse models. Our findings support a potential therapeutic efficacy of combined CBD and THC treatments.
Collapse
Affiliation(s)
- Erik Zorrilla
- Neuroscience Graduate Program, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Georgii Krivoshein
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Adisa Kuburas
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Maarten Schenke
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Cassandra L Piña
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | | | - Jayme S Waite
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, IA, USA
| | - Anisa Dehghani
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - William C Castonguay
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Harold C Flinn
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew F Russo
- Neuroscience Graduate Program, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, IA, USA
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Else A Tolner
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne-Sophie Wattiez
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
3
|
Zorrilla E, Della Pietra A, Russo AF. Interplay between cannabinoids and the neuroimmune system in migraine. J Headache Pain 2024; 25:178. [PMID: 39407099 PMCID: PMC11481476 DOI: 10.1186/s10194-024-01883-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Migraine is a common and complex neurological disorder that has a high impact on quality of life. Recent advances with drugs that target the neuropeptide calcitonin gene-related peptide (CGRP) have helped, but treatment options remain insufficient. CGRP is released from trigeminal sensory fibers and contributes to peripheral sensitization, perhaps in part due to actions on immune cells in the trigeminovascular system. In this review, we will discuss the potential of cannabinoid targeting of immune cells as an innovative therapeutic target for migraine treatment. We will cover endogenous endocannabinoids, plant-derived phytocannabinoids and synthetically derived cannabinoids. The focus will be on six types of immune cells known to express multiple cannabinoid receptors: macrophages, monocytes, mast cells, dendritic cells, B cells, and T cells. These cells also contain receptors for CGRP and as such, cannabinoids might potentially modulate the efficacy of current CGRP-targeting drugs. Unfortunately, to date most studies on cannabinoids and immune cells have relied on cell cultures and only a single preclinical study has tested cannabinoid actions on immune cells in a migraine model. Encouragingly, in that study a synthetically created stable chiral analog of an endocannabinoid reduced meningeal mast cell degranulation. Likewise, clinical trials evaluating the safety and efficacy of cannabinoid-based therapies for migraine patients have been limited but are encouraging. Thus, the field is at its infancy and there are significant gaps in our understanding of the impact of cannabinoids on immune cells in migraine. Future research exploring the interactions between cannabinoids and immune cells could lead to more targeted and effective migraine treatments.
Collapse
Affiliation(s)
- Erik Zorrilla
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA
| | - Adriana Della Pietra
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA.
- Veterans Affairs Healthcare System, Iowa City, IA, 52246, USA.
| |
Collapse
|
4
|
Starkey B, Pearlson GD, Bond D, Glaser C, Bhargava A, Grosberg BM, Verhaak A. Characterizing Cannabis Use and Perceived Benefit in a Tertiary Headache Center Patient Sample. Neurol Clin Pract 2024; 14:e200285. [PMID: 38455123 PMCID: PMC10915819 DOI: 10.1212/cpj.0000000000200285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024]
Abstract
Background and Objectives Research suggests a potential role for cannabinoids in the etiology and treatment of migraine. However, there is a paucity of research on usage patterns and perceived benefits of cannabis use in clinical headache patient populations. Methods Patients from a tertiary headache center completed a 1-time online survey regarding cannabis use patterns and perceived benefits of cannabis-based products in treating migraine symptoms, clinical features, and risk factors (e.g., depression, sleep disturbance). Descriptive analyses were performed. Results Data were collected from 1373 patients (response rate 25.4% [1,373/5,400]), with 55.7% reporting cannabis-based product use in the past 3 years and 32.5% indicating current use. The most frequently cited reasons for cannabis-based product use were treating headache (65.8%) and sleep concerns (50.8%). Inhaled products (i.e., smoked/vaped) and edibles were the most commonly reported delivery methods, with THC/CBD (∆9 tetrahydrocannabinol/cannabidiol) blends as the most-cited product composition. A majority of participants reported cannabis-related improvements in migraine headache characteristics (i.e., intensity: 78.1%; duration: 73.4%; frequency: 62.4%), nausea (56.3%), and risk factors (sleep disturbance: 81.2%; anxiety: 71.4%; depression: 57.0%). Over half (58.0%) of the respondents reported only using cannabis products when experiencing a headache, while 42.0% used cannabis most days/daily for prevention. Nearly half (48.9%) of the respondents reported that cannabis use contributed to a reduction in medication amount for headache treatment, and 14.5% reported an elimination of other medications. A minority (20.9%) of participants reported experiencing side effects when using cannabis products for headache, most commonly fatigue/lethargy. For those participants who reported no use of cannabis-based products in the previous 3 years, approximately half indicated not knowing what cannabis product to take or the appropriate dosage. Discussion This is the largest study to date to document cannabis product usage patterns and perceived benefits for migraine management in a clinical headache patient sample. A majority of patients surveyed reported using cannabis products for migraine management and cited perceived improvements in migraine characteristics, clinical features, and associated risk factors. The findings warrant experimental trials to confirm the perceived benefits of cannabis products for migraine prevention and treatment.
