1
|
Luo Y, Cheng J, Fu Y, Zhang M, Gou M, Li J, Li X, Bai J, Zhou Y, Zhang L, Gao D. D-allose Inhibits TLR4/PI3K/AKT Signaling to Attenuate Neuroinflammation and Neuronal Apoptosis by Inhibiting Gal-3 Following Ischemic Stroke. Biol Proced Online 2023; 25:30. [PMID: 38017376 PMCID: PMC10683335 DOI: 10.1186/s12575-023-00224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Ischemic stroke (IS) occurs when a blood vessel supplying the brain becomes obstructed, resulting in cerebral ischemia. This type of stroke accounts for approximately 87% of all strokes. Globally, IS leads to high mortality and poor prognosis and is associated with neuroinflammation and neuronal apoptosis. D-allose is a bio-substrate of glucose that is widely expressed in many plants. Our previous study showed that D-allose exerted neuroprotective effects against acute cerebral ischemic/reperfusion (I/R) injury by reducing neuroinflammation. Here, we aimed to clarify the beneficial effects D-allose in suppressing IS-induced neuroinflammation damage, cytotoxicity, neuronal apoptosis and neurological deficits and the underlying mechanism in vitro and in vivo. METHODS In vivo, an I/R model was induced by middle cerebral artery occlusion and reperfusion (MCAO/R) in C57BL/6 N mice, and D-allose was given by intraperitoneal injection within 5 min after reperfusion. In vitro, mouse hippocampal neuronal cells (HT-22) with oxygen-glucose deprivation and reperfusion (OGD/R) were established as a cell model of IS. Neurological scores, some cytokines, cytotoxicity and apoptosis in the brain and cell lines were measured. Moreover, Gal-3 short hairpin RNAs, lentiviruses and adeno-associated viruses were used to modulate Gal-3 expression in neurons in vitro and in vivo to reveal the molecular mechanism. RESULTS D-allose alleviated cytotoxicity, including cell viability, LDH release and apoptosis, in HT-22 cells after OGD/R, which also alleviated brain injury, as indicated by lesion volume, brain edema, neuronal apoptosis, and neurological functional deficits, in a mouse model of I/R. Moreover, D-allose decreased the release of inflammatory factors, such as IL-1β, IL-6 and TNF-α. Furthermore, the expression of Gal-3 was increased by I/R in wild-type mice and HT-22 cells, and this factor further bound to TLR4, as confirmed by three-dimensional structure prediction and Co-IP. Silencing the Gal-3 gene with shRNAs decreased the activation of TLR4 signaling and alleviated IS-induced neuroinflammation, apoptosis and brain injury. Importantly, the loss of Gal-3 enhanced the D-allose-mediated protection against I/R-induced HT-22 cell injury, inflammatory insults and apoptosis, whereas activation of TLR4 by the selective agonist LPS increased the degree of neuronal injury and abolished the protective effects of D-allose. CONCLUSIONS In summary, D-allose plays a crucial role in inhibiting inflammation after IS by suppressing Gal-3/TLR4/PI3K/AKT signaling pathway in vitro and in vivo.
Collapse
Affiliation(s)
- Yaowen Luo
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Changle West Road NO.127, Xi'an, China
| | - Junkai Cheng
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Changle West Road NO.127, Xi'an, China
| | - Yihao Fu
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Changle West Road NO.127, Xi'an, China
| | - Min Zhang
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Changle West Road NO.127, Xi'an, China
| | - Maorong Gou
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Changle West Road NO.127, Xi'an, China
| | - Juan Li
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Changle West Road NO.127, Xi'an, China
| | - Xiaobing Li
- Department of Neurology, Xijing Hospital, Air Force Medical University, Changle West Road 127, Xi'an, China
| | - Jing Bai
- Department of Neurology, Xijing Hospital, Air Force Medical University, Changle West Road 127, Xi'an, China
| | - Yuefei Zhou
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Changle West Road NO.127, Xi'an, China
| | - Lei Zhang
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Changle West Road NO.127, Xi'an, China.
| | - Dakuan Gao
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Changle West Road NO.127, Xi'an, China.
| |
Collapse
|
2
|
Lauzier DC, Jayaraman K, Yuan JY, Diwan D, Vellimana AK, Osbun J, Chatterjee AR, Athiraman U, Dhar R, Zipfel GJ. Early Brain Injury After Subarachnoid Hemorrhage: Incidence and Mechanisms. Stroke 2023; 54:1426-1440. [PMID: 36866673 PMCID: PMC10243167 DOI: 10.1161/strokeaha.122.040072] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Aneurysmal subarachnoid hemorrhage is a devastating condition causing significant morbidity and mortality. While outcomes from subarachnoid hemorrhage have improved in recent years, there continues to be significant interest in identifying therapeutic targets for this disease. In particular, there has been a shift in emphasis toward secondary brain injury that develops in the first 72 hours after subarachnoid hemorrhage. This time period of interest is referred to as the early brain injury period and comprises processes including microcirculatory dysfunction, blood-brain-barrier breakdown, neuroinflammation, cerebral edema, oxidative cascades, and neuronal death. Advances in our understanding of the mechanisms defining the early brain injury period have been accompanied by improved imaging and nonimaging biomarkers for identifying early brain injury, leading to the recognition of an elevated clinical incidence of early brain injury compared with prior estimates. With the frequency, impact, and mechanisms of early brain injury better defined, there is a need to review the literature in this area to guide preclinical and clinical study.
Collapse
Affiliation(s)
- David C. Lauzier
- Department of Neurological Surgery, Washington University School of Medicine
| | - Keshav Jayaraman
- Department of Neurological Surgery, Washington University School of Medicine
| | - Jane Y. Yuan
- Department of Neurological Surgery, Washington University School of Medicine
| | - Deepti Diwan
- Department of Neurological Surgery, Washington University School of Medicine
| | - Ananth K. Vellimana
- Department of Neurological Surgery, Washington University School of Medicine
- Department of Neurology, Washington University School of Medicine
- Mallinckrodt Institute of Radiology, Washington University School of Medicine
| | - Joshua Osbun
- Department of Neurological Surgery, Washington University School of Medicine
- Department of Neurology, Washington University School of Medicine
- Mallinckrodt Institute of Radiology, Washington University School of Medicine
| | - Arindam R. Chatterjee
- Department of Neurological Surgery, Washington University School of Medicine
- Department of Neurology, Washington University School of Medicine
- Mallinckrodt Institute of Radiology, Washington University School of Medicine
| | | | - Rajat Dhar
- Department of Neurology, Washington University School of Medicine
| | - Gregory J. Zipfel
- Department of Neurological Surgery, Washington University School of Medicine
- Department of Neurology, Washington University School of Medicine
| |
Collapse
|
3
|
Nakajima H, Kawakita F, Oinaka H, Suzuki Y, Nampei M, Kitano Y, Nishikawa H, Fujimoto M, Miura Y, Yasuda R, Toma N, Suzuki H. Plasma SPARC Elevation in Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage. Neurotherapeutics 2023; 20:779-788. [PMID: 36781745 PMCID: PMC10275842 DOI: 10.1007/s13311-023-01351-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Matricellular proteins have been implicated in pathologies after subarachnoid hemorrhage (SAH). To find a new therapeutic molecular target, the present study aimed to clarify the relationships between serially measured plasma levels of a matricellular protein, secreted protein acidic and rich in cysteine (SPARC), and delayed cerebral ischemia (DCI) in 117 consecutive aneurysmal SAH patients with admission World Federation of Neurological Surgeons (WFNS) grades I-III. DCI developed in 25 patients with higher incidences of past history of hypertension and dyslipidemia, preoperative WFNS grade III, modified Fisher grade 4, spinal drainage, and angiographic vasospasm. Plasma SPARC levels were increased after SAH, and significantly higher in patients with than without DCI at days 7-9, and in patients with VASOGRADE-Yellow compared with VASOGRADE-Green at days 1-3 and 7-9. However, there were no relationships between plasma SPARC levels and angiographic vasospasm. Receiver-operating characteristic curves differentiating DCI from no DCI determined the cut-off value of plasma SPARC ≥ 82.1 ng/ml at days 7 - 9 (sensitivity, 0.800; specificity, 0.533; and area under the curve, 0.708), which was found to be an independent determinant of DCI development in multivariate analyses. This is the first study to show that SPARC is upregulated in peripheral blood after SAH, and that SPARC may be involved in the development of DCI without angiographic vasospasm in a clinical setting.
