1
|
Gadgeel SM, Fajardo O, Barlesi F, Eun Kim J, Kurzrock R, Thomas DM, Jagtiani R, Noe J, Schwemmers S, Nikolaidis C. Real-world characteristics and survival outcomes of patients with metastatic ALK fusion-positive solid tumors treated with standard-of-care therapies. Oncologist 2025; 30:oyaf005. [PMID: 40338218 PMCID: PMC12060714 DOI: 10.1093/oncolo/oyaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/04/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Anaplastic lymphoma kinase (ALK) fusions can be found in different solid tumors. This study aims to describe the clinical characteristics and investigate survival outcomes of patients with ALK fusion-positive solid tumors (excluding non-small cell lung cancer [NSCLC]) treated with standard-of-care therapies in a real-world setting. PATIENTS AND METHODS Data for patients with metastatic solid tumors (excluding NSCLC) who had ≥1 Foundation Medicine comprehensive genomic profiling (CGP) test between January 1, 2011 and September 30, 2023, were obtained from a nationwide (US-based) de-identified multi-tumor clinico-genomic database. Patients with ALK wild-type (ALK-WT) tumors were matched with patients with ALK fusion-positive tumors (4:1 ratio) using pre-specified baseline characteristics. Two models were used to analyze survival outcomes: Model 1 used the CGP report date as the index date; Model 2 used the date of metastatic diagnosis as the index date (including adjustment for immortal time bias). RESULTS Overall, 22 and 88 patients were included in the ALK fusion-positive and ALK-WT cohorts, respectively. Co-alterations were rare in the ALK fusion-positive cohort. Median overall survival was consistently lower in patients with ALK fusion-positive tumors compared with patients with ALK-WT tumors, across all analyses (hazard ratios between 1.8 and 2.0). CONCLUSION Data from this study suggest that ALK fusions have a negative prognostic effect in metastatic solid tumors and highlight the need for further investigation of ALK inhibitors in the tumor-agnostic setting.
Collapse
Affiliation(s)
- Shirish M Gadgeel
- Department of Internal Medicine, Division of Hematology/Oncology, Henry Ford Cancer Institute/Henry Ford Health, Detroit, MI 48208, United States
| | - Otto Fajardo
- Real World Data Science, Product Development Data Sciences, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Fabrice Barlesi
- Department of Medical Oncology, International Centre for Thoracic Cancers (CICT), Gustave Roussy, Villejuif 94800, France
- Faculty of Medicine, Paris Saclay University, Kremlin-Bicêtre 94270, France
| | - Jeong Eun Kim
- Department of Oncology, Asan Medical Centre, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Razelle Kurzrock
- Precision Oncology Institution, Medical College of Wisconsin (MCW) Cancer Center, Milwaukee, WI 53226, United States
- Medical Oncology, University of Nebraska, Omaha, NE 68182, United States
- Worldwide Innovative Network (WIN) for Personalized Cancer Therapy, Chevilly-Larue 94550, France
| | - David M Thomas
- Centre for Molecular Oncology, University of New South Wales, Sydney, New South Wales 2033, Australia
| | - Ritika Jagtiani
- Product Development, Genentech, Inc., South San Francisco, CA 94080, United States
| | - Johannes Noe
- TM Oncology, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Sven Schwemmers
- Global Product Development Medical Affairs (PDMA), F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | | |
Collapse
|
2
|
Arafa ESA, Abdel-Fattah MM, Hassanein EHM, Buabeid MA, Mohamed WR. Involvement of GSK-3β, NF-κB, PPARγ, and apoptosis in amlodipine's anticancer effect in BALB/c mice. Toxicol Appl Pharmacol 2025; 498:117298. [PMID: 40089189 DOI: 10.1016/j.taap.2025.117298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Lung cancer is the primary cause of death due to cancer all over the world despite the decrease in the mortality rates from cancer in general. While chemotherapy is a commonly employed treatment for lung cancer, its efficacy is limited due to poor tissue selectivity, inadequate delivery to tumor sites, and associated side effects. The present work aims to assess the potential anti-cancer effectiveness of amlodipine, a calcium channel blocker, on murine lung cancer via modulating GSK-3β, NF-κB, PPARγ, and apoptosis. Lung cancer was induced in BALB/c mice by intraperitoneal injection of 1.5 g/kg in two doses of urethane: once on the 1st and the second on the 60th day of the experiment. Amlodipine was administered orally at a dose of 10 mg/kg/day for the last 28 days of experiment. Relative to urethane group, amlodipine mitigated urethane-induced histopathological abnormalities. It restored oxidant/antioxidant balance by normalizing MDA, GSH, and SOD. Furthermore, it exerted a marked anti-inflammatory effect through downregulating lung MPO, ICAM-1, IL-6, TNF-α, and NF-қB expressions. Amlodipine enhanced apoptosis of cancer cells as evidenced by increasing Bax and decreasing Bcl-2 expression. The anticancer effect of amlodipine was suggested to be mediated through increasing PPARγ and reducing GSK3β and p-GSK3β signaling. Collectively, these results suggest that amlodipine could exert a promising anticancer effect against lung cancer through modulating GSK-3β, NF-κB, PPARγ, and apoptosis. Our findings could be highly significant in clinical settings, offering a valuable adjuvant option for managing lung carcinoma, particularly in patients with cardiovascular disorders.