Collapse
Affiliation(s)
- Brianna Starkey
- Hartford HealthCare Headache Center (BS, CG, AB, BMG, AV), Ayer Neuroscience Institute, West Hartford; Olin Neuropsychiatric Research Center (GDP), Institute of Living, Hartford; Department of Psychiatry and Neuroscience (GDP), Yale School of Medicine, New Haven; Department of Research (DB), Hartford Hospital/Hartford HealthCare; Department of Neurology (BMG, AV), University of Connecticut School of Medicine, Farmington; and Division of Health Psychology (AV), The Institute of Living/Hartford Hospital, CT
| | - Godfrey D Pearlson
- Hartford HealthCare Headache Center (BS, CG, AB, BMG, AV), Ayer Neuroscience Institute, West Hartford; Olin Neuropsychiatric Research Center (GDP), Institute of Living, Hartford; Department of Psychiatry and Neuroscience (GDP), Yale School of Medicine, New Haven; Department of Research (DB), Hartford Hospital/Hartford HealthCare; Department of Neurology (BMG, AV), University of Connecticut School of Medicine, Farmington; and Division of Health Psychology (AV), The Institute of Living/Hartford Hospital, CT
| | - Dale Bond
- Hartford HealthCare Headache Center (BS, CG, AB, BMG, AV), Ayer Neuroscience Institute, West Hartford; Olin Neuropsychiatric Research Center (GDP), Institute of Living, Hartford; Department of Psychiatry and Neuroscience (GDP), Yale School of Medicine, New Haven; Department of Research (DB), Hartford Hospital/Hartford HealthCare; Department of Neurology (BMG, AV), University of Connecticut School of Medicine, Farmington; and Division of Health Psychology (AV), The Institute of Living/Hartford Hospital, CT
| | - Cathy Glaser
- Hartford HealthCare Headache Center (BS, CG, AB, BMG, AV), Ayer Neuroscience Institute, West Hartford; Olin Neuropsychiatric Research Center (GDP), Institute of Living, Hartford; Department of Psychiatry and Neuroscience (GDP), Yale School of Medicine, New Haven; Department of Research (DB), Hartford Hospital/Hartford HealthCare; Department of Neurology (BMG, AV), University of Connecticut School of Medicine, Farmington; and Division of Health Psychology (AV), The Institute of Living/Hartford Hospital, CT
| | - Aakash Bhargava
- Hartford HealthCare Headache Center (BS, CG, AB, BMG, AV), Ayer Neuroscience Institute, West Hartford; Olin Neuropsychiatric Research Center (GDP), Institute of Living, Hartford; Department of Psychiatry and Neuroscience (GDP), Yale School of Medicine, New Haven; Department of Research (DB), Hartford Hospital/Hartford HealthCare; Department of Neurology (BMG, AV), University of Connecticut School of Medicine, Farmington; and Division of Health Psychology (AV), The Institute of Living/Hartford Hospital, CT
| | - Brian M Grosberg
- Hartford HealthCare Headache Center (BS, CG, AB, BMG, AV), Ayer Neuroscience Institute, West Hartford; Olin Neuropsychiatric Research Center (GDP), Institute of Living, Hartford; Department of Psychiatry and Neuroscience (GDP), Yale School of Medicine, New Haven; Department of Research (DB), Hartford Hospital/Hartford HealthCare; Department of Neurology (BMG, AV), University of Connecticut School of Medicine, Farmington; and Division of Health Psychology (AV), The Institute of Living/Hartford Hospital, CT
| | - Allison Verhaak
- Hartford HealthCare Headache Center (BS, CG, AB, BMG, AV), Ayer Neuroscience Institute, West Hartford; Olin Neuropsychiatric Research Center (GDP), Institute of Living, Hartford; Department of Psychiatry and Neuroscience (GDP), Yale School of Medicine, New Haven; Department of Research (DB), Hartford Hospital/Hartford HealthCare; Department of Neurology (BMG, AV), University of Connecticut School of Medicine, Farmington; and Division of Health Psychology (AV), The Institute of Living/Hartford Hospital, CT
| |
Collapse
|
5
|
Schuster NM, Wallace MS, Marcotte TD, Buse DC, Lee E, Liu L, Sexton M. Vaporized Cannabis versus Placebo for Acute Migraine: A Randomized Controlled Trial. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.16.24302843. [PMID: 38405890 PMCID: PMC10889030 DOI: 10.1101/2024.02.16.24302843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Background Preclinical and retrospective studies suggest cannabinoids may be effective in migraine treatment. However, there have been no randomized clinical trials examining the efficacy of cannabinoids for acute migraine. Methods In this randomized, double-blind, placebo-controlled, crossover trial, adults with migraine treated up to 4 separate migraine attacks, 1 each with vaporized 1) 6% Δ9-tetrahydrocannabinol (THC-dominant); 2) 11% cannabidiol (CBD-dominant); 3) 6% THC+11% CBD; and 4) placebo cannabis flower in a randomized order. Washout period between treated attack was ≥1 week. The primary endpoint was pain relief and secondary endpoints were pain freedom and most bothersome symptom (MBS) freedom, all assessed at 2 hours post-vaporization. Results Ninety-two participants were enrolled and randomized, and 247 migraine attacks were treated. THC+CBD was superior to placebo at achieving pain relief (67.2% vs 46.6%, Odds Ratio [95% Confidence Interval] 2.85 [1.22, 6.65], p=0.016), pain freedom (34.5% vs. 15.5%, 3.30 [1.24, 8.80], p=0.017) and MBS freedom (60.3% vs. 34.5%, 3.32 [1.45, 7.64], p=0.005) at 2 hours, as well as sustained pain freedom at 24 hours and sustained MBS freedom at 24 and 48 hours. THC-dominant was superior to placebo for pain relief (68.9% vs. 46.6%, 3.14 [1.35, 7.30], p=0.008) but not pain freedom or MBS freedom at 2 hours. CBD-dominant was not superior to placebo for pain relief, pain freedom or MBS freedom at 2 hours. There were no serious adverse events. Conclusions Acute migraine treatment with 6% THC+11% CBD was superior to placebo at 2 hours post-treatment with sustained benefits at 24 and 48 hours.
