1
|
Korewo-Labelle D, Karnia MJ, Myślińska D, Kaczor JJ. Impact of Chronic Cold Water Immersion and Vitamin D3 Supplementation on the Hippocampal Metabolism and Oxidative Stress in Rats. Cells 2025; 14:641. [PMID: 40358165 PMCID: PMC12071205 DOI: 10.3390/cells14090641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/18/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Chronic cold exposure is a stressor that may adversely affect the hippocampal structure and cognitive function. Critical for memory formation and learning processes, the hippocampus is particularly susceptible to hypothalamic-pituitary-adrenal (HPA) axis activity and elevated glucocorticoid levels. Vitamin D plays a complex role in regulating mitochondrial function and may provide neuroprotection. This study aimed to investigate the effects of chronic cold exposure on proteins associated with signaling pathways, mitochondrial function, and oxidative stress in the hippocampus of rats and to evaluate the neuroprotective potential of vitamin D3 supplementation. Male Wistar rats (n = 26) were assigned to four groups: control (CON; n = 4), sham stress (WW; n = 6), chronic cold water immersion (CCWI) (CW group; n = 8), and CCWI with 600 IU/kg/day vitamin D3 (VD3) supplementation (CW + D group; n = 8). Exposure to CCWI significantly reduced the hippocampal mass of rats, an effect not reversed by vitamin D3 supplementation. However, vitamin D3 improved mitochondrial function and exhibited antioxidant effects, partially reducing markers of protein and lipid free radicals damage in neural tissue. Our findings demonstrate the antioxidant properties of VD3 and its potential role in mitigating hippocampal damage during prolonged cold exposure, although its neuroprotective effects remain limited.
Collapse
Affiliation(s)
- Daria Korewo-Labelle
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Mateusz Jakub Karnia
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (M.J.K.); (D.M.)
| | - Dorota Myślińska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (M.J.K.); (D.M.)
| | - Jan Jacek Kaczor
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (M.J.K.); (D.M.)
| |
Collapse
|
2
|
Ju IG, Lee JH, Lee JM, Im H, Eo H, Moon M, Song MK, Kim YS, Oh MS, Kim YJ. NXP031 restores memory function by dual effects degrading Aβ accumulation and facilitating antioxidant pathway in Alzheimer's disease models. Free Radic Biol Med 2025; 226:158-170. [PMID: 39521153 DOI: 10.1016/j.freeradbiomed.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Alzheimer's disease (AD) is a representative neurodegenerative disease that is characterized by the overaccumulation of amyloid beta (Aβ) proteins. Since AD is accompanied by excessive oxidative stress, which aggravates neurological pathologies, the use of antioxidants has been considered to prevent disease development. NXP031, a combination of vitamin C (VitC) and an optimized aptamer that binds to VitC and stabilizes the reactivity of VitC, was designed. This study aimed to evaluate the effects of NXP031 on AD pathology, including Aβ accumulation, Aβ-induced oxidative stress, neuronal damage, and neuroinflammation. When NXP031 was administered to 5xFAD transgenic mice, NXP031 exerted a strong inhibitory action on Aβ accumulation, superior to that of VitC, by inducing an increase in Aβ-degrading endopeptidase expression. NXP031 diminished lipid peroxidation levels, activated Nrf2-mediated antioxidant pathways, and suppressed overactivated neuroinflammation. An in vitro study using Neuro2a cells revealed that NXP031 protects the cells against oxidative stress by regulating the MAPK signaling pathway-mediated apoptosis. Additionally, the neuroprotective effects of NXP031 were confirmed in a dose-dependent manner when administered to intrahippocampal Aβ-injected mice, as NXP031 attenuated memory decline, neuronal apoptosis, synaptic degeneration, and excessive glial activation, and reduced NOX-2 expression in the hippocampus. Taken together, NXP031 reduced the Aβ burden by regulating Aβ-degeneration and attenuated memory impairment, neuronal death, synaptic degeneration, and neuroinflammation induced by Aβ toxicity. These results suggest the potential of NXP031 as a therapeutic agent for AD.