Collapse
Affiliation(s)
- Hideki Nakajima
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hiroki Oinaka
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yume Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Mai Nampei
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yotaro Kitano
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hirofumi Nishikawa
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masashi Fujimoto
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yoichi Miura
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Ryuta Yasuda
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Naoki Toma
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.
| |
Collapse
|
4
|
Kawakita F, Kanamaru H, Asada R, Suzuki Y, Nampei M, Nakajima H, Oinaka H, Suzuki H. Roles of glutamate in brain injuries after subarachnoid hemorrhage. Histol Histopathol 2022; 37:1041-1051. [PMID: 36065974 DOI: 10.14670/hh-18-509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is a stroke type with a high rate of mortality and morbidity. Post-SAH brain injury as a determinant of poor outcome is classified into the following two types: early brain injury (EBI) and delayed cerebral ischemia (DCI). EBI consists of various acute brain pathophysiologies that occur within the first 72 hours of SAH in a clinical setting. The underlying mechanisms of DCI are considered to be cerebral vasospasm or microcirculatory disturbance, which develops mostly 4 to 14 days after clinical SAH. Glutamate is the principal neurotransmitter in the central nervous system, but excessive glutamate is known to induce neurotoxicity. Experimental and clinical studies have revealed that excessive glutamates are released after SAH. In addition, many studies have reported the relationships between excessive glutamate release or overactivation of glutamate receptors and excitotoxicity, cortical spreading depolarization, seizure, increased blood-brain barrier permeability, neuroinflammation, microthrombosis formation, microvasospasm, cerebral vasospasm, impairments of brain metabolic supply and demand, impaired neurovascular coupling, and so on, all of which potentially contribute to the development of EBI or DCI. As glutamates always exert their functions through one or more of 4 major receptors of glutamates, it would be valuable to know the mechanisms as to how glutamates cause these pathologies, and the possibility that a glutamate receptor antagonist may block the pathologies. To prevent the mechanistic steps leading to glutamate-mediated neurotoxicity may ameliorate SAH-induced brain injuries and improve the outcomes. This review addresses the current knowledge of glutamate-mediated neurotoxicity, focusing on EBI and DCI after SAH.
Collapse
Affiliation(s)
- Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Reona Asada
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yume Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Mai Nampei
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hideki Nakajima
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hiroki Oinaka
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.
| |
Collapse
|
5
|
Salama A, Elgohary R, M Amin M, Elwahab SA. Immunomodulatory effect of protocatechuic acid on cyclophosphamide induced brain injury in rat: Modulation of inflammosomes NLRP3 and SIRT1. Eur J Pharmacol 2022; 932:175217. [PMID: 36007603 DOI: 10.1016/j.ejphar.2022.175217] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022]
Abstract
Modulation of the inflammasome NLRP3 and SIRT1 are new combat strategy for brain injury protection. The inflammasome activates proinflammatory cytokines releasing interleukin-1β and interleukin-18 which in turn affect the toxins release from immune cells. In addition, SIRT1 controls many biological functions, such as immune response and oxidative stress. Protocatechuic has versatile biological activities and possesses antioxidant, anti-inflammatory and neuroprotective effects. So this work aims to study immunomodulatory effect of protocatechuic acid on cyclophosphamide chemotherapy drug-induced brain injury via modulation of inflammosomes NLRP3 and SIRT1. Rats were randomly assigned to four experimental groups. Normal control group was injected with a single i.p injection of saline. Cyclophosphamide group was injected with a single i.p injection of cyclophosphamide (200 mg/kg). Protocatechuic acid groups were orally administered (50 &100 mg/kg) once daily for 10 consecutive days after cyclophosphamide injection. Protocatechuic acid administration exhibited improvements of the cognition function and memory, a reduction in brain contents of MDA, NLRP3, IL-1 β, NF-κB, IKBKB and Galectin 3 and an elevation of GSH and SIRT1 compared to cyclophosphamide group. In addition, protocatechuic acid administration ameliorated the elevation of caspase 3 and iNOS gene expression and alleviated the neuron degeneration caused by cyclophosphamide. In conclusion, the therapeutic action of protocatechuic acid and its cellular and molecular mechanisms are new insights against various human ailments, especially, neuroprotective disease as brain injury induced by cyclophosphamide chemotherapy drug in rats through modulation of inflammosomes NLRP3 and SIRT1.
Collapse
Affiliation(s)
- Abeer Salama
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Buhouth St. (Former El-Tahrir St.), 12622, Dokki, Cairo, Egypt
| | - Rania Elgohary
- Narcotics, Ergogenics and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Buhouth St. (Former El-Tahrir St.), 12622, Dokki, Cairo, Egypt.
| | - Mohamed M Amin
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Buhouth St. (Former El-Tahrir St.), 12622, Dokki, Cairo, Egypt
| | - Sahar Abd Elwahab
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Xu C, He Z, Li J. Melatonin as a Potential Neuroprotectant: Mechanisms in Subarachnoid Hemorrhage-Induced Early Brain Injury. Front Aging Neurosci 2022; 14:899678. [PMID: 35572137 PMCID: PMC9098986 DOI: 10.3389/fnagi.2022.899678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 12/21/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a common cerebrovascular disease with high mortality and disability rates. Despite progressive advances in drugs and surgical techniques, neurological dysfunction in surviving SAH patients have not improved significantly. Traditionally, vasospasm has been considered the main cause of death and disability following SAH, but anti-vasospasm therapy has not benefited clinical prognosis. Many studies have proposed that early brain injury (EBI) may be the primary factor influencing the prognosis of SAH. Melatonin is an indole hormone and is the main hormone secreted by the pineal gland, with low daytime secretion levels and high nighttime secretion levels. Melatonin produces a wide range of biological effects through the neuroimmune endocrine network, and participates in various physiological activities in the central nervous system, reproductive system, immune system, and digestive system. Numerous studies have reported that melatonin has extensive physiological and pharmacological effects such as anti-oxidative stress, anti-inflammation, maintaining circadian rhythm, and regulating cellular and humoral immunity. In recent years, more and more studies have been conducted to explore the molecular mechanism underlying melatonin-induced neuroprotection. The studies suggest beneficial effects in the recovery of intracerebral hemorrhage, cerebral ischemia-reperfusion injury, spinal cord injury, Alzheimer’s disease, Parkinson’s disease and meningitis through anti-inflammatory, antioxidant and anti-apoptotic mechanisms. This review summarizes the recent studies on the application and mechanism of melatonin in SAH.