Collapse
Affiliation(s)
- El-Shaimaa A Arafa
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Manal A Buabeid
- Fatima College of Health Sciences, Department of Pharmacy, United Arab Emirates
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
3
|
Du F, Zhang A, Qi X, Yin R, Jiang T, Li J. Novel Camptothecin Derivative 9c with Enhanced Antitumor Activity via NSA2-EGFR-P53 Signaling Pathway. Int J Mol Sci 2025; 26:1987. [PMID: 40076615 PMCID: PMC11900506 DOI: 10.3390/ijms26051987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/12/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Therapeutic challenges persist in the management of non-small cell lung cancer (NSCLC) in oncology. Camptothecins have demonstrated as crucial agents in tumor therapy; however, their efficacy is significantly hindered by adverse effects and drug resistance. Herein, we present a novel camptothecin derivative named 9c, which exhibits impressive anti-NSCLC potency surpassing the widely recognized camptothecin analog FL118 through a novel mechanism. Our findings demonstrated that 9c effectively inhibited tumor malignancy through cell cycle arrest and apoptosis induction with the transcriptional downregulation of anti-apoptotic genes including survivin, Mcl-1, Bcl-2, and XIAP. Mechanistically, 9c induced a wild-type p53 expression by destabilizing the NSA2-EGFR axis, thus delaying the cell cycle progression and ultimately triggering apoptosis. 9c significantly inhibited the growth of the NSCLC xenograft in vivo without observed side toxicity. Importantly, it complemented the therapeutic advantages of the novel drug AMG510 for addressing KRAS-mutant NSCLC. Collectively, these findings position 9c as a promising candidate with innovative approaches to combat NSCLC.
Collapse
Affiliation(s)
- Fu Du
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.D.); (A.Z.); (X.Q.); (R.Y.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Aotong Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.D.); (A.Z.); (X.Q.); (R.Y.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Xin Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.D.); (A.Z.); (X.Q.); (R.Y.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Ruijuan Yin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.D.); (A.Z.); (X.Q.); (R.Y.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.D.); (A.Z.); (X.Q.); (R.Y.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.D.); (A.Z.); (X.Q.); (R.Y.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
4
|
Zhao Y, Wu S, Cao G, Song P, Lan CG, Zhang L, Sang YH. Mitochondrial carrier homolog 2 is important for mitochondrial functionality and non-small cell lung cancer cell growth. Cell Death Dis 2025; 16:95. [PMID: 39948081 PMCID: PMC11825924 DOI: 10.1038/s41419-025-07419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/13/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025]
Abstract
Discovering new molecular targets for non-small cell lung cancer (NSCLC) is critically important. Enhanced mitochondrial function can promote NSCLC progression by enabling metabolic reprogramming, resistance to apoptosis, and increased cell proliferation. Mitochondrial carrier homolog 2 (MTCH2), located in the outer mitochondrial membrane, is pivotal in regulating mitochondrial activities. This study examines MTCH2 expression and its functional role in NSCLC. Bioinformatic analysis showed that MTCH2 is overexpressed in NSCLC tissues, correlating with poor prognosis and other key clinical parameters of the patients. In addition, single-cell sequencing data revealed higher MTCH2 expression levels in cancer cells of NSCLC tumor mass. Moreover, MTCH2 is also upregulated in locally-treated NSCLC tissues and multiple primary/established human NSCLC cells. In various NSCLC cells, silencing MTCH2 via targeted shRNA or knockout (KO) using the CRISPR/Cas9 method significantly hindered cell proliferation, migration and invasion, while inducing apoptosis. MTCH2 knockdown or KO robustly impaired mitochondrial function, as indicated by reduced mitochondrial respiration, decreased complex I activity, lower ATP levels, lower mitochondrial membrane potential (mitochondrial depolarization), and increased reactive oxygen species (ROS) production. Conversely, ectopic overexpression of MTCH2 in primary NSCLC cells enhanced mitochondrial complex I activity and ATP production, promoting cell proliferation and migration. In vivo, the intratumoral injection of MTCH2 shRNA adeno-associated virus (aav) impeded the growth of subcutaneous xenografts of primary NSCLC cells in nude mice. In MTCH2 shRNA aav-injected NSCLC xenograft tissues, there was decreases in MTCH2 expression, mitochondrial complex I activity, ATP content, and the glutathione (GSH)/glutathione disulfide (GSSG) ratio, but increase in thiobarbituric acid reactive substances (TBAR) activity. Additionally, MTCH2 silencing led to reduced Ki-67 staining but increased apoptosis in NSCLC xenografts. Collectively, these findings demonstrate that overexpressed MTCH2 promotes NSCLC cell growth potentially through the maintenance of mitochondrial hyper-function, highlighting MTCH2 as a novel and promising therapeutic target for treating this disease.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Thoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Siyang Wu
- Respiratory Intensive Care Unit, Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, China
| | - Guohong Cao
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Peidong Song
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chang-Gong Lan
- Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, China.
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Lin Zhang
- Department of Thoracic Surgery, Suzhou Ninth People's Hospital Affiliated to Soochow University, Suzhou, China.