Collapse
Affiliation(s)
- In Gyoung Ju
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Joo Hee Lee
- College of Nursing Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Jae-Min Lee
- College of Nursing Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Hyeri Im
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Hyeyoon Eo
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 32992, Republic of Korea.
| | - Min Kyung Song
- College of Nursing Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Yoon-Seong Kim
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, NJ, 08854, USA.
| | - Myung Sook Oh
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Youn-Jung Kim
- College of Nursing Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
3
|
Sleiman A, Miller KB, Flores D, Kuan J, Altwasser K, Smith BJ, Kozbenko T, Hocking R, Wood SJ, Huff J, Adam-Guillermin C, Hamada N, Yauk C, Wilkins R, Chauhan V. AOP report: Development of an adverse outcome pathway for deposition of energy leading to learning and memory impairment. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:57-84. [PMID: 39228295 DOI: 10.1002/em.22622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024]
Abstract
Understanding radiation-induced non-cancer effects on the central nervous system (CNS) is essential for the risk assessment of medical (e.g., radiotherapy) and occupational (e.g., nuclear workers and astronauts) exposures. Herein, the adverse outcome pathway (AOP) approach was used to consolidate relevant studies in the area of cognitive decline for identification of research gaps, countermeasure development, and for eventual use in risk assessments. AOPs are an analytical construct describing critical events to an adverse outcome (AO) in a simplified form beginning with a molecular initiating event (MIE). An AOP was constructed utilizing mechanistic information to build empirical support for the key event relationships (KERs) between the MIE of deposition of energy to the AO of learning and memory impairment through multiple key events (KEs). The evidence for the AOP was acquired through a documented scoping review of the literature. In this AOP, the MIE is connected to the AO via six KEs: increased oxidative stress, increased deoxyribonucleic acid (DNA) strand breaks, altered stress response signaling, tissue resident cell activation, increased pro-inflammatory mediators, and abnormal neural remodeling that encompasses atypical structural and functional alterations of neural cells and surrounding environment. Deposition of energy directly leads to oxidative stress, increased DNA strand breaks, an increase of pro-inflammatory mediators and tissue resident cell activation. These KEs, which are themselves interconnected, can lead to abnormal neural remodeling impacting learning and memory processes. Identified knowledge gaps include improving quantitative understanding of the AOP across several KERs and additional testing of proposed modulating factors through experimental work. Broadly, it is envisioned that the outcome of these efforts could be extended to other cognitive disorders and complement ongoing work by international radiation governing bodies in their review of the system of radiological protection.
Collapse
Affiliation(s)
- Ahmad Sleiman
- Institut de Radioprotection et de Sûreté Nucléaire, St. Paul Lez Durance, Provence, France
| | - Kathleen B Miller
- Department of Health and Exercise Science, Morrison College Family of Health, University of St. Thomas, Saint Paul, Minnesota, USA
| | - Danicia Flores
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Jaqueline Kuan
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Kaitlyn Altwasser
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Benjamin J Smith
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Tatiana Kozbenko
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Robyn Hocking
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | | | - Janice Huff
- NASA Langley Research Center, Hampton, Virginia, USA
| | | | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruth Wilkins
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Zaki M, Youness ER, Orban HA, Ahmed HM, Moustafa RSI, Alzaree FA, Ashaat EA, El-Bassyouni HT. Potential biomarkers of ASD a target for future treatments: oxidative stress, chemokines, apoptotic, and methylation capacity. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 0:jcim-2024-0145. [PMID: 38960893 DOI: 10.1515/jcim-2024-0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVES The study aimed to assess the effect of these biomarkers on a sample of children with autism spectrum disorder (ASD) to help in early diagnosis and intervention. METHODS A total of 71 autistic patients and 65 normal controls were enrolled in this study. Their ages ranged from 5 to 11 years (mean ± SD 7.47 ± 3.81). Childhood Autism Rating Scale (CARS) was assessed for all patients and controls. Assessment of oxidative stress, monocyte chemoattractant protein-1, B-cell lymphoma 2, S-adenosylhomocysteine (SAH), and apelin was performed. RESULTS Oxidative stress (oxidized low-density lipoprotein and malonaldehyde) increased while antioxidant paraoxonase (PON) decreased. Monocyte chemoattractant protein-1, B-cell lymphoma 2, and S-adenosylhomocysteine (SAH) were all elevated whereas, apelin was downregulated. CONCLUSIONS It is important to note that many factors that may contribute to ASD including genetic factors. To open the door for novel treatment strategies, it is still necessary to precisely understand how oxidative stress, chemokines, apoptosis, and methylation capability affect the metabolism of people with ASD.