Collapse
Affiliation(s)
- Chengyan Xu
- Department of Neurosurgery, The Children’s Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zixia He
- Department of Outpatient, The Children’s Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiabin Li
- Department of Pharmacy, The Children’s Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Jiabin Li,
| |
Collapse
|
7
|
Chen J, Zheng ZV, Lu G, Chan WY, Zhang Y, Wong GKC. Microglia activation, classification and microglia-mediated neuroinflammatory modulators in subarachnoid hemorrhage. Neural Regen Res 2021; 17:1404-1411. [PMID: 34916410 PMCID: PMC8771101 DOI: 10.4103/1673-5374.330589] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Subarachnoid hemorrhage is a devastating disease with significant mortality and morbidity, despite advances in treating cerebral aneurysms. There has been recent progress in the intensive care management and monitoring of patients with subarachnoid hemorrhage, but the results remain unsatisfactory. Microglia, the resident immune cells of the brain, are increasingly recognized as playing a significant role in neurological diseases, including subarachnoid hemorrhage. In early brain injury following subarachnoid hemorrhage, microglial activation and neuroinflammation have been implicated in the development of disease complications and recovery. To understand the disease processes following subarachnoid hemorrhage, it is important to focus on the modulators of microglial activation and the pro-inflammatory/anti-inflammatory cytokines and chemokines. In this review, we summarize research on the modulators of microglia-mediated inflammation in subarachnoid hemorrhage, including transcriptome changes and the neuroinflammatory signaling pathways. We also describe the latest developments in single-cell transcriptomics for microglia and summarize advances that have been made in the transcriptome-based classification of microglia and the implications for microglial activation and neuroinflammation.
Collapse
Affiliation(s)
- Junfan Chen
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Zhiyuan Vera Zheng
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Department of Neurosurgery, Hainan Branch of Chinese People's Liberation Army General Hospital, Sanya, Hainan Province, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong; Bioinformatics Unit, SDIVF R&D Centre, Hong Kong Science and Technology Parks, Hong Kong Special Administrative Region, China
| | - Wai Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yisen Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - George Kwok Chu Wong
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
8
|
Wang Q, Wang K, Ma Y, Li S, Xu Y. Serum Galectin-3 as a Potential Predictive Biomarker Is Associated with Poststroke Cognitive Impairment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5827812. [PMID: 34900086 PMCID: PMC8660241 DOI: 10.1155/2021/5827812] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/21/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Galectin-3, an inflammatory mediator derived from microglia, participates in the pathophysiological process of various neurological diseases. However, the relationship between galectin-3 and poststroke cognitive impairment (PSCI) remains ambiguous. This research purposed to prove whether serum galectin-3 can predict PSCI. METHODS In the end, an aggregate of 416 patients with the first acute ischemic stroke (AIS) were continuously and prospectively enrolled in the study. Upon admission, the baseline data of AIS patients were collected, and their serum galectin-3 levels were measured. Three months after the stroke, the Montreal Cognitive Scale (MoCA) was utilized to measure the cognitive function of AIS patients, and PSCI was defined as a MoCA score less than 26 points. RESULTS Premised on the MoCA scores, patients were categorized into PSCI cohort and non-PSCI cohort. The two AIS patient cohorts did not exhibit any statistical difference in their baseline characteristics (p > 0.05). However, the serum galectin-3 level of AIS patients in the PSCI cohort was considerably elevated (p < 0.001). Pearson correlation analysis illustrated that serum galectin-3 level was negatively linked to MoCA score (r = -0.396, p < 0.05). The findings from the receiver-operating curve (ROC) illustrated that the sensitivity of serum galectin-3 as a possible biomarker for diagnosing PSCI was 66%, and the specificity was 94%. The cut-off value of serum galectin-3 to diagnose PSCI is 6.3 ng/mL (OR = 5.49, p < 0.001). Upon controlling for different variables, serum galectin-3 level remained to be an independent predictor of PSCI (p < 0.001). CONCLUSIONS Elevated serum galectin-3 levels are linked to a higher risk of PSCI. Serum galectin-3 could be a prospective biomarker for predicting PSCI.
Collapse
Affiliation(s)
- Qian Wang
- Postdoctoral Workstation, Taian City Central Hospital, Taian, Shandong Province, China
- Department of Central Laboratory, Taian City Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
- State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Kai Wang
- State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Simin Li
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| |
Collapse
|
9
|
Yazar T, Olgun Yazar H, Cihan M. Evaluation of serum galectin-3 levels at Alzheimer patients by stages: a preliminary report. Acta Neurol Belg 2021; 121:949-954. [PMID: 32852752 DOI: 10.1007/s13760-020-01477-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/17/2020] [Indexed: 02/11/2023]
Abstract
BACKGROUND AND AIMS Neuroinflammation has a critic role in the pathophysiology of neurological diseases. The activation of microglia is the main actor in this process. The aim of this study to collect data on the role of microglial activation in the etiology, and the possible continuum at the stage of disease through the evaluation of serum galectin-3 levels in patients with Alzheimer's disease (AD). METHODS This was a prospective and cross-sectional study conducted on patients who were diagnosed as having AD using the criteria of the National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA) and stages determined with the scales of Clinical Dementia Rating (CDR) and Mini-Mental State Examination (MMSE) with healthy controls. RESULTS In our study, we studied 118 people, 57 with AD and 61 healthy people as a control group. In the AD patient group, serum galectin-3 levels were higher compared with the control group (p = 0.003). There were no significant differences in either group in other collected parameters (p > 0.05). It was observed that in all patients with AD, parallel to the stage of the disease, serum galectin-3 levels, patience's age, and duration of disease were statically and significantly increased (p < 0.05). CONCLUSION In conclusion, serum galactin-3 levels may be associated with AD and maybe a potential biomarker for the identification of disease in the early stages. In future years, serum galectin-3 levels may become an important biomarker and therapeutic agent for chronic neurodegenerative diseases such as AD.
Collapse
|
10
|
Fenton-Navarro B, Garduño Ríos D, Torner L, Letechipía-Vallejo G, Cervantes M. Melatonin Decreases Circulating Levels of Galectin-3 and Cytokines, Motor Activity, and Anxiety Following Acute Global Cerebral Ischemia in Male Rats. Arch Med Res 2021; 52:505-513. [DOI: 10.1016/j.arcmed.2021.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/21/2020] [Accepted: 01/21/2021] [Indexed: 12/23/2022]
|
11
|
Caridi B, Doncheva D, Sivaprasad S, Turowski P. Galectins in the Pathogenesis of Common Retinal Disease. Front Pharmacol 2021; 12:687495. [PMID: 34079467 PMCID: PMC8165321 DOI: 10.3389/fphar.2021.687495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Diseases of the retina are major causes of visual impairment and blindness in developed countries and, due to an ageing population, their prevalence is continually rising. The lack of effective therapies and the limitations of those currently in use highlight the importance of continued research into the pathogenesis of these diseases. Vascular endothelial growth factor (VEGF) plays a major role in driving vascular dysfunction in retinal disease and has therefore become a key therapeutic target. Recent evidence also points to a potentially similarly important role of galectins, a family of β-galactoside-binding proteins. Indeed, they have been implicated in regulating fundamental processes, including vascular hyperpermeability, angiogenesis, neuroinflammation, and oxidative stress, all of which also play a prominent role in retinopathies. Here, we review direct evidence for pathological roles of galectins in retinal disease. In addition, we extrapolate potential roles of galectins in the retina from evidence in cancer, immune and neuro-biology. We conclude that there is value in increasing understanding of galectin function in retinal biology, in particular in the context of the retinal vasculature and microglia. With greater insight, recent clinical developments of galectin-targeting drugs could potentially also be of benefit to the clinical management of many blinding diseases.