| | - Yong-Hua Sang
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
5
|
Ji Y, Zhang H, Gong FL, Liang JL, Wang SF, Sang YH, Zheng MF. The expression and functional role of proline-rich 15 in non-small cell lung cancer. Cell Death Dis 2025; 16:83. [PMID: 39929816 PMCID: PMC11811231 DOI: 10.1038/s41419-025-07373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/05/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025]
Abstract
Proline-rich 15 (PRR15) is a protein primarily known for its role in placental development. This study investigates the expression, functional significance, and underlying mechanisms of PRR15 in non-small cell lung cancer (NSCLC). Our findings demonstrate significantly elevated PRR15 expression in NSCLC tissues compared to normal lung parenchyma, with higher expression correlating with adverse clinical outcomes. Single-cell RNA sequencing confirmed PRR15 overexpression within the malignant tumor cell population. PRR15 expression was elevated in NSCLC tissues from locally treated patients and in a panel of primary and established NSCLC cells. PRR15 depletion using shRNA or CRISPR/Cas9-mediated knockout significantly suppressed proliferation and migration, while promoting apoptosis in various NSCLC cells. Conversely, ectopic PRR15 overexpression using a lentiviral construct enhanced cell proliferation and migration. Mechanistic investigations implicated PRR15 in the activation of the Akt-mTOR signaling pathway. Inhibition of PRR15 expression via shRNA or CRISPR/Cas9-mediated knockout resulted in decreased Akt and S6K phosphorylation, while PRR15 overexpression led to augmented Akt-S6K signaling in primary human NSCLC cells. In vivo studies using xenograft models further validated the oncogenic role of PRR15, demonstrating that PRR15 knockdown suppressed tumor growth and attenuated Akt-mTOR activation. These findings collectively highlight the potential of PRR15 as a novel oncogenic driver and therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Yong Ji
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Han Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Fei-Long Gong
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Jia-Long Liang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Sheng-Fei Wang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Yong-Hua Sang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ming-Feng Zheng
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| |
Collapse
|
6
|
Rawat S, Moglad E, Afzal M, Goyal A, Roopashree R, Bansal P, Mishra S, Prasad GVS, Pramanik A, Alzarea SI, Ali H, Imran M, Abida. Reprogramming tumor-associated macrophages: The role of MEK-STAT3 inhibition in lung cancer. Pathol Res Pract 2025; 265:155748. [PMID: 39616977 DOI: 10.1016/j.prp.2024.155748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/11/2024]
Abstract
Tumor-associated macrophages (TAMs) crucially contribute to lung cancer's advancement and escape from the immune system. TAMs, particularly the M2 phenotype, promote an immunosuppressive microenvironment, facilitating tumor growth and metastasis. The MEK-STAT3 signalling pathway is a critical mediator in this process, driving TAM reprogramming and contributing to lung cancer's resistance to treatment. Inhibiting the MEK and STAT3 pathways disrupts key cancer-promoting mechanisms, including immune evasion, angiogenesis, and metastasis. Preclinical studies have demonstrated the effectiveness of MEK inhibitors, such as trametinib and selumetinib, in synergistic therapies for NSCLC, particularly in modulating the tumor microenvironment. We analyse the present understanding of approaches that can transform TAMs via the inhibition of MEK-STAT3 with either solo or combined treatments in lung cancer therapy.
Collapse
Affiliation(s)
- Sushama Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India.
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, PO Box 6231, Jeddah 21442, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - R Roopashree
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Shivang Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
7
|
Huang L, Kong W, Luo Y, Xie H, Liu J, Zhang X, Zhang G. Predicting epidermal growth factor receptor mutation status of lung adenocarcinoma based on PET/CT images using deep learning. Front Oncol 2024; 14:1458374. [PMID: 39735601 PMCID: PMC11671303 DOI: 10.3389/fonc.2024.1458374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024] Open
Abstract
Background The aim of this study is to develop deep learning models based on 18F-fluorodeoxyglucose positron emission tomography/computed tomographic (18F-FDG PET/CT) images for predicting individual epidermal growth factor receptor (EGFR) mutation status in lung adenocarcinoma (LUAD). Methods We enrolled 430 patients with non-small-cell lung cancer from two institutions in this study. The advanced Inception V3 model to predict EGFR mutations based on PET/CT images and developed CT, PET, and PET + CT models was used. Additionally, each patient's clinical characteristics (age, sex, and smoking history) and 18 CT features were recorded and analyzed. Univariate and multivariate regression analyses identified the independent risk factors for EGFR mutations, and a clinical model was established. The performance using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, recall, and F1-value was evaluated. The DeLong test was used to compare the predictive performance across various models. Results Among these four models, deep learning models based on CT and PET + CT exhibit the same predictive performance, followed by PET and the clinical model. The AUC values for CT, PET, PET + CT, and clinical models in the training set are 0.933 (95% CI, 0.922-0.943), 0.895 (95% CI, 0.882-0.907), 0.931 (95% CI, 0.921-0.942), and 0.740 (95% CI, 0.685-0.796), respectively; whereas those in the testing set are:0.921 (95% CI, 0.904-0.938), 0.876 (95% CI, 0.855-0.897), 0.921 (95% CI, 0.904-0.937), and 0.721 (95% CI, 0.629-0.814), respectively. The DeLong test results confirm that all deep learning models are superior to clinical one. Conclusion The PET/CT images based on trained CNNs effectively predict EGFR and non-EGFR mutations in LUAD. The deep learning predictive models could guide treatment options.
Collapse
Affiliation(s)
- Lele Huang
- Department of Nuclear Medicine, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Weifang Kong
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yongjun Luo
- Department of Nuclear Medicine, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Hongjun Xie
- Department of Nuclear Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiangyan Liu
- Department of Nuclear Medicine, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Xin Zhang
- Department of Pharmaceuticals Diagnosis, GE Healthcare, Beijing, China
| | - Guojin Zhang
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
8
|
Sang YH, Luo CY, Huang BT, Wu S, Shu J, Lan CG, Zhang F. Elevated origin recognition complex subunit 6 expression promotes non-small cell lung cancer cell growth. Cell Death Dis 2024; 15:700. [PMID: 39349930 PMCID: PMC11442828 DOI: 10.1038/s41419-024-07081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024]
Abstract
Exploring novel targets for non-small cell lung cancer (NSCLC) remains of utmost importance. This study focused on ORC6 (origin recognition complex subunit 6), investigating its expression and functional significance within NSCLC. Analysis of the TCGA-lung adenocarcinoma database revealed a notable increase in ORC6 expression in lung adenocarcinoma tissues, correlating with reduced overall survival, advanced disease stages, and other key clinical parameters. Additionally, in patients undergoing surgical resection of NSCLC at a local hospital, ORC6 mRNA and protein levels were elevated in NSCLC tissues while remaining low in adjacent normal tissues. Comprehensive bioinformatics analyses across various cancers suggested that ORC6 might play a significant role in crucial cellular processes, such as mitosis, DNA synthesis and repair, and cell cycle progression. Knocking down ORC6 using virus-delivered shRNA in different NSCLC cells, both primary and immortalized, resulted in a significant hindrance to cell proliferation, cell cycle progression, migration and invasion, accompanied by caspase-apoptosis activation. Similarly, employing CRISPR-sgRNA for ORC6 knockout (KO) exhibited significant anti-NSCLC cell activity. Conversely, increasing ORC6 levels using a viral construct augmented cell proliferation and migration. Silencing or knockout of ORC6 in primary NSCLC cells led to reduced expression of several key cyclins, including Cyclin A2, Cyclin B1, and Cyclin D1, whereas their levels increased in NSCLC cells overexpressing ORC6. In vivo experiments demonstrated that intratumoral injection of ORC6 shRNA adeno-associated virus markedly suppressed the growth of primary NSCLC cell xenografts. Reduced ORC6 levels, downregulated cyclins, and increased apoptosis were evident in ORC6-silenced NSCLC xenograft tissues. In summary, elevated ORC6 expression promotes NSCLC cell growth.