Collapse
Affiliation(s)
- Nathaniel M. Schuster
- Center for Pain Medicine, Department of Anesthesiology, University of California, San Diego Health System, San Diego, CA
- Center for Medicinal Cannabis Research, University of California, San Diego Health System, San Diego, CA
| | - Mark S. Wallace
- Center for Pain Medicine, Department of Anesthesiology, University of California, San Diego Health System, San Diego, CA
- Center for Medicinal Cannabis Research, University of California, San Diego Health System, San Diego, CA
| | - Thomas D. Marcotte
- Department of Psychiatry, University of California, San Diego Health System, San Diego, CA
- Center for Medicinal Cannabis Research, University of California, San Diego Health System, San Diego, CA
| | - Dawn C. Buse
- Department of Neurology, Albert Einstein College of Medicine
| | - Euyhyun Lee
- Altman Clinical and Translational Research Institute, University of California, San Diego Health System, San Diego, CA
| | - Lin Liu
- Department of Biostatistics and Bioinformatics, Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego Health System, San Diego, CA
| | - Michelle Sexton
- Centers for Integrative Health, Department of Family Medicine, University of California, San Diego Health System, San Diego, CA
- Center for Medicinal Cannabis Research, University of California, San Diego Health System, San Diego, CA
| |
Collapse
|
6
|
Singh K, Bhushan B, Chanchal DK, Sharma SK, Rani K, Yadav MK, Porwal P, Kumar S, Sharma A, Virmani T, Kumar G, Noman AA. Emerging Therapeutic Potential of Cannabidiol (CBD) in Neurological Disorders: A Comprehensive Review. Behav Neurol 2023; 2023:8825358. [PMID: 37868743 PMCID: PMC10586905 DOI: 10.1155/2023/8825358] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023] Open
Abstract
Cannabidiol (CBD), derived from Cannabis sativa, has gained remarkable attention for its potential therapeutic applications. This thorough analysis explores the increasing significance of CBD in treating neurological conditions including epilepsy, multiple sclerosis, Parkinson's disease, and Alzheimer's disease, which present major healthcare concerns on a worldwide scale. Despite the lack of available therapies, CBD has been shown to possess a variety of pharmacological effects in preclinical and clinical studies, making it an intriguing competitor. This review brings together the most recent findings on the endocannabinoid and neurotransmitter systems, as well as anti-inflammatory pathways, that underlie CBD's modes of action. Synthesized efficacy and safety assessments for a range of neurological illnesses are included, covering human trials, in vitro studies, and animal models. The investigation includes how CBD could protect neurons, control neuroinflammation, fend off oxidative stress, and manage neuronal excitability. This study emphasizes existing clinical studies and future possibilities in CBD research, addressing research issues such as regulatory complications and contradicting results, and advocates for further investigation of therapeutic efficacy and ideal dose methodologies. By emphasizing CBD's potential to improve patient well-being, this investigation presents a revised viewpoint on its suitability as a therapeutic intervention for neurological illnesses.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Bharat Bhushan
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Dilip Kumar Chanchal
- Department of Pharmacognosy, Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Satish Kumar Sharma
- Department of Pharmacognosy, Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Ketki Rani
- Department of Chemistry, SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Manoj Kumar Yadav
- Department of Pharmacology, Dr. Bhimrao Ambedkar University, Chhalesar Campus, Agra, Uttar Pradesh, India
| | - Prateek Porwal
- Department of Pharmacognosy, Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, 121105, Palwal, Haryana, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, 121105, Palwal, Haryana, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, 121105, Palwal, Haryana, India
| | | |
Collapse
|
7
|
Chandwani B, Bradley BA, Pace A, Buse DC, Singh R, Kuruvilla D. The Exploration of Cannabis and Cannabinoid Therapies for Migraine. Curr Pain Headache Rep 2023; 27:339-350. [PMID: 37515745 DOI: 10.1007/s11916-023-01144-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 07/31/2023]
Abstract
PURPOSE OF REVIEW There is increasing interest in the use of cannabis and cannabinoid therapies (CCT) by the general population and among people with headache disorders, which results in a need for healthcare professionals to be well versed with the efficacy and safety data. In this manuscript, we review cannabis and cannabinoid terminology, the endocannabinoid system and its role in the central nervous system (CNS), the data on efficacy, safety, tolerability, and potential pitfalls associated with use in people with migraine and headache disorders. We also propose possible mechanisms of action in headache disorders and debunk commonly held myths about its use. RECENT FINDINGS Preliminary studies show that CCT have evidence for the management of migraine. While this evidence exists, further randomized, controlled studies are needed to better support its clinical use. CCT can be considered an integrative treatment added to mainstream medicine for people with migraine who are refractory to treatment and/or exhibit disability and/or interest in trying these therapies. Further studies are warranted to specify appropriate formulation, dosage, and indication(s). Although not included in guidelines or the AHS 2021 Consensus Statement on migraine therapies, with the legalization of CCT for medical or unrestricted use across the USA, recent systematic reviews highlighting the preliminary evidence for its use in migraine, it is vital for clinicians to be well versed in the efficacy, safety, and clinical considerations for their use. This review provides information which can help people with migraine and clinicians who care for them make mutual, well-informed decisions on the use of cannabis and cannabinoid therapies for migraine based on the existing data.