Collapse
Affiliation(s)
- Bruna Caridi
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Dilyana Doncheva
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Sobha Sivaprasad
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Patric Turowski
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
12
|
Jin L, Sun L. Application of patient-centered care using guidelines of the Joint Commission on Accreditation of Healthcare Organizations in patients with acute subarachnoid hemorrhage. Am J Transl Res 2021; 13:2915-2922. [PMID: 34017456 PMCID: PMC8129212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE This study was designed to explore the feasibility and effectiveness of patient-centered care (PCC) on basis of guidelines of Joint Commission on Accreditation of Healthcare Organizations (JCI) in patients with acute subarachnoid hemorrhage (SAH). METHODS A total of 180 SAH patients who received treatment in our hospital were selected as prospective research objects, and were divided into a study group (n=90) and a control group (n=90) by convenience sampling. Patients in the control group received conventional SAH-targeted care, and patients in the study group were additionally nursed with PCC on the basis of conventional SAH-targeted care. The general indicators, including Mini-Mental State Exam (MMSE) scores before and after intervention, activities of daily living (ADL), mental state, general self-efficacy scale (GSES), health knowledge, and incidence of complications were compared between the two groups. RESULTS The length of hospital stay, the time in bed, and the expenses of hospitalization in the study group were lower than those of the control group (P<0.05). The scores of MMSE, ADL, GSES, and health knowledge in the study group were higher than those in the control group (P<0.05), and the scores of each dimension of Symptom Checklist-90 (SCL-90) and the incidence of complications in the study group were lower than those in the control group (P<0.05). CONCLUSION PCC for SAH patients based on the guidelines of JCI can not only improve the outcomes, cognitive function, self-efficacy, negative emotions and ADL of patients, but also help enhance their awareness of the disease and reduce the incidence of complications.
Collapse
Affiliation(s)
- Lingyan Jin
- Department of Neurosurgery, Wenling Hospital of Traditional Chinese MedicineWenling 317500, Zhejiang Province, China
| | - Lingli Sun
- Emergency Department, Wenling Hospital of Traditional Chinese MedicineWenling 317500, Zhejiang Province, China
| |
Collapse
|
13
|
Zhuang JJ, Zhou L, Zheng YH, Ding YS. The serum galectin-3 levels are associated with the severity and prognosis of ischemic stroke. Aging (Albany NY) 2021; 13:7454-7464. [PMID: 33686023 PMCID: PMC7993705 DOI: 10.18632/aging.202610] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022]
Abstract
Galectin-3, a microglia/macrophage-derived inflammatory mediator, plays a role in the stroke progression. In this single-center prospective study, we included 288 consecutive patients with a first-ever acute ischemic stroke to assess the association between galectin-3 serum level and clinical severity at admission and outcome at discharge by univariate and multivariate logistic regression. The results were presented as odds ratios (OR) and 95% confidence intervals (CI). Patients with high severity and poor outcomes had higher serum levels of galectin-3 (P<0.001 and P<0.001). Multivariate analysis suggested that a galectin-3 serum level in the highest quartile (The lowest three quartiles[Q1-3] as the reference) was associated with poor functional outcome (OR, 3.15; 95% CI, 2.44–3.87). The AUC (standard error) for the NIHSS and the combined model were 0.764 (0.031) and 0.823 (0.027), corresponding to a difference of 0.059 (0.004). This study shows that higher serum levels of galectin-3 are associated with stroke severity at admission and stroke prognosis at discharge in ischemic stroke.
Collapse
Affiliation(s)
- Jia-Jun Zhuang
- Department of Neurology, Weifang People's Hospital, Weifang, Shandong, China
| | - Li Zhou
- Department of Neurology, Weifang People's Hospital, Weifang, Shandong, China
| | - Yan-Hua Zheng
- Department of Neurology, Weifang People's Hospital, Weifang, Shandong, China
| | - Yan-Sheng Ding
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong, China
| |
Collapse
|
14
|
Okada T, Suzuki H. The Role of Tenascin-C in Tissue Injury and Repair After Stroke. Front Immunol 2021; 11:607587. [PMID: 33552066 PMCID: PMC7859104 DOI: 10.3389/fimmu.2020.607587] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022] Open
Abstract
Stroke is still one of the most common causes for mortality and morbidity worldwide. Following acute stroke onset, biochemical and cellular changes induce further brain injury such as neuroinflammation, cell death, and blood-brain barrier disruption. Matricellular proteins are non-structural proteins induced by many stimuli and tissue damage including stroke induction, while its levels are generally low in a normal physiological condition in adult tissues. Currently, a matricellular protein tenascin-C (TNC) is considered to be an important inducer to promote neuroinflammatory cascades and the resultant pathology in stroke. TNC is upregulated in cerebral arteries and brain tissues including astrocytes, neurons, and brain capillary endothelial cells following subarachnoid hemorrhage (SAH). TNC may be involved in blood-brain barrier disruption, neuronal apoptosis, and cerebral vasospasm via the activation of mitogen-activated protein kinases and nuclear factor-kappa B following SAH. In addition, post-SAH TNC levels in cerebrospinal fluid predicted the development of delayed cerebral ischemia and angiographic vasospasm in clinical settings. On the other hand, TNC is reported to promote fibrosis and exert repair effects for an experimental aneurysm via macrophages-induced migration and proliferation of smooth muscle cells. The authors review TNC-induced inflammatory signal cascades and the relationships with other matricellular proteins in stroke-related pathology.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Neurosurgery, Kuwana City Medical Center, Kuwana, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
15
|
Tribble JR, Kokkali E, Otmani A, Plastino F, Lardner E, Vohra R, Kolko M, André H, Morgan JE, Williams PA. When Is a Control Not a Control? Reactive Microglia Occur Throughout the Control Contralateral Pathway of Retinal Ganglion Cell Projections in Experimental Glaucoma. Transl Vis Sci Technol 2021; 10:22. [PMID: 33510961 PMCID: PMC7804521 DOI: 10.1167/tvst.10.1.22] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose Animal models show retinal ganglion cell (RGC) injuries that replicate features of glaucoma and the contralateral eye is commonly used as an internal control. There is significant crossover of RGC axons from the ipsilateral to the contralateral side at the level of the optic chiasm, which may confound findings when damage is restricted to one eye. The effect of unilateral glaucoma on neuroinflammatory damage to the contralateral pathway of RGC projections has largely been unexplored. Methods Ocular hypertensive glaucoma was induced unilaterally or bilaterally in the rat and RGC neurodegenerative events were assessed. Neuroinflammation was quantified in the retina, optic nerve head, optic nerve, lateral geniculate nucleus, and superior colliculus by high-resolution imaging, and in the retina by flow cytometry and protein arrays. Results After ocular hypertensive stress, peripheral monocytes enter the retina and microglia become reactive. This effect is more marked in animals with bilateral ocular hypertensive glaucoma. In rats where glaucoma was induced unilaterally, there was significant microglia activation in the contralateral (control) eye. Microglial activation extended into the optic nerve and terminal visual thalami, where it was similar across hemispheres in unilateral ocular hypertension. Conclusions These data suggest that caution is warranted when using the contralateral eye as a control and in comparing visual thalami in unilateral models of glaucoma. Translational Relevance The use of a contralateral eye as a control may confound the discovery of human-relevant mechanism and treatments in animal models. We also identify neuroinflammatory protein responses that warrant further investigation as potential disease-modifiable targets.