Collapse
Affiliation(s)
- Yong-Hua Sang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun-Ying Luo
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities and Key Laboratory of Molecular Pathology in Tumors of Guangxi Higher Education Institutions, Baise, China
| | - Bing-Tao Huang
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Siyang Wu
- Respiratory Intensive Care Unit, Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, China
| | - Jian Shu
- Department of Thoracic and Cardiovascular Surgery, Taicang Affiliated Hospital of Soochow University The First People's Hospital of Taicang, Taicang, China.
| | - Chang-Gong Lan
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities and Key Laboratory of Molecular Pathology in Tumors of Guangxi Higher Education Institutions, Baise, China.
| | - Fuquan Zhang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, The First People's Hospital of Nantong, Nantong, China.
| |
Collapse
|
9
|
Li Z, Ma X, Yang Y, Wang Y, Zhu W, Deng X, Chen T, Gao C, Zhang Y, Yang W, Xing H, Ye X, Wu A, Zhang X. Crizotinib resistance reversal in ALK-positive lung cancer through zeolitic imidazolate framework-based mitochondrial damage. Acta Biomater 2024; 185:381-395. [PMID: 39067643 DOI: 10.1016/j.actbio.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Crizotinib (CRZ), one of anaplastic lymphoma kinase tyrosine kinase inhibitors (ALK-TKIs), has emerged as a frontline treatment for ALK-positive (ALK+) lung adenocarcinoma. However, the overexpression of P-glycoprotein (P-gp, a mitochondrial adenosine triphosphate (ATP)-dependent protein) in lung adenocarcinoma lesions causes multidrug resistance (MDR) and limits the efficacy of CRZ treatment. Herein, a mitochondria-targeting nanosystem, zeolitic imidazolate framework-90@indocyanine green (ZIF-90@ICG), was fabricated to intervene in mitochondria and overcome drug resistance. Due to the zinc ion (Zn2+) interference of ZIF-90 and the photodynamic therapy (PDT) of ICG, this nanosystem is well suited for damaging mitochondrial functions, thus downregulating the intracellular ATP level and inhibiting P-gp expression. In addition, systematic bioinformatics analysis revealed the upregulation of CD44 in CRZ-resistant cells. Therefore, hyaluronic acid (HA, a critical target ligand of CD44) was further modified on the surface of ZIF-90@ICG for active targeting. Overall, this ZIF-90@ICG nanosystem synergistically increased the intracellular accumulation of CRZ and reversed CRZ resistance to enhance its anticancer effect, which provides guidance for nanomedicine design to accurately target tumours and induce mitochondrial damage and represents a viable regimen for improving the prognosis of patients with ALK-TKIs resistance. STATEMENT OF SIGNIFICANCE: The original aim of our research was to combat multidrug resistance (MDR) in highly aggressive and lethal lymphoma kinase-positive (ALK+) lung adenocarcinoma. For this purpose, a cascade-targeted system was designed to overcome MDR, integrating lung adenocarcinoma-targeted hyaluronic acid (HA), mitochondrion-targeted zeolitic imidazolate framework-90 (ZIF-90), the clinically approved drug crizotinib (CRZ), and the fluorescence imaging agent/photosensitizer indocyanine green (ICG). Moreover, using a "two birds with one stone" strategy, ion interference and oxidative stress induced by ZIF-90 and photodynamic therapy (PDT), respectively, disrupt mitochondrial homeostasis, thus downregulating adenosine triphosphate (ATP) levels, inhibiting MDR-relevant P-glycoprotein (P-gp) expression and suppressing tumour metastasis. Overall, this research represents an attempt to implement the concept of MDR reversal and realize the trade-offs between MDR and therapeutic effectiveness.
Collapse
Affiliation(s)
- Zhouhua Li
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Xuehua Ma
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China.
| | - Yanqiang Yang
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yanan Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
| | - Weihao Zhu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
| | - Xiaoxia Deng
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
| | - Tianxiang Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Changyong Gao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Yongchang Zhang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Weichang Yang
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Hongquan Xing
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Xiaoqun Ye
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China.
| | - Xinyi Zhang
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
10
|
Xu J, Tian L, Qi W, Lv Q, Wang T. Advancements in NSCLC: From Pathophysiological Insights to Targeted Treatments. Am J Clin Oncol 2024; 47:291-303. [PMID: 38375734 PMCID: PMC11107893 DOI: 10.1097/coc.0000000000001088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
With the global incidence of non-small cell lung cancer (NSCLC) on the rise, the development of innovative treatment strategies is increasingly vital. This review underscores the pivotal role of precision medicine in transforming NSCLC management, particularly through the integration of genomic and epigenomic insights to enhance treatment outcomes for patients. We focus on the identification of key gene mutations and examine the evolution and impact of targeted therapies. These therapies have shown encouraging results in improving survival rates and quality of life. Despite numerous gene mutations being identified in association with NSCLC, targeted treatments are available for only a select few. This paper offers an exhaustive analysis of the pathogenesis of NSCLC and reviews the latest advancements in targeted therapeutic approaches. It emphasizes the ongoing necessity for research and development in this domain. In addition, we discuss the current challenges faced in the clinical application of these therapies and the potential directions for future research, including the identification of novel targets and the development of new treatment modalities.