Collapse
Affiliation(s)
- Brijesh Chandwani
- Department of Diagnostic Sciences, Tufts University, 1 Kneeland St, Boston, MA, 02111, USA.
- Attending, Orofacial Pain Service, St. Barnabas Hospital, Bronx, NY, USA.
| | | | - Anna Pace
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dawn C Buse
- Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
| | | | | |
Collapse
|
8
|
Birenboim M, Kengisbuch D, Chalupowicz D, Maurer D, Barel S, Chen Y, Fallik E, Paz-Kagan T, Shimshoni JA. Use of near-infrared spectroscopy for the classification of medicinal cannabis cultivars and the prediction of their cannabinoid and terpene contents. PHYTOCHEMISTRY 2022; 204:113445. [PMID: 36165867 DOI: 10.1016/j.phytochem.2022.113445] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Cannabis sativa L. is used to treat a wide variety of medical conditions, in light of its beneficial pharmacological properties of its cannabinoids and terpenes. At present, the quantitative chemical analysis of these active compounds is achieved through the use of laborious, expensive, and time-consuming technologies, such as high-pressure liquid-chromatography- photodiode arrays, mass spectrometer detectors (HPLC-PDA or MS), or gas chromatography-mass spectroscopy (GC-MS). Hence, we aimed to develop a simple, accurate, fast, and cheap technique for the quantification of major cannabinoids and terpenes using Fourier transform near infra-red spectroscopy (FT-NIRS). FT-NIRS was coupled with multivariate classification and regression models, namely partial least square-discriminant analysis (PLS-DA) and partial least squares regression (PLS-R) models. The PLS-DA model yielded an absolute major class separation (high-THC, high-CBD, hybrid, and high-CBG) and perfect class prediction. Using only three latent variables (LVs), the cross-validation and prediction model errors indicated a low probability of over-fitting the data. In addition, the PLS-DA model enabled the classification of chemovars with genetic-chemical similarities. The classification of high-THCA chemovars was more sensitive and more specific than the classifications of the remaining chemovars. The prediction of cannabinoid and terpene concentrations by PLS-R yielded 11 robust models with high predictive capabilities (R2CV and R2pred > 0.8, RPD >2.5 and RPIQ >3, RMSECV/RMSEC ratio <1.2) and additional 15 models whose performance was acceptable for initial screening purposes (R2CV > 0.7 and R2pred < 0.8, RPD >2 and RPIQ <3, 1.2 < RMSECV/RMSEC ratio <2). Our results confirm that there is sufficient information in the FT-NIRS to develop cannabinoid and terpene prediction models and major-cultivar classification models.