Collapse
Affiliation(s)
- James R. Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Eirini Kokkali
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, UK
| | - Amin Otmani
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Flavia Plastino
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Emma Lardner
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Rupali Vohra
- Department of Veterinary and Animal Sciences, Pathobiological Sciences, University of Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Ophthalmology, Rigshospitalet-Glostrup, Copenhagen, Denmark
| | - Helder André
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - James E. Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, UK
- School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Pete A. Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Okada T, Suzuki H, Travis ZD, Zhang JH. The Stroke-Induced Blood-Brain Barrier Disruption: Current Progress of Inspection Technique, Mechanism, and Therapeutic Target. Curr Neuropharmacol 2020; 18:1187-1212. [PMID: 32484111 PMCID: PMC7770643 DOI: 10.2174/1570159x18666200528143301] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
Stroke is one of the leading causes of mortality and morbidity worldwide. The blood-brain barrier (BBB) is a characteristic structure of microvessel within the brain. Under normal physiological conditions, the BBB plays a role in the prevention of harmful substances entering into the brain parenchyma within the central nervous system. However, stroke stimuli induce the breakdown of BBB leading to the influx of cytotoxic substances, vasogenic brain edema, and hemorrhagic transformation. Therefore, BBB disruption is a major complication, which needs to be addressed in order to improve clinical outcomes in stroke. In this review, we first discuss the structure and function of the BBB. Next, we discuss the progress of the techniques utilized to study BBB breakdown in in-vitro and in-vivo studies, along with biomarkers and imaging techniques in clinical settings. Lastly, we highlight the mechanisms of stroke-induced neuroinflammation and apoptotic process of endothelial cells causing BBB breakdown, and the potential therapeutic targets to protect BBB integrity after stroke. Secondary products arising from stroke-induced tissue damage provide transformation of myeloid cells such as microglia and macrophages to pro-inflammatory phenotype followed by further BBB disruption via neuroinflammation and apoptosis of endothelial cells. In contrast, these myeloid cells are also polarized to anti-inflammatory phenotype, repairing compromised BBB. Therefore, therapeutic strategies to induce anti-inflammatory phenotypes of the myeloid cells may protect BBB in order to improve clinical outcomes of stroke patients.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Zachary D Travis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA, USA , Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| |
Collapse
|
17
|
Lowther MK, Tunnell JP, Palka JM, King DR, Salako DC, Macris DG, Italiya JB, Grodin JL, North CS, Brown ES. Relationship between inflammatory biomarker galectin-3 and hippocampal volume in a community study. J Neuroimmunol 2020; 348:577386. [PMID: 32927397 PMCID: PMC7673815 DOI: 10.1016/j.jneuroim.2020.577386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/01/2020] [Accepted: 09/05/2020] [Indexed: 10/23/2022]
Abstract
Galectin-3 (Gal3) is expressed by microglia and performs functions including adhesion; activation of macrophages and fibroblasts, and mediates inflammatory responses in the hippocampus. The present study examined whether serum Gal3 levels predict hippocampal volume in a multi-ethnic, community-based sample. Results of a multiple linear regression (controlling for depression, serum creatinine level, age, BMI, total brain volume, MoCA score, sex, ethnicity, smoking status, history of diabetes) showed that Gal3 levels significantly predicted left (p = .027) but not right hippocampal volume. The relationship was stronger in men than women. Findings suggest this novel inflammatory biomarker is associated with human hippocampal volume.
Collapse
Affiliation(s)
- Megan K Lowther
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, MC 8849, Dallas, TX 75390-8849, United States of America
| | - Jarrod P Tunnell
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, MC 8849, Dallas, TX 75390-8849, United States of America
| | - Jayme M Palka
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, MC 8849, Dallas, TX 75390-8849, United States of America
| | - Darlene R King
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, MC 8849, Dallas, TX 75390-8849, United States of America
| | - Damilola C Salako
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, MC 8849, Dallas, TX 75390-8849, United States of America
| | - Dimitri G Macris
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, MC 8849, Dallas, TX 75390-8849, United States of America
| | - Jay B Italiya
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, MC 8849, Dallas, TX 75390-8849, United States of America
| | - Justin L Grodin
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8830, United States of America
| | - Carol S North
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, MC 8849, Dallas, TX 75390-8849, United States of America; The Altshuler Center for Education & Research, Metrocare Services, 1250 Mockingbird Lane, Suite 330, Dallas, TX 75247, United States of America
| | - E Sherwood Brown
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, MC 8849, Dallas, TX 75390-8849, United States of America.
| |
Collapse
|
18
|
The Role of TLR-4 and Galectin-3 Interaction in Acute Pancreatitis. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2020. [DOI: 10.2478/sjecr-2019-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Toll-like receptor-4 (TLR-4) is a member of evolutionarily conserved type I transmembrane proteins that can initiate sterile inflammatory cascade in the pancreas. Expression of TLR-4 is up-regulated in pancreatic tissue, as well as, on peripheral blood innate immune cells in human and experimental models of acute pancreatitis. TLR-4 plays important pro-inflammatory roles during development of acute pancreatitis: it recognize alarmins released from injured acinar cells and promotes activation and infiltration of innate immune cells after the premature and intraacinar activation of tripsinogen. Galectin-3 is β-galactoside-binding lectin that plays pro-inflammatory roles in a variety autoimmune diseases, acute bacterial infections and during tumorigenesis. It is reported that Galectin-3 is alarmin in experimental models of neuroinflammation and binds to TLR-4 promoting the pro-inflammatory phenotype of microglia. Also, in experimental model of acute pancreatitis Galectin-3 is colocalized with TLR-4 on innate inflammatory cells resulted in enhanced production of inflammatory cytokines, TNF-α and IL-1β, increased infiltration of pro-inflammatory N1 neutrophils, macrophages and dendritic cells and increased damage of pancreatic tissue. This review paper discusses the role of TLR-4/Gal-3 axis in the pathogenesis of acute pancreatitis.
Collapse
|
19
|
Suzuki H, Kanamaru H, Kawakita F, Asada R, Fujimoto M, Shiba M. Cerebrovascular pathophysiology of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Histol Histopathol 2020; 36:143-158. [PMID: 32996580 DOI: 10.14670/hh-18-253] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) remains a serious cerebrovascular disease. Even if SAH patients survive the initial insults, delayed cerebral ischemia (DCI) may occur at 4 days or later post-SAH. DCI is characteristics of SAH, and is considered to develop by blood breakdown products and inflammatory reactions, or secondary to early brain injury, acute pathophysiological events that occur in the brain within the first 72 hours of aneurysmal SAH. The pathology underlying DCI may involve large artery vasospasm and/or microcirculatory disturbances by microvasospasm, microthrombosis, dysfunction of venous outflow and compression of microvasculature by vasogenic or cytotoxic tissue edema. Recent clinical evidence has shown that large artery vasospasm is not the only cause of DCI, and that both large artery vasospasm-dependent and -independent cerebral infarction causes poor outcome. Animal studies suggest that mechanisms of vasospasm may differ between large artery and arterioles or capillaries, and that many kinds of cells in the vascular wall and brain parenchyma may be involved in the pathogenesis of microcirculatory disturbances. The impairment of the paravascular and glymphatic systems also may play important roles in the development of DCI. As pathological mediators for DCI, glutamate and several matricellular proteins have been investigated in addition to inflammatory molecules. Glutamate is involved in excitotoxicity contributing to cortical spreading ischemia and epileptic activity-related events. Microvascular dysfunction is an attractive mechanism to explain the cause of poor outcomes independently of large cerebral artery vasospasm, but needs more studies to clarify the pathophysiologies or mechanisms and to develop a novel therapeutic strategy.
Collapse
Affiliation(s)
- Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.
| | - Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Reona Asada
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masashi Fujimoto
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masato Shiba
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
20
|
Coulibaly AP, Provencio JJ. Aneurysmal Subarachnoid Hemorrhage: an Overview of Inflammation-Induced Cellular Changes. Neurotherapeutics 2020; 17:436-445. [PMID: 31907877 PMCID: PMC7283430 DOI: 10.1007/s13311-019-00829-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is a devastating disease that leads to poor neurological outcomes and is characterized by both vascular and neural pathologies. Recent evidence demonstrates that inflammation mediates many of the vascular and neural changes observed after SAH. Although most studies focus on inflammatory mediators such as cytokines, the ultimate effectors of inflammation in SAH are parenchymal brain and peripheral immune cells. As such, the present review will summarize our current understanding of the cellular changes of both CNS parenchymal and peripheral immune cells after SAH.