Collapse
Affiliation(s)
- Moushira Zaki
- Biological Anthropology Department, 68787 Medical Research and Clinical Studies Institute-National Research Centre , Cairo, Egypt
| | - Eman R Youness
- Medical Biochemistry Department, 68787 Medical Research and Clinical Studies Institute-National Research Centre , Cairo, Egypt
| | - Hisham A Orban
- Medical Biochemistry Department, 68787 Medical Research and Clinical Studies Institute-National Research Centre , Cairo, Egypt
| | - Hend M Ahmed
- Medical Biochemistry Department, 68787 Medical Research and Clinical Studies Institute-National Research Centre , Cairo, Egypt
| | - Rehab S I Moustafa
- Child Health Department, 68787 Medical Research and Clinical Studies Institute, National Research Centre , Cairo, Egypt
| | - Fatma A Alzaree
- Child Health Department, 68787 Medical Research and Clinical Studies Institute, National Research Centre , Cairo, Egypt
| | - Engy A Ashaat
- Clinical Genetics Department, 68787 Human Genetics and Genome Research Institute, National Research Centre , Cairo, Egypt
| | - Hala T El-Bassyouni
- Clinical Genetics Department, 68787 Human Genetics and Genome Research Institute, National Research Centre , Cairo, Egypt
| |
Collapse
|
5
|
Afzali MF, Sykes MM, Burton LH, Patton KM, Lee KR, Seebart C, Vigon N, Ek R, Narez GE, Marolf AJ, Sikes KJ, Haut Donahue TL, Santangelo KS. Removal of the infrapatellar fat pad and associated synovium benefits female guinea pigs in the Dunkin Hartley model of idiopathic osteoarthritis. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:43. [PMID: 38911554 PMCID: PMC11193561 DOI: 10.21037/atm-23-1886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/10/2024] [Indexed: 06/25/2024]
Abstract
Background Several tissues contribute to the onset and advancement of knee osteoarthritis (OA). One tissue type that is worthy of closer evaluation, particularly in the context of sex, is the infrapatellar fat pad (IFP). We previously demonstrated that removal of the IFP had short-term beneficial effects for a cohort of male Dunkin-Hartley guinea pigs. The present project was designed to elucidate the influence of IFP removal in females of this OA-prone strain. It was hypothesized that resection of the IFP would reduce the development of OA in knees of a rodent model predisposed to the disease. Methods Female guinea pigs (n=16) were acquired at an age of 2.5 months. Surgical removal of the IFP and associated synovium complex (IFP/SC) was executed at 3 months of age. One knee had the IFP/SC resected; a comparable sham surgery was performed on the contralateral knee. All animals were subjected to voluntary enclosure monitoring and dynamic weight-bearing, as well as compulsory treadmill-based gait analysis monthly; baseline data was collected prior to surgery. Guinea pigs were euthanized at 7 months. Knees from eight animals were evaluated via histology, mRNA expression, and immunohistochemistry (IHC); knees from the remaining eight animals were allocated to microcomputed tomography (microCT), biomechanical analyses (whole joint testing and indentation relaxation testing), and atomic absorption spectroscopy (AAS). Results Fibrous connective tissue (FCT) replaced the IFP/SC. Mobility/gait data indicated that unilateral IFP/SC removal did not affect bilateral hindlimb movement. MicroCT demonstrated that osteophytes were not a significant feature of OA in this sex; however, trabecular thickness (TbTh) in medial femorae decreased in knees containing the FCT. Histopathology scores were predominantly influenced by changes in the lateral tibia, which demonstrated that histologic signs of OA were increased in knees containing the native IFP/SC versus those with the FCT. Similarly, indentation testing demonstrated higher instantaneous and equilibrium moduli in the lateral tibial articular cartilage of control knees with native IFPs. AAS of multiple tissue types associated with the knee revealed that zinc was the major trace element influenced by removal of the IFP/SC. Conclusions Our data suggest that the IFP/SC is a significant component driving knee OA in female guinea pigs and that resection of this tissue prior to disease has short-term benefits. Specifically, the formation of the FCT in place of the native tissue resulted in decreased cartilage-related OA changes, as demonstrated by reduced Osteoarthritis Research Society International (OARSI) histology scores, as well as changes in transcript, protein, and cartilage indentation analyses. Importantly, this model provides evidence that sex needs to be considered when investigating responses and associated mechanisms seen with this intervention.