Collapse
Affiliation(s)
- Matan Birenboim
- Department of Food Safety, Institute for Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, P.O. Box 15159, Rishon LeZion, 7505101, Israel; Department of Plant Science, The Robert H Smith Faculty of Agriculture, Food and Environment, Rehovot, 7610001, Israel
| | - David Kengisbuch
- Department of Food Quality, Institute for Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, P.O. Box 15159, Rishon LeZion, 7505101, Israel
| | - Daniel Chalupowicz
- Department of Food Quality, Institute for Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, P.O. Box 15159, Rishon LeZion, 7505101, Israel
| | - Dalia Maurer
- Department of Food Quality, Institute for Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, P.O. Box 15159, Rishon LeZion, 7505101, Israel
| | - Shimon Barel
- Kimron Veterinary Institute, Department of Toxicology, Bet Dagan, 50250, Israel
| | - Yaira Chen
- Department of Food Safety, Institute for Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, P.O. Box 15159, Rishon LeZion, 7505101, Israel
| | - Elazar Fallik
- Department of Food Safety, Institute for Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, P.O. Box 15159, Rishon LeZion, 7505101, Israel
| | - Tarin Paz-Kagan
- French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Jakob A Shimshoni
- Department of Food Safety, Institute for Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, P.O. Box 15159, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
9
|
Sherpa ML, Shrestha N, Ojinna BT, Ravi N, Shantha Kumar V, Choday S, Parisapogu A, Tran HHV, Kc A, Elshaikh AO. Efficacy and Safety of Medical Marijuana in Migraine Headache: A Systematic Review. Cureus 2022; 14:e32622. [PMID: 36660507 PMCID: PMC9845509 DOI: 10.7759/cureus.32622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022] Open
Abstract
Medical marijuana treatment for migraine is becoming more common, although the legality and societal acceptance of marijuana for medical purposes in the United States have been challenged by the stigma attached to it as a recreational drug. These substances function to reduce nociception and decrease the frequency of migraine by having an impact on the endocannabinoid system. Our study reviewed the clinical response, dosing, and side effects of marijuana in migraine management. Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a literature search in PubMed, Google Scholar, and Science Direct, and nine studies were included in the systematic review. The studies demonstrated that medical marijuana has a significant clinical response by reducing the length and frequency of migraines. No severe adverse effects were noted. Due to its effectiveness and convenience, medical marijuana therapy may be helpful for patients suffering from migraines. However, additional clinical trials and observational studies with longer follow-ups are required to study the efficacy and safety of the drug.
Collapse
Affiliation(s)
- Mingma L Sherpa
- Internal Medicine and Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nilasma Shrestha
- Pathology and Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Blessing T Ojinna
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Niriksha Ravi
- Internal Medicine and Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Vivig Shantha Kumar
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Silpa Choday
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Anusha Parisapogu
- Infectious Disease, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Hadrian Hoang-Vu Tran
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Anil Kc
- Internal Medicine/Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Abeer O Elshaikh
- Internal Medicine/Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
10
|
Kim ES, Kang C. Consider cannabinoids as an individual therapeutic trial in nociplastic pain. DRUGS & THERAPY PERSPECTIVES 2022. [DOI: 10.1007/s40267-022-00954-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Aviram J, Lewitus GM, Vysotski Y, Berman P, Shapira A, Procaccia S, Meiri D. Sex differences in medical cannabis-related adverse effects. Pain 2022; 163:975-983. [PMID: 34538843 PMCID: PMC9009319 DOI: 10.1097/j.pain.0000000000002463] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/04/2022]
Abstract
ABSTRACT Studies have shown that women are more susceptible to adverse effects (AEs) from conventional drugs. This study aimed to investigate the differences of medical cannabis (MC)-related AEs between women and men in patients with chronic noncancer pain (CNCP). This is a cross-sectional study of adult patients licensed for MC treatment who were also diagnosed as patients with CNCP by a physician. Data included self-reported questionnaires and comprehensive MC treatment information. Simultaneously, identification and quantification of phytocannabinoids and terpenoids from the MC cultivars were performed. Comparative statistics were used to evaluate differences between men and women. Four hundred twenty-nine patients with CNCP (64% males) reported fully on their MC treatment. Subgrouping by sex demonstrated that the weight-adjusted doses were similar between men and women (0.48 [0.33-0.6] gr for men and 0.47 [0.34-0.66] gr for women). Nonetheless, women reported more than men on MC-related AEs. Further analysis revealed that women consumed different MC cultivar combinations than men, with significantly higher monthly doses of the phytocannabinoids CBD and CBC and significantly lower monthly doses of the phytocannabinoid 373-15c and the terpenoid linalool. Our findings demonstrate sex differences in MC-related AEs among patients with CNCP. Women are more susceptible to MC-related AEs, presumably because of both the inherent sex effect and the consumption of specific phytocannabinoid compositions in the MC cultivar(s). The understanding of these differences may be crucial for planning MC treatments with safer phytocannabinoid and terpenoid compositions and to better inform patients of expected AEs.
Collapse
Affiliation(s)
- Joshua Aviram
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gil M. Lewitus
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yelena Vysotski
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Paula Berman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Anna Shapira
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shiri Procaccia
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - David Meiri
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
12
|
Procaccia S, Lewitus GM, Lipson Feder C, Shapira A, Berman P, Meiri D. Cannabis for Medical Use: Versatile Plant Rather Than a Single Drug. Front Pharmacol 2022; 13:894960. [PMID: 35548332 PMCID: PMC9081504 DOI: 10.3389/fphar.2022.894960] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 03/28/2022] [Indexed: 12/05/2022] Open
Abstract
Medical Cannabis and its major cannabinoids (−)-trans-Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are gaining momentum for various medical purposes as their therapeutic qualities are becoming better established. However, studies regarding their efficacy are oftentimes inconclusive. This is chiefly because Cannabis is a versatile plant rather than a single drug and its effects do not depend only on the amount of THC and CBD. Hundreds of Cannabis cultivars and hybrids exist worldwide, each with a unique and distinct chemical profile. Most studies focus on THC and CBD, but these are just two of over 140 phytocannabinoids found in the plant in addition to a milieu of terpenoids, flavonoids and other compounds with potential therapeutic activities. Different plants contain a very different array of these metabolites in varying relative ratios, and it is the interplay between these molecules from the plant and the endocannabinoid system in the body that determines the ultimate therapeutic response and associated adverse effects. Here, we discuss how phytocannabinoid profiles differ between plants depending on the chemovar types, review the major factors that affect secondary metabolite accumulation in the plant including the genotype, growth conditions, processing, storage and the delivery route; and highlight how these factors make Cannabis treatment highly complex.