Collapse
Affiliation(s)
- A P Coulibaly
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - J J Provencio
- Department of Neurology, University of Virginia, Charlottesville, VA, USA.
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
21
|
Okada T, Suzuki H. Mechanisms of neuroinflammation and inflammatory mediators involved in brain injury following subarachnoid hemorrhage. Histol Histopathol 2020; 35:623-636. [PMID: 32026458 DOI: 10.14670/hh-18-208] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular disorder. Neuroinflammation is a critical cause of brain injury following SAH in both acute and chronic phases. While accumulating evidence has shown that therapies targeting neuroinflammation exerted beneficial effects in experimental SAH, there is little clinical evidence. One of the factors making neuroinflammation complicated is that inflammatory signaling pathways and mediators act as protective or detrimental responses at different phases. In addition, biomarkers to detect neuroinflammation are little known in clinical settings. In this review, first, we discuss how the inflammatory signaling pathways contribute to brain injury and other secondary pathophysiological changes in SAH. Damage-associated molecular patterns arising from mechanical stress, transient global cerebral ischemia, red blood cell breakdown and delayed cerebral ischemia following SAH trigger to activate pattern recognition receptors (PRRs) such as Toll-like receptors, nucleotide-binding oligomerization domain-like receptors, and receptors for advanced glycation end products. Most of PRRs activate common downstream signaling transcriptional factor nuclear factor-κΒ and mitogen-activated protein kinases, releasing pro-inflammatory mediators and cytokines. Next, we focus on how pro-inflammatory substances play a role during the course of SAH. Finally, we highlight an important inducer of neuroinflammation, matricellular protein (MCP). MCPs are a component of extracellular matrix and exert beneficial and harmful effects through binding to receptors, other matrix proteins, growth factors, and cytokines. Treatment targeting MCPs is being proved efficacious in pre-clinical models for preventing brain injury including neuroinflammation in SAH. In addition, MCPs may be a candidate of biomarkers predicting brain injury following SAH in clinical settings.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.
| |
Collapse
|
22
|
Kawakita F, Kanamaru H, Asada R, Suzuki H. Potential roles of matricellular proteins in stroke. Exp Neurol 2019; 322:113057. [DOI: 10.1016/j.expneurol.2019.113057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022]
|
23
|
Nishikawa H, Liu L, Nakano F, Kawakita F, Kanamaru H, Nakatsuka Y, Okada T, Suzuki H. Modified Citrus Pectin Prevents Blood-Brain Barrier Disruption in Mouse Subarachnoid Hemorrhage by Inhibiting Galectin-3. Stroke 2019; 49:2743-2751. [PMID: 30355205 DOI: 10.1161/strokeaha.118.021757] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background and Purpose- Plasma levels of galectin-3-a matricellular protein-are increased after aneurysmal subarachnoid hemorrhage (SAH), but the functional significance remains undetermined. This study was conducted to evaluate whether modified citrus pectin (MCP; galectin-3 inhibitor) prevents post-SAH early brain injury, focusing on blood-brain barrier disruption. Methods- C57BL/6 male adult mice (n=251) underwent sham or filament perforation SAH modeling, followed by a random intracerebroventricular injection of vehicle or drug at 30 minutes post-modeling. First, vehicle-treated and 0.8, 4, 16, or 32 µg MCP-treated mice were assessed by neuroscore and brain water content at 24 and 48 hours post-modeling. Second, Evans blue extravasation, Western blotting, coimmunoprecipitation and immunostaining were performed in vehicle-treated or 4 µg MCP-treated mice at 24 hours post-modeling. Third, vehicle or R-galectin-3 (recombinant galectin-3) was administered to SAH mice simultaneously with vehicle or MCP, and neuroscore and Evans blue extravasation were evaluated at 24 hours post-modeling. Fourth, vehicle or R-galectin-3 was administered to MCP-treated SAH mice at 24 hours, and neuroscore and IgG immunostaining were evaluated at 48 hours post-SAH. Results- Among tested dosages, 4 µg MCP showed the best neuroprotective effects as to preventing neurological impairments and brain edema at 24 to 48 hours post-SAH. Four micrograms MCP attenuated post-SAH blood-brain barrier disruption and galectin-3 upregulation in brain capillary endothelial cells, associated with inactivation of ERK (extracellular signal-related kinase) 1/2, STAT (signal transducer and activator of transcription)-3, and MMP (matrix metalloproteinase)-9, and the consequent preservation of a tight junction protein ZO-1 (zonula occludens-1). Coimmunoprecipitation assay demonstrated physical interactions between galectin-3 and TLR (Toll-like receptor) 4. R-galectin-3 blocked the neuroprotective effects of MCP. Conclusions- MCP prevents post-SAH blood-brain barrier disruption possibly by inhibiting galectin-3, of which the mechanisms may include binding to TLR4 and activating ERK1/2, STAT-3, and MMP-9. This study suggests galectin-3 to be a novel therapeutic target against post-SAH early brain injury.
Collapse
Affiliation(s)
- Hirofumi Nishikawa
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Lei Liu
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumi Nakano
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumihiro Kawakita
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hideki Kanamaru
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yoshinari Nakatsuka
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Takeshi Okada
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidenori Suzuki
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
24
|
Yazar HO, Yazar T, Cihan M. A preliminary data: Evaluation of serum Galectin-3 levels in patients with Idiopathic Parkinson's Disease. J Clin Neurosci 2019; 70:164-168. [PMID: 31471077 DOI: 10.1016/j.jocn.2019.08.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
AIM In our study, we aimed to collect data for the hypothesis that Galectin-3 might be used as a new prognostic and therapeutic biomarker in Idiopathic Parkinson's Disease (IPD). METHOD In this prospective and cross-sectional study, the Unified Parkinson's Disease Rating Scale (UPDRS) and Modified Hoehn and Yahr (H&Y) scales were applied to each patient diagnosed as IPD according to the UK Brain Bank diagnostic criteria. The control group consisted of healthy individuals with the same age, gender, and body mass index characteristics as the patients meeting the exclusion criteria. RESULTS A total of 111 cases were included in the study, 48 were IPD, and 63 were healthy controls. There were no statistically significant differences between the IPD and control groups in terms of demographic, anthropometric, and blood parameters (p > 0.05). Serum galectin-3 levels were significantly higher in IPD than the control group (p < 0.001). Serum galectin-3 levels, UPDRS scores, and duration of disease were significantly higher in patients with IPD in parallel with the progression of the disease (p < 0.001; 0.001; 0.009). No significant relationship was detected between the stage of the disease and other parameters (p < 0.05). CONCLUSION Our study supports the hypothesis that serum galectin-3 level might be associated with IPD. Our data suggest that serum galectin-3 levels might be an accessible biomarker for the detection and prevention of chronic, progressive diseases such as IPH.