Collapse
Affiliation(s)
- Jianan Xu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine
| | - Lin Tian
- Pulmonology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, P.R. China
| | - Wenlong Qi
- Pulmonology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, P.R. China
| | - Qingguo Lv
- Pulmonology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, P.R. China
| | - Tan Wang
- Pulmonology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, P.R. China
| |
Collapse
|
11
|
Tian T, Li Y, Li J, Xu H, Fan H, Zhu J, Wang Y, Peng F, Gong Y, Du Y, Yan X, He X, Cali Daylan AE, Pircher A, Neibart SS, Okuma Y, Hong MH, Huang M, Lu Y. Immunotherapy for patients with advanced non-small cell lung cancer harboring oncogenic driver alterations other than EGFR: a multicenter real-world analysis. Transl Lung Cancer Res 2024; 13:861-874. [PMID: 38736501 PMCID: PMC11082706 DOI: 10.21037/tlcr-24-116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/25/2024] [Indexed: 05/14/2024]
Abstract
Background The administration of immune checkpoint inhibitors (ICIs) in advanced non-small cell lung cancer (NSCLC) with oncogenic driver alterations other than epidermal growth factor receptor (EGFR) aroused a heated discussion. We thus aimed to evaluate ICI treatment in these patients in real-world routine clinical practice. Methods A multicenter, retrospective study was conducted for NSCLC patients with at least one gene alteration (KRAS, HER2, BRAF, MET, RET, ALK, ROS1) receiving ICI monotherapy or combination treatment. The data regarding clinicopathologic characteristics, clinical efficacy, and safety were investigated. Results A total of 216 patients were included, the median age was 60 years, 72.7% of patients were male, and 46.8% had a smoking history. The molecular alterations involved KRAS (n=95), HER2 (n=42), BRAF (n=22), MET (n=21), RET (n=14), ALK (n=14), and ROS1 (n=8); 56.5% of patients received immunotherapy in the first-line, and the rest 43.5% were treated as a second-line and above. For the entire cohort who received immunotherapy-based regimens in the first-line, the median progression-free survival (PFS) was 7.5 months and the median overall survival (OS) was 24.8 months. For the entire cohort who received immunotherapy-based regimens in the second-line and above, the median PFS was 4.7 months and median OS was 17.1 months. KRAS mutated NSCLC treated with immunotherapy-based regimens in the first-line setting had a median PFS and OS were 7.8 and 26.1 months, respectively. Moreover, the median PFS and OS of immunotherapy-based regimens for KRAS-mutant NSCLC that progressed after chemotherapy were 5.9 and 17.1 months. Programmed death ligand 1 (PD-L1) expression level was not consistently associated with response to immunotherapy across different gene alteration subsets. In the KRAS group, PD-L1 positivity [tumor proportion score (TPS) ≥1%] was associated with better PFS and OS according to the multivariate Cox analysis. No statistically significant association was found for smoking status, age, or gender with clinical efficacy in any gene group analyses. Conclusions KRAS-mutant NSCLC could obtain clinical benefits from ICIs either for treatment-naive patients or those who have experienced progression after chemotherapy, and PD-L1 positive expression (TPS >1%) may be a potential positive predictor. For NSCLC with ALK, RET and ROS1 rearrangement, MET exon 14 skipping mutation, or BRAF V600E mutation, effectiveness of single or combined ICI therapy remains limited, therefore, targeted therapies should be considered prior to immunotherapy regimens. Future studies should address the investigation of better predictive biomarkers for immunotherapy response in oncogene-driven NSCLC.
Collapse
Affiliation(s)
- Tian Tian
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanying Li
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Li
- Department of Thoracic Cancer, Medical Oncology Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongyu Xu
- Department of Oncology, 363 Hospital, Chengdu, China
| | - Hua Fan
- Department of Oncology and Hematology, Leshan People’s Hospital, Leshan, China
| | - Jiang Zhu
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yongsheng Wang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Peng
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Youling Gong
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yijia Du
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyan Yan
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiulan He
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | | | - Andreas Pircher
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | | | - Yusuke Okuma
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Min Hee Hong
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Meijuan Huang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Elekofehinti OO, Adetoyi IR, Popoola HO, Ayodeji FO, Taiwo FA, Akinjiyan MO, Koledoye OF, Iwaloye O, Adegboyega AE. Discovery of potential epidermal growth factor receptor inhibitors from black pepper for the treatment of lung cancer: an in-silico approach. In Silico Pharmacol 2024; 12:28. [PMID: 38601803 PMCID: PMC11001845 DOI: 10.1007/s40203-024-00197-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/16/2024] [Indexed: 04/12/2024] Open
Abstract
A tyrosine kinase receptor known as epidermal growth factor receptor (EGFR) is one of the main tumour markers in many cancer types and also plays a crucial role in cell proliferation, differentiation, angiogenesis, and apoptosis, which is a result of the auto-phosphorylations (kinase activity enhancement) that trigger signals involved in different cellular processes. Due to the discovery that non-small cell lung cancer (NSCLC) is a cause of this kinase activity enhancement, so far, several inhibitors have been tested against EGFR, but the side effects of these inhibitors necessitate an urgent measure to come up with an inhibitor that will be more specific to the cancer cells and not affect self-cells. This study was conducted to evaluate the efficacy of 37 compounds derived from Piper nigrum against EGFR using computer-aided drug design. Based on molecular docking, induced-fit docking, calculation of free binding energy, pharmacokinetics, QSAR prediction, and MD simulation. We propose five (5) lead compounds (clarkinol A, isodihydrofutoquinol B, Burchellin, kadsurin B, and lancifolin C) as a novel inhibitor, with clarkinol A demonstrating the highest binding affinity (-7.304 kcal/mol) with EGFR when compared with the standard drug (erlotinib). They also showed significant moderation for parameters investigated for a good pharmacokinetic profile, with a reliable R2 coefficient value predicted using QSAR models. The MD simulation of clarkinol A was found to be stable within the EGFR binding pocket throughout the 75 ns simulation run time. The findings showed that clarkinol A derived from Piper nigrum is worth further investigation and consideration as a possible EGFR inhibitor for the treatment of lung cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00197-1.