Collapse
Affiliation(s)
- Maryam F. Afzali
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Madeline M. Sykes
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Lindsey H. Burton
- Department of Clinical Sciences, C. Wayne Mcllwraith Translational Medicine Institute, Colorado State University, Fort Collins, CO, USA
| | - Kayley M. Patton
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Koryn R. Lee
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Cassie Seebart
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Nicole Vigon
- Department of Biomedical Engineering, S631 Life Sciences Laboratory, University of Massachusetts Amherst, Amherst, MA, USA
| | - Ryan Ek
- Department of Biomedical Engineering, S631 Life Sciences Laboratory, University of Massachusetts Amherst, Amherst, MA, USA
| | - Gerardo E. Narez
- Department of Biomedical Engineering, S631 Life Sciences Laboratory, University of Massachusetts Amherst, Amherst, MA, USA
| | - Angela J. Marolf
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Katie J. Sikes
- Department of Clinical Sciences, C. Wayne Mcllwraith Translational Medicine Institute, Colorado State University, Fort Collins, CO, USA
| | | | - Kelly S. Santangelo
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
6
|
Kadac-Czapska K, Ośko J, Knez E, Grembecka M. Microplastics and Oxidative Stress-Current Problems and Prospects. Antioxidants (Basel) 2024; 13:579. [PMID: 38790684 PMCID: PMC11117644 DOI: 10.3390/antiox13050579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Microplastics (MPs) are plastic particles between 0.1 and 5000 µm in size that have attracted considerable attention from the scientific community and the general public, as they threaten the environment. Microplastics contribute to various harmful effects, including lipid peroxidation, DNA damage, activation of mitogen-activated protein kinase pathways, cell membrane breakages, mitochondrial dysfunction, lysosomal defects, inflammation, and apoptosis. They affect cells, tissues, organs, and overall health, potentially contributing to conditions like cancer and cardiovascular disease. They pose a significant danger due to their widespread occurrence in food. In recent years, information has emerged indicating that MPs can cause oxidative stress (OS), a known factor in accelerating the aging of organisms. This comprehensive evaluation exposed notable variability in the reported connection between MPs and OS. This work aims to provide a critical review of whether the harmfulness of plastic particles that constitute environmental contaminants may result from OS through a comprehensive analysis of recent research and existing scientific literature, as well as an assessment of the characteristics of MPs causing OS. Additionally, the article covers the analytical methodology used in this field. The conclusions of this review point to the necessity for further research into the effects of MPs on OS.