Collapse
Affiliation(s)
- Hülya Olgun Yazar
- Ordu University Training and Research Hospital, Clinic of Neurology, Turkey.
| | - Tamer Yazar
- Ordu State Hospital, Clinic of Neurology, Turkey
| | - Murat Cihan
- Ordu University Training and Research Hospital, Clinical Biochemist, Turkey
| |
Collapse
|
25
|
Mallah K, Quanico J, Raffo-Romero A, Cardon T, Aboulouard S, Devos D, Kobeissy F, Zibara K, Salzet M, Fournier I. Mapping Spatiotemporal Microproteomics Landscape in Experimental Model of Traumatic Brain Injury Unveils a link to Parkinson's Disease. Mol Cell Proteomics 2019; 18:1669-1682. [PMID: 31204315 PMCID: PMC6683007 DOI: 10.1074/mcp.ra119.001604] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) represents a major health concerns with no clinically-approved FDA drug available for therapeutic intervention. Several genomics and neuroproteomics studies have been employed to decipher the underlying pathological mechanisms involved that can serve as potential neurotherapeutic targets and unveil a possible underlying relation of TBI to other secondary neurological disorders. In this work, we present a novel high throughput systems biology approach using a spatially resolved microproteomics platform conducted on different brain regions in an experimental rat model of moderate of controlled cortical injury (CCI) at a temporal pattern postinjury (1 day, 3 days, 7 days, and 10 days). Mapping the spatiotemporal landscape of signature markers in TBI revealed an overexpression of major protein families known to be implicated in Parkinson's disease (PD) such as GPR158, HGMB1, synaptotagmin and glutamate decarboxylase in the ipsilateral substantia nigra. In silico bioinformatics docking experiments indicated the potential correlation between TBI and PD through alpha-synuclein. In an in vitro model, stimulation with palmitoylcarnitine triggered an inflammatory response in macrophages and a regeneration processes in astrocytes which also further confirmed the in vivo TBI proteomics data. Taken together, this is the first study to assess the microproteomics landscape in TBI, mainly in the substantia nigra, thus revealing a potential predisposition for PD or Parkinsonism post-TBI.
Collapse
Affiliation(s)
- Khalil Mallah
- ‡Université de Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France; §ER045, PRASE, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Jusal Quanico
- ‡Université de Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Antonella Raffo-Romero
- ‡Université de Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Tristan Cardon
- ‡Université de Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Soulaimane Aboulouard
- ‡Université de Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - David Devos
- ¶Department of Neurology, Expert center for Parkinson's disease, Department of Pharmacology, University of Lille, CHU LILLE, INSERM UMR_S 1171, LICEND, France
| | - Firas Kobeissy
- ‖Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Kazem Zibara
- §ER045, PRASE, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Michel Salzet
- ‡Université de Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France.
| | - Isabelle Fournier
- ‡Université de Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France.
| |
Collapse
|
26
|
Suzuki H. Inflammation: a Good Research Target to Improve Outcomes of Poor-Grade Subarachnoid Hemorrhage. Transl Stroke Res 2019; 10:597-600. [PMID: 31214920 DOI: 10.1007/s12975-019-00713-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
27
|
Machine Learning Analysis of Matricellular Proteins and Clinical Variables for Early Prediction of Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage. Mol Neurobiol 2019; 56:7128-7135. [PMID: 30989629 DOI: 10.1007/s12035-019-1601-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Abstract
Although delayed cerebral ischemia (DCI) is a well-known complication after subarachnoid hemorrhage (SAH), there are no reliable biomarkers to predict DCI development. Matricellular proteins (MCPs) have been reported relevant to DCI and expected to become biomarkers. As machine learning (ML) enables the classification of various input data and the result prediction, the aim of this study was to construct early prediction models of DCI development with clinical variables and MCPs using ML analyses. Early-stage clinical data of 95 SAH patients in a prospective cohort were analyzed and applied to a ML algorithm, random forest, to construct three prediction models: (1) a model with only clinical variables on admission, (2) a model with only plasma levels of MCP (periostin, osteopontin, and galectin-3) at post-onset days 1-3, and (3) a model with both clinical variables on admission and MCP values at days 1-3. The prediction accuracy of the development of DCI, angiographic vasospasm, or cerebral infarction and the importance of each feature were computed. The prediction accuracy of DCI development was 93.9% in model 1, 87.2% in model 2, and 95.1% in model 3, but that of angiographic vasospasm or cerebral infarction was lower. The three most important features in model 3 for DCI were periostin, osteopontin, and galectin-3, followed by aneurysm location. All of the early-stage prediction models of DCI development constructed by ML worked with high accuracy and sensitivity. One-time early-stage measurement of plasma MCPs served for reliable prediction of DCI development, suggesting their potential utility as biomarkers.
Collapse
|
28
|
Abel WF, Funk CR, Blenda AV. Galectins in the Pathogenesis of Cerebrovascular Accidents: An Overview. J Exp Neurosci 2019; 13:1179069519836794. [PMID: 31007530 PMCID: PMC6458655 DOI: 10.1177/1179069519836794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/19/2019] [Indexed: 01/04/2023] Open
Abstract
Due to limitations of neuroimaging, such as the isodense appearance of blood to neuronal tissue in subacute hemorrhagic stroke, a body of studies have been performed to evaluate candidate biomarkers which may aid in accurate determination of cerebrovascular accident type. Beyond aiding in the delineation of stroke cause, biomarkers could also confer useful prognostic information to help clinicians plan use of resources. One of the candidate biomarkers studied for detection of cerebrovascular accident (CVA) includes a class of proteins called galectins. Galectins bind β-galactoside through a highly conserved carbohydrate recognition domain, endowing an ability to interact with carbohydrate moieties on glycoproteins, some of which are relevant to CVA response. Furthermore, galectins-1, -2, -3, -9, and -12 are expressed in tissues relevant to CVA, and some exhibit characteristics (eg, extracellular secretion) that could render feasible their detection in serum. Galectins-1 and -3 appear to have the largest amounts of preclinical evidence, consistently demonstrating increased activity and expression levels during CVA. However, a lack of standardization of biochemical assays across cohort studies limits further translation of these basic science studies. This review aims to increase awareness of the biochemical roles of galectins in CVA, while also highlighting challenges and remaining questions preventing the translation of basic science observations into a clinically useful test.
Collapse
Affiliation(s)
- William F Abel
- University of South Carolina School of Medicine Greenville, Greenville, SC, USA
| | | | - Anna V Blenda
- University of South Carolina School of Medicine Greenville, Greenville, SC, USA
| |
Collapse
|
29
|
Su J, Wang M, Yan Y, Ju S, Chen J, Wu X. Increased REDD1 facilitates neuronal damage after subarachnoid hemorrhage. Neurochem Int 2019; 128:14-20. [PMID: 30930273 DOI: 10.1016/j.neuint.2019.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/12/2019] [Accepted: 03/26/2019] [Indexed: 11/29/2022]
Abstract
Regulated in development and DNA damage responses 1 (REDD1) is a highly conserved stress-response protein and can be induced by hypoxia/ischemia and DNA damage. However, it is not known whether REDD1 involves in neuronal damage caused by subarachnoid hemorrhage (SAH) that is known as one of the most important causes of disability and death worldwide. Here, we first found that SAH markedly induced the increase of REDD1 (35.467 ng/ml) in cerebrospinal fluid (CSF) of patients at acute stage (within 24 h from bleeding) compared to that of control (0.644 ng/ml). And, REDD1 level was positively correlated with severity of brain injuries (Hunt-Hess grade of SAH), but it showed an obvious decline at recovery stage 6.201 ng/ml (before discharge from hospital) because of good recovery. Moreover, it was found that the expression of REDD1 was significantly induced by hemolysate in a dose-dependent way in neurons. Knockdown of REDD1 by lentivirus encoded REDD1-shRNA could inhibit the neuronal apoptosis and LDH leakage caused by hemolysate. Importantly, the level of REDD1 in peripheral blood of SAH patients was significantly higher (4.364 ng/ml) than that of healthy persons (1.317 ng/ml) and also was positively correlated with that in CSF. Taken together, our findings provide the novel and direct evidence that REDD1 could play a critical role of process of neuronal damage caused by SAH, suggesting a new molecular target to protect brain function from SAH injury.
