1
|
Lee J, Choi J, Yun HY, Jang H, Cho M, Ha JH, Jeong Y. Neuroprotective Effects of Lilium Lancifolium Thunberg Extract Against Corticosterone-Induced Dysfunctions in PC12 Cells. J Med Food 2025; 28:366-376. [PMID: 40051393 DOI: 10.1089/jmf.2024.k.0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Chronic stress in the central nervous system can lead to neurological dysfunction characterized by spontaneous neuronal cell death. This study investigated the neuroprotective potential of an aqueous extract of Lilium lancifolium Thunberg (ELL) against corticosterone (CORT)-induced pathophysiology in PC12 cells. To assess the neuroprotective effects of ELL, PC12 cells were pretreated with 50 µg/mL of ELL before being exposed to CORT. ELL significantly prevented CORT-induced neuronal cell death by attenuating pro-apoptotic protein expression, lactate dehydrogenase release, and reactive oxygen species generation, while maintaining intact adenosine triphosphate levels. Furthermore, ELL significantly mitigated CORT-induced endoplasmic reticulum (ER) stress responses by attenuating the elevation of unfolded protein responses, intracellular calcium levels, opening of mitochondrial permeability transition pores, and loss of mitochondrial membrane potential. In conclusion, ELL exerts neuroprotective effects by inhibiting apoptosis through the mitigation of CORT-induced ER stress and mitochondrial dysfunction, suggesting that ELL may prevent neuronal damage associated with chronic stress-induced neurotoxicity.
Collapse
Affiliation(s)
- Jisu Lee
- Department of Food Science and Nutrition, Dankook University, Cheonan, Korea
| | - Jiwon Choi
- Department of Food Science and Nutrition, Dankook University, Cheonan, Korea
| | - Hea-Yeon Yun
- Department of Food Science and Nutrition, Dankook University, Cheonan, Korea
| | - Hyunsoo Jang
- Department of Food Science and Nutrition, Dankook University, Cheonan, Korea
| | - Minseo Cho
- Department of Food Science and Nutrition, Dankook University, Cheonan, Korea
| | - Jung-Heun Ha
- Department of Food Science and Nutrition, Dankook University, Cheonan, Korea
- Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin, Korea
| | - Yoonhwa Jeong
- Department of Food Science and Nutrition, Dankook University, Cheonan, Korea
- Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin, Korea
| |
Collapse
|
2
|
Numakawa T, Kajihara R. Involvement of brain-derived neurotrophic factor signaling in the pathogenesis of stress-related brain diseases. Front Mol Neurosci 2023; 16:1247422. [PMID: 37781095 PMCID: PMC10537938 DOI: 10.3389/fnmol.2023.1247422] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Neurotrophins including brain-derived neurotrophic factor, BDNF, have critical roles in neuronal differentiation, cell survival, and synaptic function in the peripheral and central nervous system. It is well known that a variety of intracellular signaling stimulated by TrkB, a high-affinity receptor for BDNF, is involved in the physiological and pathological neuronal aspects via affecting cell viability, synaptic function, neurogenesis, and cognitive function. As expected, an alteration of the BDNF/TrkB system is suspected to be one of the molecular mechanisms underlying cognitive decline in cognitive diseases and mental disorders. Recent evidence has also highlighted a possible link between the alteration of TrkB signaling and chronic stress. Furthermore, it has been demonstrated that downregulation of the BDNF/TrkB system and chronic stress have a role in the pathogenesis of Alzheimer's disease (AD) and mental disorders. In this review, we introduce current evidence showing a close relationship between the BDNF/TrkB system and the development of cognition impairment in stress-related disorders, and the possible contribution of the upregulation of the BDNF/TrkB system in a therapeutic approach against these brain diseases.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Ryutaro Kajihara
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Department of Biomedical Laboratory Sciences, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
3
|
Muhammad F, Liu Y, Wang N, Zhao L, Zhou Y, Yang H, Li H. Rose essential oil diminishes dopaminergic neuron degenerations and reduces α-synuclein aggregation in Caenorhabditis elegans models of Parkinson's disease. Phytother Res 2023. [PMID: 36920348 DOI: 10.1002/ptr.7783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/10/2022] [Accepted: 01/29/2023] [Indexed: 03/16/2023]
Abstract
Parkinson's disease (P.D.) is the second most progressive neurodegenerative disorder in the elderly. Degeneration of dopaminergic (DA) neurons and α-synuclein (α-Syn) accumulated toxicity is the major contributor to this disease. At present, the disease has no effective treatment. Many recent studies focus on identifying novel therapeutics that provide benefits to stop the disease progression in P.D. patients. Screening novel and effective drugs in P.D. animal models is time- and cost-consuming. Rose Essential Oil (REO) extracted from Rosa Rugosa species (R. Setate × R. Rugosa). REO contains Citronellol, Geraniol, and Octadiene that possess anti-Aβ, anti-oxidative, and anti-depression-like properties, but no reports have defined the REO effect on P.D. yet. The present study examines the REO neuroprotective potential in transgenic Caenorhabditis elegans P.D. models. We observed that REO reduced α-Syn aggregations and diminished DA neuron degenerations induced by 6-OHDA, reduced food-sensing behavioural disabilities, and prolonged the lifespan of the nematode. Moreover, REO augmented the chymotrypsin-like proteasome and SOD-3 activities. Further, we observed the anti-oxidative role of REO by reducing internal cells ROS. Together, these findings supported REO as an anti-PD drug and may exert its effects by lowering oxidative stress via the anti-oxidative pathway.