Collapse
|
13
|
Clinical Evidence of Cannabinoids in Migraine: A Narrative Review. J Clin Med 2022; 11:jcm11061479. [PMID: 35329806 PMCID: PMC8949974 DOI: 10.3390/jcm11061479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/13/2022] Open
Abstract
The endocannabinoid system (ECS) influences many biological functions, and hence, its pharmacological modulation may be useful for several disorders, such as migraine. Preclinical studies have demonstrated that the ECS is involved in the modulation of trigeminal excitability. Additionally, clinical data have suggested that an endocannabinoid deficiency is associated with migraine. Given these data, phytocannabinoids, as well as synthetic cannabinoids, have been tried as migraine treatments. In this narrative review, the current clinical evidence of potential ECS involvement in migraine pathogenesis is summarized. Furthermore, studies exploring the clinical effects of phytocannabinoids and synthetic cannabinoids on migraine patients are reviewed.
Collapse
|
14
|
Fitzcharles MA, Petzke F, Tölle TR, Häuser W. Cannabis-Based Medicines and Medical Cannabis in the Treatment of Nociplastic Pain. Drugs 2021; 81:2103-2116. [PMID: 34800285 DOI: 10.1007/s40265-021-01602-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 12/30/2022]
Abstract
Nociplastic pain is defined as pain due to sensitization of the nervous system, without a sufficient underlying anatomical abnormality to explain the severity of pain. Nociplastic pain may be manifest in various organ systems, is often perceived as being more widespread rather than localized and is commonly associated with central nervous system symptoms of fatigue, difficulties with cognition and sleep, and other somatic symptoms; all features that contribute to considerable suffering. Exemplified by fibromyalgia, nociplastic conditions also include chronic visceral pain, chronic headaches and facial pain, and chronic musculoskeletal pain. It has been theorized that dysfunction of the endocannabinoid system may contribute to persistent pain in these conditions. As traditional treatments for chronic pain in general and nociplastic pain in particular are imperfect, there is a need to identify other treatment options. Cannabis-based medicines and medical cannabis (MC) may hold promise and have been actively promoted by the media and advocacy. The medical community must be knowledgeable of the current evidence in this regard to be able to competently advise patients. This review will briefly explain the understanding of nociplastic pain, examine the evidence for the effect of cannabinoids in these conditions, and provide simplified guidance for healthcare providers who may consider prescribing cannabinoids for these conditions.
Collapse
Affiliation(s)
- Mary-Ann Fitzcharles
- Alan Edwards Pain Management Unit, Division of Rheumatology, Health Centre Montreal, McGill University, Montreal, QC, Canada.
- Division of Rheumatology, Montreal General Hospital, McGill University Health Centre, 1650 Cedar Ave, Montreal, QC, H3G 1A4, Canada.
| | - Frank Petzke
- Pain Medicine, Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas R Tölle
- Department of Neurology, Technische Universität München, Munich, Germany
| | - Winfried Häuser
- Department Psychosomatic Medicine and Psychotherapy, Technische Universität München, Munich, Germany
- Health Care Center for Pain Medicine, and Mental Health Saarbrücken, Saarbrücken, Germany
| |
Collapse
|
15
|
Balant M, Gras A, Ruz M, Vallès J, Vitales D, Garnatje T. Traditional uses of Cannabis: An analysis of the CANNUSE database. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114362. [PMID: 34171396 DOI: 10.1016/j.jep.2021.114362] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/31/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cannabis is one of the most versatile genera in terms of plant use and has been exploited by humans for millennia. Nowadays, Cannabis is the centre of many scientific studies, most of them focusing on chemical composition and medicinal values. While new and varied applications are continuously being developed, the knowledge surrounding less common uses of the plant is slowly disappearing. AIM OF THE REVIEW We have analysed diversity of global data of Cannabis traditional uses, to investigate if certain plant parts are significantly associated with particular Cannabis use. We wanted to uncover potential associations between the plant parts used for the treatment of different body systems and ailments. MATERIALS AND METHODS We have analysed the extensive database of Cannabis traditional uses (CANNUSE). This database contains 2330 data entries of Cannabis ethnobotanical uses from over 40 countries across the world. The dataset was divided into five general groups based on the type of use: medicinal, alimentary, psychoactive, fibre and other uses. Given the abundance of human medicinal uses, detailed analysis was done on the subset of 1167 data entries. We analysed the relationship between 16 body system categories and ailments treated with Cannabis plant parts. We used a Pearson's chi-square and Fisher's exact test, to determine which Cannabis parts are characteristic of treatment for specific ailments. RESULTS In this dataset, the majority of reports were represented by medicinal (75.41%), followed by psychoactive (8.35%) and alimentary (7.29%) use. The most commonly used plant parts were leaf (50.51%), seed (15.38%) and inflorescence (11.35%). We found that different Cannabis plant parts were significantly associated with different uses; the leaf was typically used for medicinal, seed for alimentary and inflorescence for psychoactive use. Regarding the human medicinal uses, most common were reports for treatments of the digestive system and nutritional disorders (17.66%), nervous system and mental disorders (16.24%), followed by pain and inflammations (12.21%). We found a significant relationship between the use of certain Cannabis parts and treatment of ailments and body systems categories; leaf was significantly associated with treatment of two categories: skin and subcutaneous tissue disorders and circulatory system and blood disorders; seed use was associated with musculoskeletal system disorders and traumas; while inflorescence use shows a statistical support for treatment of nervous system and mental disorders. CONCLUSION Several pharmaceutical companies are intensely working on developing new drugs with isolated chemical compounds or crude extracts, almost exclusively from Cannabis inflorescences. However, our review revealed that use of leaf or seed in traditional medicine is often more important than use of inflorescence for the treatment of certain ailments. A review of traditional medicine provides a body of knowledge and an initial pathway to identify landraces and plant parts that could have an important role in future medicinal research. We are confident that traditional medicine still has a large potential for modern medicine. As more information on Cannabis diversity (genetics, biochemistry, and clinical studies) becomes available, ethnobotanical data are poised to be of much greater significance.