Collapse
Affiliation(s)
- Jianyou Su
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Meng Wang
- Department of Neurochemistry, Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yaohua Yan
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jian Chen
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China.
| | - Xiaomei Wu
- Department of Neurochemistry, Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
30
|
Kanamaru H, Kawakita F, Nakano F, Miura Y, Shiba M, Yasuda R, Toma N, Suzuki H. Plasma Periostin and Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage. Neurotherapeutics 2019; 16:480-490. [PMID: 30635868 PMCID: PMC6554464 DOI: 10.1007/s13311-018-00707-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Delayed cerebral ischemia (DCI) is a serious complication of aneurysmal subarachnoid hemorrhage (SAH). Matricellular protein periostin (POSTN) has been found to be upregulated and linked with early brain injury after experimental SAH. The aim of the present study was to investigate the relationship between plasma POSTN levels and various clinical factors including serum levels of C-reactive protein (CRP), an inflammatory marker, in 109 consecutive SAH patients whose POSTN levels were measured at days 1-12 after aneurysmal obliteration. DCI developed in 16 patients associated with higher incidence of angiographic vasospasm, cerebral infarction, and 90-day worse outcomes. POSTN levels peaked at days 4-6 before DCI development. Cerebrospinal fluid (CSF) drainage was associated with reduced POSTN levels, but did not influence CRP levels. There was no correlation between POSTN levels and other treatments or CRP levels. To predict DCI development, receiver-operating characteristic curves indicated that the most reasonable cutoff POSTN levels were obtained at days 1-3 in patients without CSF drainage (80.5 ng/ml; specificity, 77.6%; sensitivity, 85.7%). Multivariate analyses using variables obtained by day 3 revealed that POSTN level was an independent predictor of DCI. POSTN levels over the cutoff value were associated with higher incidence of DCI, but not angiographic vasospasm. This study shows for the first time that CSF drainage may reduce plasma POSTN levels, and that POSTN levels may increase prior to the development of DCI with and without vasospasm irrespective of systemic inflammatory reactions in clinical settings. These findings suggest POSTN as a new therapeutic molecular target against post-SAH DCI.
Collapse
Affiliation(s)
- Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Fumi Nakano
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoichi Miura
- Center for Vessels and Heart, Mie University Hospital, Tsu, Japan
| | - Masato Shiba
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Ryuta Yasuda
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Naoki Toma
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
31
|
Kanamaru H, Suzuki H. Potential therapeutic molecular targets for blood-brain barrier disruption after subarachnoid hemorrhage. Neural Regen Res 2019; 14:1138-1143. [PMID: 30804237 PMCID: PMC6425837 DOI: 10.4103/1673-5374.251190] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage remains serious hemorrhagic stroke with high morbidities and mortalities. Aneurysm rupture causes arterial bleeding-induced mechanical brain tissue injuries and elevated intracranial pressure, followed by global cerebral ischemia. Post-subarachnoid hemorrhage ischemia, tissue injuries as well as extravasated blood components and the breakdown products activate microglia, astrocytes and Toll-like receptor 4, and disrupt blood-brain barrier associated with the induction of many inflammatory and other cascades. Once blood-brain barrier is disrupted, brain tissues are directly exposed to harmful blood contents and immune cells, which aggravate brain injuries furthermore. Blood-brain barrier disruption after subarachnoid hemorrhage may be developed by a variety of mechanisms including endothelial cell apoptosis and disruption of tight junction proteins. Many molecules and pathways have been reported to disrupt the blood-brain barrier after subarachnoid hemorrhage, but the exact mechanisms remain unclear. Multiple independent and/or interconnected signaling pathways may be involved in blood-brain barrier disruption after subarachnoid hemorrhage. This review provides recent understandings of the mechanisms and the potential therapeutic targets of blood-brain barrier disruption after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
32
|
Nishikawa H, Nakano F, Suzuki H. Response by Nishikawa et al to Letter Regarding Article, "Modified Citrus Pectin Prevents Blood-Brain Barrier Disruption in Mouse Subarachnoid Hemorrhage by Inhibiting Galectin-3". Stroke 2019; 50:e23. [PMID: 30580749 DOI: 10.1161/strokeaha.118.024028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hirofumi Nishikawa
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumi Nakano
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
33
|
Suzuki H, Fujimoto M, Kawakita F, Liu L, Nakatsuka Y, Nakano F, Nishikawa H, Okada T, Kanamaru H, Imanaka-Yoshida K, Yoshida T, Shiba M. Tenascin-C in brain injuries and edema after subarachnoid hemorrhage: Findings from basic and clinical studies. J Neurosci Res 2018; 98:42-56. [PMID: 30242870 DOI: 10.1002/jnr.24330] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/11/2018] [Accepted: 08/29/2018] [Indexed: 12/17/2022]
Abstract
Subarachnoid hemorrhage (SAH) by a rupture of cerebral aneurysms remains the most devastating cerebrovascular disease. Early brain injury (EBI) is increasingly recognized to be the primary determinant for poor outcomes, and also considered to cause delayed cerebral ischemia (DCI) after SAH. Both clinical and experimental literatures emphasize the impact of global cerebral edema in EBI as negative prognostic and direct pathological factors. The nature of the global cerebral edema is a mixture of cytotoxic and vasogenic edema, both of which may be caused by post-SAH induction of tenascin-C (TNC) that is an inducible, non-structural, secreted and multifunctional matricellular protein. Experimental SAH induces TNC in brain parenchyma in rats and mice. TNC knockout suppressed EBI in terms of brain edema, blood-brain barrier disruption, neuronal apoptosis and neuroinflammation, associated with the inhibition of post-SAH activation of mitogen-activated protein kinases and nuclear factor-kappa B in mice. In a clinical setting, more severe SAH increases more TNC in cerebrospinal fluid and peripheral blood, which could be a surrogate marker of EBI and predict DCI development and outcomes. In addition, cilostazol, a selective inhibitor of phosphodiesterase type III that is a clinically available anti-platelet agent and is known to suppress TNC induction, dose-dependently inhibited delayed cerebral infarction and improved outcomes in a pilot clinical study. Thus, further studies may facilitate application of TNC as biomarkers for non-invasive diagnosis or assessment of EBI and DCI, and lead to development of a molecular target drug against TNC, contributing to the improvement of post-SAH outcomes.
Collapse
Affiliation(s)
- Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.,Research Center for Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masashi Fujimoto
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Lei Liu
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yoshinari Nakatsuka
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumi Nakano
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hirofumi Nishikawa
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Takeshi Okada
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kyoko Imanaka-Yoshida
- Research Center for Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Toshimichi Yoshida
- Research Center for Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masato Shiba
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
34
|
Suzuki H, Nishikawa H, Kawakita F. Matricellular proteins as possible biomarkers for early brain injury after aneurysmal subarachnoid hemorrhage. Neural Regen Res 2018; 13:1175-1178. [PMID: 30028318 PMCID: PMC6065232 DOI: 10.4103/1673-5374.235022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage remains devastating, and the most important determinant of poor outcome is early brain injury (EBI). In clinical settings, as a surrogate marker of EBI, loss of consciousness at ictus, poor initial clinical grades, and some radiographic findings are used, but these markers are somewhat subjective. Thus, it is imperative to find biomarkers of EBI that have beneficial prognostic and therapeutic implications. In our opinion, an ideal biomarker is a molecule that is implicated in the pathogenesis of both EBI and subsequently developing delayed cerebral ischemia (DCI), being a therapeutic target, and can be measured easily in the peripheral blood in an acute stage. A good candidate of such a biomarker is a matricellular protein, which is a secreted, inducible and multifunctional extracellular matrix protein. There are many kinds of matricellular proteins reported, but only tenascin-C, osteopontin, galectin-3 and periostin are reported relevant to EBI and DCI. Reliable biomarkers of EBI may stratify aneurysmal subarachnoid hemorrhage patients into categories of risk to develop DCI, and allow objective monitoring of the response to treatment for EBI and earlier diagnosis of DCI. This review emphasizes that further investigation of matricellular proteins as an avenue for biomarker discovery is warranted.
Collapse
Affiliation(s)
- Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hirofumi Nishikawa
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|