Collapse
Affiliation(s)
- Fahim Muhammad
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yan Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ningbo Wang
- College of Life Sciences, Lanzhou University, Lanzhou, China.,School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Longhe Zhao
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yangtao Zhou
- Department of Neurology, Clinical Center for Parkinson's Disease, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Hui Yang
- Institute of Biology Gansu Academy of Sciences, Lanzhou, China
| | - Hongyu Li
- College of Life Sciences, Lanzhou University, Lanzhou, China.,School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Schore A. Right brain-to-right brain psychotherapy: recent scientific and clinical advances. Ann Gen Psychiatry 2022; 21:46. [PMID: 36403062 PMCID: PMC9675148 DOI: 10.1186/s12991-022-00420-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022] Open
Abstract
This article overviews my recent acceptance of a Lifetime Achievement Award from Sapienza University of Rome, in which I discussed three decades of my work on the right brain in development, psychopathogenesis, and psychotherapy. In the following, I offer current brain laterality and hemispheric asymmetry research indicating that right brain emotional and relational processes operate beneath conscious awareness not only in early human development, but over the lifespan. I discuss recent interdisciplinary studies on the central role of ultrarapid right brain-to-right brain intersubjective communications of face, voice, and gesture and the implicit regulation of emotion in nonverbal attachment dynamics. Special emphasis is on the fundamental psychobiological process of interpersonal synchrony, and on the evolutionary mechanism of attachment, the interactive regulation of biological synchrony within and between organisms. I then present some clinical applications, suggesting that effective therapeutic work with "primitive" nonverbal emotional attachment dynamics focuses not on conscious verbal insight but on the formation of an unconscious emotion-communicating and regulating bond within the therapeutic relationship. Lastly, I review recent hyperscanning research of the patient's and therapist's brains during a face-to-face, emotionally focused psychotherapy session that supports the right brain-to-right brain communication model. I end suggesting that the right brain is dominant in both short-term symptom-reducing and long-term growth-promoting deep psychotherapy.
Collapse
Affiliation(s)
- Allan Schore
- Department of Psychiatry and Biobehavioral Sciences, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Wang Y, Qin X, Han Y, Li B. VGF: A prospective biomarker and therapeutic target for neuroendocrine and nervous system disorders. Biomed Pharmacother 2022; 151:113099. [PMID: 35594706 DOI: 10.1016/j.biopha.2022.113099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
Neuroendocrine regulatory polypeptide VGF (nerve growth factor inducible) was firstly found in the rapid induction of nerve growth factor on PC12 cells. It was selectively distributed in neurons and many neuroendocrine tissues. This paper reviewed the latest literatures on the gene structure, transcriptional regulation, protein processing, distribution and potential receptors of VGF. The neuroendocrine roles of VGF and its derived polypeptides in regulating energy, water electrolyte balance, circadian rhythm and reproductive activities were also summarized. Furthermore, based on the experimental evidence in vivo and in vitro, dysregulation of VGF in different neuroendocrine diseases and the possible mechanism mediated by VGF polypeptides were discussed. We next discussed the potential as the clinical diagnosis and therapy for VGF related diseases in the future.
Collapse
Affiliation(s)
- Yibei Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, Liaoning Province, China.
| | - Xiaoxue Qin
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, Liaoning Province, China.
| | - Yun Han
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Bo Li
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
6
|
Insulin-like Growth Factor II Prevents MPP+ and Glucocorticoid Mitochondrial-Oxidative and Neuronal Damage in Dopaminergic Neurons. Antioxidants (Basel) 2021; 11:antiox11010041. [PMID: 35052545 PMCID: PMC8773450 DOI: 10.3390/antiox11010041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
Stress seems to contribute to Parkinson’s disease (PD) neuropathology, probably by dysregulation of the hypothalamic–pituitary–adrenal axis. Key factors in this pathophysiology are oxidative stress and mitochondrial dysfunction and neuronal glucocorticoid-induced toxicity. The insulin-like growth factor II (IGF-II), a pleiotropic hormone, has shown antioxidant and neuroprotective effects in some neurodegenerative disorders. Our aim was to examine the protective effect of IGF-II on a dopaminergic cellular combined model of PD and mild to moderate stress measuring oxidative stress parameters, mitochondrial and neuronal markers, and signalling pathways. IGF-II counteracts the mitochondrial-oxidative damage produced by the toxic synergistic effect of corticosterone and 1-methyl-4-phenylpyridinium, protecting dopaminergic neurons from death and neurodegeneration. IGF-II promotes PKC activation and nuclear factor (erythroid-derived 2)-like 2 antioxidant response in a glucocorticoid receptor-dependent pathway, preventing oxidative cell damage and maintaining mitochondrial function. Thus, IGF-II is a potential therapeutic tool for treatment and prevention of disease progression in PD patients suffering mild to moderate emotional stress.
Collapse
|