Collapse
Affiliation(s)
- Olusola Olalekan Elekofehinti
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State Nigeria
- Teady Bioscience Research Laboratory, C28, Plural Gardens Estate, Akure, Ondo State Nigeria
| | - Ifeoluwa Rachael Adetoyi
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State Nigeria
- Teady Bioscience Research Laboratory, C28, Plural Gardens Estate, Akure, Ondo State Nigeria
| | - Hannah Oluwaseun Popoola
- Phytomedicine Biochemical Pharmacology and Toxicology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State Nigeria
| | - Folasade Oluwatobiloba Ayodeji
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State Nigeria
- Teady Bioscience Research Laboratory, C28, Plural Gardens Estate, Akure, Ondo State Nigeria
| | - Foluso Adeola Taiwo
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State Nigeria
- Teady Bioscience Research Laboratory, C28, Plural Gardens Estate, Akure, Ondo State Nigeria
| | - Moses Orimoloye Akinjiyan
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State Nigeria
- Teady Bioscience Research Laboratory, C28, Plural Gardens Estate, Akure, Ondo State Nigeria
| | - Omowunmi Funmilayo Koledoye
- Phytomedicine Biochemical Pharmacology and Toxicology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State Nigeria
| | - Opeyemi Iwaloye
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State Nigeria
- Teady Bioscience Research Laboratory, C28, Plural Gardens Estate, Akure, Ondo State Nigeria
| | - Abayomi Emmanuel Adegboyega
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Jos, Jos, Plateau State Nigeria
- Bioinformatics Unit, Jaris Computational Biology Centre, Jos, Plateau State Nigeria
| |
Collapse
|
13
|
Győrffy B. Transcriptome-level discovery of survival-associated biomarkers and therapy targets in non-small-cell lung cancer. Br J Pharmacol 2024; 181:362-374. [PMID: 37783508 DOI: 10.1111/bph.16257] [Citation(s) in RCA: 120] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/06/2023] [Accepted: 09/23/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Survival rate of patients with lung cancer has increased by over 60% in the recent two decades. With longer survival, the identification of genes associated with survival has emerged as an issue of utmost importance to uncover the most promising biomarkers and therapeutic targets. EXPERIMENTAL APPROACH An integrated database was set up by combining multiple independent datasets with clinical data and transcriptome-level gene expression measurements. Univariate and multivariate survival analyses were performed to identify genes with higher expression levels linked to shorter survival. The strongest genes were filtered to include only those with known druggability. KEY RESULTS The entire database includes 2852 tumour specimens from 17 independent cohorts. Of these, 2227 have overall survival data and 1256 samples have progression-free survival time. The most significant genes associated with survival were MIF, UBC and B2M in lung adenocarcinoma and ANXA2, CSNK2A2 and KRT18 in squamous cell carcinoma. We also aimed to reveal the best druggable targets in non-smokers lung cancer. The three most promising hits in this cohort were MDK, THY1 and PADI2. The established lung cancer cohort was added to the Kaplan-Meier plotter (https://www.kmplot.com) enabling the validation of future gene expression-based biomarkers in both the present and yet unexamined subgroups of patients. CONCLUSIONS AND IMPLICATIONS In this study, we established a comprehensive database of transcriptome-level data for lung cancer. The database can be utilized to identify and rank the most promising biomarkers and therapeutic targets for different subtypes of lung cancer.
Collapse
Affiliation(s)
- Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
14
|
Li Y, Yan B, He S. Advances and challenges in the treatment of lung cancer. Biomed Pharmacother 2023; 169:115891. [PMID: 37979378 DOI: 10.1016/j.biopha.2023.115891] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023] Open
Abstract
Lung cancer accounts for a relatively high proportion of malignant tumors. As the most prevalent type of lung cancer, non-small cell lung cancer (NSCLC) is characterized by high morbidity and mortality. Presently, the arsenal of treatment strategies encompasses surgical resection, chemotherapy, targeted therapy and radiotherapy. However, despite these options, the prognosis remains distressingly poor with a low 5-year survival rate. Therefore, it is urgent to pursue a paradigm shift in treatment methodologies. In recent years, the advent of sophisticated biotechnologies and interdisciplinary integration has provided innovative approaches for the treatment of lung cancer. This article reviews the cutting-edge developments in the nano drug delivery system, molecular targeted treatment system, photothermal treatment strategy, and immunotherapy for lung cancer. Overall, by systematically summarizing and critically analyzing the latest progress and current challenges in these treatment strategies of lung cancer, we aim to provide a theoretical basis for the development of novel drugs for lung cancer treatment, and thus improve the therapeutic outcomes for lung cancer patients.