Collapse
Affiliation(s)
| | | | | | - Małgorzata Grembecka
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (K.K.-C.); (J.O.); (E.K.)
| |
Collapse
|
7
|
Li XY, Yin X, Lu JJ, Li QR, Xing WQ, Han Q, Ji H, Li SZ, Yang HM, Guo JR, Wang ZQ, Xu B. Ubiquitinome Analysis Uncovers Alterations in Synaptic Proteins and Glucose Metabolism Enzymes in the Hippocampi of Adolescent Mice Following Cold Exposure. Cells 2024; 13:570. [PMID: 38607009 PMCID: PMC11011669 DOI: 10.3390/cells13070570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/08/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Cold exposure exerts negative effects on hippocampal nerve development in adolescent mice, but the underlying mechanisms are not fully understood. Given that ubiquitination is essential for neurodevelopmental processes, we attempted to investigate the effects of cold exposure on the hippocampus from the perspective of ubiquitination. By conducting a ubiquitinome analysis, we found that cold exposure caused changes in the ubiquitination levels of a variety of synaptic-associated proteins. We validated changes in postsynaptic density-95 (PSD-95) ubiquitination levels by immunoprecipitation, revealing reductions in both the K48 and K63 polyubiquitination levels of PSD-95. Golgi staining further demonstrated that cold exposure decreased the dendritic-spine density in the CA1 and CA3 regions of the hippocampus. Additionally, bioinformatics analysis revealed that differentially ubiquitinated proteins were enriched in the glycolytic, hypoxia-inducible factor-1 (HIF-1), and 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathways. Protein expression analysis confirmed that cold exposure activated the mammalian target of rapamycin (mTOR)/HIF-1α pathway. We also observed suppression of pyruvate kinase M2 (PKM2) protein levels and the pyruvate kinase (PK) activity induced by cold exposure. Regarding oxidative phosphorylation, a dramatic decrease in mitochondrial respiratory-complex I activity was observed, along with reduced gene expression of the key subunits NADH: ubiquinone oxidoreductase core subunit V1 (Ndufv1) and Ndufv2. In summary, cold exposure negatively affects hippocampal neurodevelopment and causes abnormalities in energy homeostasis within the hippocampus.
Collapse
Affiliation(s)
- Xin-Yue Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Xin Yin
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Jing-Jing Lu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Qian-Ru Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Wan-Qun Xing
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Qi Han
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Hong Ji
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Shi-Ze Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Huan-Min Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Jing-Ru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Zhi-Quan Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| |
Collapse
|
8
|
Rasouli Mojez M, Ali Gaeini A, Choobineh S, Sheykhlouvand M. Hippocampal Oxidative Stress Induced by Radiofrequency Electromagnetic Radiation and the Neuroprotective Effects of Aerobic Exercise in Rats: A Randomized Control Trial. J Phys Act Health 2021; 18:1532-1538. [PMID: 34697252 DOI: 10.1123/jpah.2021-0213] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/20/2021] [Accepted: 08/24/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND The present study determined whether 4 weeks of moderate aerobic exercise improves antioxidant capacity on the brain of rats against oxidative stress caused by radiofrequency electromagnetic radiation emitted from cell phones. METHODS Responses of malondialdehyde, catalase, glutathione peroxidase, and superoxide dismutase, as well as the number of hippocampal dead cells, were examined. Male Wistar rats (10-12 wk old) were randomly assigned to 1 of 4 groups (N = 8): (1) moderate aerobic exercise (EXE) (2 × 15-30 min at 1215 m/min speed with 5 min of active recovery between sets), (2) exposure to 900/1800 MHz radiofrequency electromagnetic waves 3 hours per day (RAD), (3) EXE + RAD, and (4) exposure to an experimental phone without battery. RESULTS Following the exposure, the number of the hippocampal dead cells was significantly higher in group RAD compared with groups EXE, EXE + RAD, and control group. Malondialdehyde concentration in group RAD was significantly higher than that of groups EXE, EXE + RAD, and control group. Also, the activity of catalase, glutathione peroxidase, and superoxide dismutase in groups EXE, EXE + RAD, and control group was significantly higher compared with those of the exposure group. CONCLUSION This study demonstrated that moderate aerobic exercise enhances hippocampal antioxidant capacity against oxidative challenge in the form of radiofrequency electromagnetic waves.