Collapse
Affiliation(s)
- Manica Balant
- Institut Botànic de Barcelona (IBB, CSIC - Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain.
| | - Airy Gras
- Institut Botànic de Barcelona (IBB, CSIC - Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain.
| | - Mario Ruz
- Laboratori de Botànica (UB), Unitat Associada Al CSIC, Facultat de Farmàcia i Ciències de l'Alimentació - Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Catalonia, Spain.
| | - Joan Vallès
- Laboratori de Botànica (UB), Unitat Associada Al CSIC, Facultat de Farmàcia i Ciències de l'Alimentació - Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Catalonia, Spain; Institut d'Estudis Catalans (IEC), Carrer del Carme, 47, 08001, Barcelona, Catalonia, Spain.
| | - Daniel Vitales
- Institut Botànic de Barcelona (IBB, CSIC - Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain; Laboratori de Botànica (UB), Unitat Associada Al CSIC, Facultat de Farmàcia i Ciències de l'Alimentació - Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Catalonia, Spain.
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB, CSIC - Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain.
| |
Collapse
|
16
|
Poudel S, Quinonez J, Choudhari J, Au ZT, Paesani S, Thiess AK, Ruxmohan S, Hosameddin M, Ferrer GF, Michel J. Medical Cannabis, Headaches, and Migraines: A Review of the Current Literature. Cureus 2021; 13:e17407. [PMID: 34589318 PMCID: PMC8459575 DOI: 10.7759/cureus.17407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Cannabis has been long used since ancient times for both medical and recreational use. Past research has shown that cannabis can be indicated for symptom management disorders, including cancer, chronic pain, headaches, migraines, and psychological disorders (anxiety, depression, and post-traumatic stress disorder). Active ingredients in cannabis that modulate patients' perceptions of their conditions include Δ9‐tetrahydrocannabinol (THC), cannabidiol (CBD), flavonoids, and terpenes. These compounds work to produce effects within the endocannabinoid system to decrease nociception and decrease symptom frequency. Research within the United States of America is limited to date due to cannabis being classified as a schedule one drug per the Drug Enforcement Agency. Few anecdotal studies have found a limited relationship between cannabis use and migraine frequency. The purpose of the review article is to document the validity of how medical cannabis can be utilized as an alternative therapy for migraine management. Thirty-four relevant articles were selected after a thorough screening process using PubMed and Google Scholar databases. The following keywords were used: "Cannabis," "Medical Marijuana," "Headache," "Cannabis and Migraine," "Cannabis and Headache." This literature study demonstrates that medical cannabis use decreases migraine duration and frequency and headaches of unknown origin. Patients suffering from migraines and related conditions may benefit from medical cannabis therapy due to its convenience and efficacy.