Collapse
Affiliation(s)
- Yuting Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Bingshuo Yan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China.
| |
Collapse
|
15
|
Maksymenko K, Maurer A, Aghaallaei N, Barry C, Borbarán-Bravo N, Ullrich T, Dijkstra TM, Hernandez Alvarez B, Müller P, Lupas AN, Skokowa J, ElGamacy M. The design of functional proteins using tensorized energy calculations. CELL REPORTS METHODS 2023; 3:100560. [PMID: 37671023 PMCID: PMC10475850 DOI: 10.1016/j.crmeth.2023.100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/25/2023] [Accepted: 07/21/2023] [Indexed: 09/07/2023]
Abstract
In protein design, the energy associated with a huge number of sequence-conformer perturbations has to be routinely estimated. Hence, enhancing the throughput and accuracy of these energy calculations can profoundly improve design success rates and enable tackling more complex design problems. In this work, we explore the possibility of tensorizing the energy calculations and apply them in a protein design framework. We use this framework to design enhanced proteins with anti-cancer and radio-tracing functions. Particularly, we designed multispecific binders against ligands of the epidermal growth factor receptor (EGFR), where the tested design could inhibit EGFR activity in vitro and in vivo. We also used this method to design high-affinity Cu2+ binders that were stable in serum and could be readily loaded with copper-64 radionuclide. The resulting molecules show superior functional properties for their respective applications and demonstrate the generalizable potential of the described protein design approach.
Collapse
Affiliation(s)
- Kateryna Maksymenko
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University, 72076 Tübingen, Germany
| | - Narges Aghaallaei
- Division of Translational Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Caroline Barry
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Krieger School of Arts and Sciences, Johns Hopkins University, Washington, DC 20036, USA
| | - Natalia Borbarán-Bravo
- Division of Translational Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Timo Ullrich
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Tjeerd M.H. Dijkstra
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Department for Women’s Health, University Hospital Tübingen, 72076 Tübingen, Germany
- Translational Bioinformatics, University Hospital Tübingen, 72072 Tübingen, Germany
| | | | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Andrei N. Lupas
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Julia Skokowa
- Division of Translational Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Mohammad ElGamacy
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
- Division of Translational Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
16
|
Racherla KS, Dovalovsky K, Patel M, Harper E, Barnard J, Nasifuzzaman SM, Smith M, Sikand R, Drinka E, Puri N. PRMT-1 and p120-Catenin as EMT Mediators in Osimertinib Resistance in NSCLC. Cancers (Basel) 2023; 15:3461. [PMID: 37444572 DOI: 10.3390/cancers15133461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Osimertinib, an irreversible tyrosine kinase inhibitor, is a first-line therapy in EGFR-mutant NSCLC patients. Prolonged treatment with Osimertinib leads to resistance due to an acquired C797S mutation in the EGFR domain and other mechanisms, such as epithelial-mesenchymal transition (EMT). In this study, we investigated the role of PRMT-1 and p120-catenin in mediating Osimertinib resistance (OR) through EMT. These studies found upregulation of gene and protein expression of PRMT-1, p120-catenin and Kaiso factor. Knockdown of p120-catenin using siRNA increased OR efficacy by 45% as compared to cells treated with mock siRNA and OR. After 24 h of transfection, the percentage wound closure in cells transfected with p120-catenin siRNA was 26.2%. However, in mock siRNA-treated cells the wound closure was 7.4%, showing its involvement in EMT. We also found high levels of p120-catenin expressed in 30% of smokers as compared to 5.5% and 0% of non-smokers and quit-smokers (respectively) suggesting that smoking may influence p120-catenin expression in NSCLC patients. These results suggest that biomarkers such as PRMT-1 may mediate EMT by methylating Twist-1 and increasing p120-catenin expression, which causes transcriptional activation of genes associated with Kaiso factor to promote EMT in Osimertinib-resistant cells.
Collapse
Affiliation(s)
- Kavya Sri Racherla
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Katrina Dovalovsky
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Meet Patel
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Emma Harper
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Jacob Barnard
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - S M Nasifuzzaman
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Mason Smith
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Riya Sikand
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Eva Drinka
- Department of Pathology, University of Wisconsin Health, Swedish American Hospital, Rockford, IL 61104, USA
| | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| |
Collapse
|
17
|
Rao W, Guo L, Ling Y, Dong L, Li W, Ying J, Li W. Developing an effective quality evaluation strategy of next-generation sequencing for accurate detecting non-small cell lung cancer samples with variable characteristics: a real-world clinical practice. J Cancer Res Clin Oncol 2023; 149:4889-4897. [PMID: 36305947 DOI: 10.1007/s00432-022-04388-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2022]
Abstract
PURPOSE Next-generation sequencing (NGS) has been widely used in determining molecular profiling of non-small cell lung cancer (NSCLC). However, low-quality sequencing data may be generated with formalin-fixed and paraffin-embedded (FFPE) samples that have passed pre-sequencing quality control (QC). Therefore, quality evaluation of sequencing data is also critical for accurate tissue genotyping. Herein, we aimed to developed a grading QC algorithm, and provide a recommendation to refine and optimize NGS-based molecular diagnostic strategies. METHODS We interrogated 1260 NSCLC samples using hybrid capture-based targeted DNA NGS, and quantified the sequencing data as high, medium and low quality, according to a grading QC algorithm. Then, we explored the relationship between sequencing quality and sample characteristics, and compared the concordance rates of results between NGS and conventional molecular tests for FFPE samples with variable characteristics. RESULTS We found that high-quality data were associated with samples with shorter storage time and lower DNA degradation in resection samples, and were associated with intra-hospital samples, adequate DNA quantity, and lower DNA degradation in biopsy samples. Moreover, accurate NGS results can be achieved in samples with high-quality data, but not samples with medium-quality data, especially for rearrangements detection. CONCLUSION Our study demonstrates that the real-world clinical adoption of an effective QC strategy for NGS is necessary to ensure accurate results from FFPE samples of NSCLC with variable characteristics. Validation of actionable alterations by additional methods is highly recommended in cases with low QC score, particularly for the detection of rearrangements.