Collapse
|
9
|
Chen L, Shi XJ, Liu H, Mao X, Gui LN, Wang H, Cheng Y. Oxidative stress marker aberrations in children with autism spectrum disorder: a systematic review and meta-analysis of 87 studies (N = 9109). Transl Psychiatry 2021; 11:15. [PMID: 33414386 PMCID: PMC7791110 DOI: 10.1038/s41398-020-01135-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
There is increasing awareness that oxidative stress may be implicated in the pathophysiology of autism spectrum disorder (ASD). Here we aimed to investigate blood oxidative stress marker profile in ASD children by a meta-analysis. Two independent investigators systematically searched Web of Science, PubMed, and Cochrane Library and extracted data from 87 studies with 4928 ASD children and 4181 healthy control (HC) children. The meta-analysis showed that blood concentrations of oxidative glutathione (GSSG), malondialdehyde, homocysteine, S-adenosylhomocysteine, nitric oxide, and copper were higher in children with ASD than that of HC children. In contrast, blood reduced glutathione (GSH), total glutathione (tGSH), GSH/GSSG, tGSH/GSSG, methionine, cysteine, vitamin B9, vitamin D, vitamin B12, vitamin E, S-adenosylmethionine/S-adenosylhomocysteine, and calcium concentrations were significantly reduced in children with ASD relative to HC children. However, there were no significance differences between ASD children and HC children for the other 17 potential markers. Heterogeneities among studies were found for most markers, and meta-regressions indicated that age and publication year may influence the meta-analysis results. These results therefore clarified blood oxidative stress profile in children with ASD, strengthening clinical evidence of increased oxidative stress implicating in pathogenesis of ASD. Additionally, given the consistent and large effective size, glutathione metabolism biomarkers have the potential to inform early diagnosis of ASD.
Collapse
Affiliation(s)
- Lei Chen
- grid.411077.40000 0004 0369 0529Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xiao-Jie Shi
- grid.411077.40000 0004 0369 0529Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Hua Liu
- grid.411077.40000 0004 0369 0529Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xiao Mao
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment (Hunan Provincial Maternal and Child Health Care Hospital), Hunan, China
| | - Lue-Ning Gui
- grid.411077.40000 0004 0369 0529Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Hua Wang
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment (Hunan Provincial Maternal and Child Health Care Hospital), Hunan, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China. .,NHC Key Laboratory of Birth Defects Research, Prevention and Treatment (Hunan Provincial Maternal and Child Health Care Hospital), Hunan, China.
| |
Collapse
|
10
|
Lang L, Xu B, Yuan J, Li S, Lian S, Chen Y, Guo J, Yang H. GABA-mediated activated microglia induce neuroinflammation in the hippocampus of mice following cold exposure through the NLRP3 inflammasome and NF-κB signaling pathways. Int Immunopharmacol 2020; 89:106908. [PMID: 33166810 DOI: 10.1016/j.intimp.2020.106908] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/25/2020] [Accepted: 08/15/2020] [Indexed: 01/26/2023]
Abstract
Chronic cold stress has long-term dramatic effects on the animal immune and neuroendocrine systems. As one of the important regions of the brain, the hippocampus is the main region involved in response to stressors. Nevertheless, the impact to the hippocampus following cold exposure and the underlying mechanism involved are not clear. To evaluate the response of the hippocampus during chronic cold stress, male C57BL/6 mice were exposed to 4 °C, 3 h per day for 1 week, after which neuroinflammation and the molecular and signaling pathways in the hippocampus response to cold stress were investigated. To confirm the potential mechanism, BV2 cells were treated with γ-aminobutyric acid (GABA) and BAY 11-7082 and MCC950, then the activation of microglia and key proteins involved in the regulation of inflammation were measured. We demonstrated that chronic cold stress induced the activation of microglia, the emergence of neuroinflammation, and the impairment of neurons in the hippocampus, which might be the result of GABA-mediated activation of nod-like receptor protein 3 (NLRP3) inflammasome and the nuclear factor kappa B (NF-κB) signaling pathway.
Collapse
Affiliation(s)
- Limin Lang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Bin Xu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Jianbin Yuan
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Shize Li
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Shuai Lian
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Yan Chen
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Jingru Guo
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China.
| | - Huanmin Yang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China.
| |
Collapse
|