Collapse
Affiliation(s)
- Sujan Poudel
- Division of Research and Academic Affairs, Larkin Community Hospital, Miami, USA
| | - Jonathan Quinonez
- Neurology/Osteopathic Neuromuscular Medicine, Larkin Community Hospital, Miami, USA
| | - Jinal Choudhari
- Division of Research and Academic Affairs, Larkin Community Hospital, Miami, USA
| | - Zachary T Au
- Family and Community Medicine, Larkin Community Hospital, Miami, Florida, USA
| | - Sylvia Paesani
- Division of Research and Academic Affairs, Larkin Community Hospital, Miami, USA
| | - Armond K Thiess
- Division of Research and Academic Affairs, Larkin Community Hospital, Miami, USA
| | - Samir Ruxmohan
- Neurology, Larkin Community Hospital, Miami, Florida, USA
| | | | | | | |
Collapse
|
17
|
Abstract
OBJECTIVE This study seeks to determine the prevalence and nature of cannabis use in patients with headache in a tertiary headache clinic and to explore patients' empiric experience in using cannabinoids therapeutically. BACKGROUND Many patients with headache report cannabinoid use as an effective abortive and/or preventive therapy. Mounting evidence implicates cannabinoids in pain mechanisms pertaining to migraine and other headache types. METHODS A cross-sectional study surveyed 200 patients presenting with any headache disorder to a tertiary headache clinic in Calgary, Alberta. Descriptive analyses were applied to capture information about headache diagnoses and the frequency, doses and methods of cannabinoid delivery employed, as well as patients' perceptions of therapeutic benefit and selected negative side effects. RESULTS Active cannabinoid users comprised 34.0% of respondents. Approximately 40% of respondents using cannabinoids engaged in very frequent use (≥300 days/year). Of cannabinoid modalities, liquid concentrates were most popular (39.2%), followed by smoked cannabis (33.3%). Patients endorsed cannabinoid use for both prevention and acute therapy of headaches, often concurrently. Sixty percent of respondents felt cannabinoids reduced headache severity, while 29.2% perceived efficacy in aborting headaches. Nearly 5% of respondents volunteered that they had encountered a serious problem such as an argument, fight, accident, or work issue as a result of their cannabis use. Approximately 35.4% of users had attempted to reduce their use. CONCLUSION This survey shows that over one-third of patients with headache disorders in a tertiary headache clinic use cannabis as a treatment for their headaches. Of these, about 25% and 60% perceive improvements in headache frequency and severity, respectively. The results of this survey will aid neurologists and headache specialists in understanding the landscape of cannabinoid use in a more severely affected population and inform future-controlled studies of cannabinoids in headache patients.
Collapse
|
18
|
Mechtler LL, Gengo FM, Bargnes VH. Cannabis and Migraine: It's Complicated. Curr Pain Headache Rep 2021; 25:16. [PMID: 33630181 DOI: 10.1007/s11916-020-00931-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The use of cannabis for the treatment of migraine has become an area of interest with the legalization of medical cannabis in the USA. Understanding the mechanisms of cannabinoids, available studies, and best clinical recommendations is crucial for headache providers to best serve patients. RECENT FINDINGS Patients utilizing medical cannabis for migraine have reported improvement in migraine profile and common comorbidities. Reduction in prescription medication is also common, especially opioids. Side effects exist, with the majority being mild. Not enough data is available for specific dose recommendations, but THC and CBD appear to mediate these observed effects. The purpose of this article is twofold: review the limited research surrounding cannabis for migraine disease and reflect on clinical management experiences to provide recommendations that best capture the potential use of cannabis for migraine.
Collapse
Affiliation(s)
- Laszlo L Mechtler
- Dent Neurologic Institute, 3980 Sheridan Drive, Suite 600, Amherst, NY, 14226, USA.
| | - Fran M Gengo
- Dent Neurologic Institute, 3980 Sheridan Drive, Suite 300, Amherst, NY, 14226, USA
| | - Vincent H Bargnes
- Dent Neurologic Institute, 3980 Sheridan Drive, Suite 600, Amherst, NY, 14226, USA
| |
Collapse
|
19
|
Sznitman SR, Rosenberg D, Vulfsons S, Meiri D, Greene T. Medical Cannabis Use and Pain: An Experience Sampling Study. Front Psychiatry 2021; 12:728283. [PMID: 34777039 PMCID: PMC8578807 DOI: 10.3389/fpsyt.2021.728283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Little research has tested associations of pain and MC use after long-term treatment and through methods that have external validity outside experimental settings. The study examined associations of pain, associated painful experiences, and long-term medical cannabis (MC) use in chronic pain (CP) patients using a naturalistic daily diary study that provided novel and externally valid data. Methods: Data were obtained from 78 MC users with CP three times daily over a 10-day period (nobservations = 1,688). Mixed-effects models were used to test the associations between MC use and momentary experiences of pain, affect, and fatigue. Results: Within persons, elevated experiences of pain intensity were associated with greater intention to use MC within the next hour. No evidence was found that the time lapse since last MC use was associated with pain levels, negative affect, or fatigue. Conclusions: The results imply that after long-term use, CP patients intend to use MC in response to pain experiences. Yet, they may not actually achieve the pain relief. More research is needed to examine whether continued MC use despite lack of pain relief is related to relief of other symptoms (e.g., dependence, withdrawal) or positive benefits (e.g., general sense of well-being) or tolerance.
Collapse
Affiliation(s)
| | | | - Simon Vulfsons
- Institute for Pain Medicine, Rambam Health Care, Haifa, Israel.,Rappaport School of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - David Meiri
- Department of Biology, Technion Israel Institute of Technology, Haifa, Israel
| | - Talya Greene
- Department of Community Mental Health, University of Haifa, Haifa, Israel
| |
Collapse
|
20
|
Cannabis: Neuropsychiatry and Its Effects on Brain and Behavior. Brain Sci 2020; 10:brainsci10110834. [PMID: 33182671 PMCID: PMC7696812 DOI: 10.3390/brainsci10110834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
|