Collapse
Affiliation(s)
- Wei Rao
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China
| | - Lei Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China
| | - Yun Ling
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China
| | - Lin Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China
| | - Wenbin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China
| | - Weihua Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China.
| |
Collapse
|
18
|
Hasanvand Z, Oghabi Bakhshaiesh T, Peytam F, Firoozpour L, Hosseinzadeh E, Motahari R, Moghimi S, Nazeri E, Toolabi M, Momeni F, Bijanzadeh H, Khalaj A, Baratte B, Josselin B, Robert T, Bach S, Esmaeili R, Foroumadi A. Imidazo[1,2-a]quinazolines as novel, potent EGFR-TK inhibitors: Design, synthesis, bioactivity evaluation, and in silico studies. Bioorg Chem 2023; 133:106383. [PMID: 36764231 DOI: 10.1016/j.bioorg.2023.106383] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/04/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Tyrosine protein kinases (TKs) have been proved to play substantial roles on many cellular processes and their overexpression tend to be found in various types of cancers. Therefore, over recent decades, numerous tyrosine protein kinase inhibitors particularly epidermal growth factor receptor (EGFR) inhibitors have been introduced to treat cancer. Present study describes a novel series of imidazo[1,2-a]quinazolines 18 as potential -inhibitors. These imidazoquinazolines (18a and 18o, in particular) had great anti-proliferative activities with IC50 values in the micromolar (µM) range against PC3, HepG2, HeLa, and MDA-MB-231 comparing with Erlotinib as reference marketed drug. Further evaluations on some derivatives revealed their potential to induce apoptotic cell death and cell growth arrest at G0 phase of the cell cycle. Afterwards, the kinase assay on the most potent compounds 18a and 18o demonstrated their inhibitory potencies and selectivity toward EGFR (with EGFR-IC50 values of 82.0 µM and 12.3 µM, respectively). Additionally, western blot analysis on these compounds 18a and 18o exhibited that they inhibited the phosphorylation of EGFR and its downstream molecule extracellular signal-regulated kinase (ERK1/2). However, the level of B-Actin phosphorylation was not changed. Finally, density functional theory calculations, docking study, and independent gradient model (IGM) were performed to illustrate the structure-activity relationship (SAR) and to assess the interactions between proteins and ligands. The results of molecular docking studies had great agreement with the obtained EGFR inhibitory results through in vitro evaluations.
Collapse
Affiliation(s)
- Zaman Hasanvand
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fariba Peytam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Elaheh Hosseinzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasoul Motahari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Elaheh Nazeri
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mahsa Toolabi
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhad Momeni
- Department of Pharmacognosy, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamidreza Bijanzadeh
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Khalaj
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Blandine Baratte
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; Sorbonne Université, CNRS, FR2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening facility), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Béatrice Josselin
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; Sorbonne Université, CNRS, FR2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening facility), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Thomas Robert
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; Sorbonne Université, CNRS, FR2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening facility), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Stéphane Bach
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; Sorbonne Université, CNRS, FR2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening facility), Station Biologique de Roscoff, 29680 Roscoff, France; Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Rajasegaran T, How CW, Saud A, Ali A, Lim JCW. Targeting Inflammation in Non-Small Cell Lung Cancer through Drug Repurposing. Pharmaceuticals (Basel) 2023; 16:ph16030451. [PMID: 36986550 PMCID: PMC10051080 DOI: 10.3390/ph16030451] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Lung cancer is the most common cause of cancer-related deaths. Lung cancers can be classified as small-cell (SCLC) or non-small cell (NSCLC). About 84% of all lung cancers are NSCLC and about 16% are SCLC. For the past few years, there have been a lot of new advances in the management of NSCLC in terms of screening, diagnosis and treatment. Unfortunately, most of the NSCLCs are resistant to current treatments and eventually progress to advanced stages. In this perspective, we discuss some of the drugs that can be repurposed to specifically target the inflammatory pathway of NSCLC utilizing its well-defined inflammatory tumor microenvironment. Continuous inflammatory conditions are responsible to induce DNA damage and enhance cell division rate in lung tissues. There are existing anti-inflammatory drugs which were found suitable for repurposing in non-small cell lung carcinoma (NSCLC) treatment and drug modification for delivery via inhalation. Repurposing anti-inflammatory drugs and their delivery through the airway is a promising strategy to treat NSCLC. In this review, suitable drug candidates that can be repurposed to treat inflammation-mediated NSCLC will be comprehensively discussed together with their administration via inhalation from physico-chemical and nanocarrier perspectives.
Collapse
Affiliation(s)
- Thiviyadarshini Rajasegaran
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Anoosha Saud
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Azhar Ali
- Cancer Science Institute Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Jonathan Chee Woei Lim
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
20
|
Metastatic Lung Cancer to the Head and Neck: A Clinico-Pathological Study on 21 Cases with Narrative Review of the Literature. J Clin Med 2023; 12:jcm12041429. [PMID: 36835963 PMCID: PMC9965358 DOI: 10.3390/jcm12041429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Metastases from lung cancer to the oral cavity and to the head and neck generally are very infrequent and usually manifest in advanced stages of the disease. Even more rarely, they are the first sign of an unknown metastatic disease. Nevertheless, their occurrence always represents a challenging situation both for clinicians, in the management of very unusual lesions, and for pathologists, in the recognition of the primary site. We retrospectively studied 21 cases of metastases to the head and neck from lung cancer (sixteen males and five females, age range 43-80 years; eight cases localized to the gingiva [two of these to the peri-implant gingiva], seven to the sub-mandibular lymph nodes, two to the mandible, three to the tongue, one case to the parotid gland; in eight patients, metastasis was the first clinical manifestation of an occult lung cancer) and proposed a wide immunohistochemical panel for a proper identification of the primary tumor histotype, including CK5/6, CK8/18, CK7, CK20, p40, p63, TTF-1, CDX2, Chromogranin A, Synaptophysin, GATA-3, Estrogen Receptors, PAX8, PSA. Furthermore, we collected data from previously published studies and narratively reviewed the relevant literature.
Collapse
|
21
|
Qian K, Chen QR, He M, Wang ZT, Liu Y, Liang HG, Su ZY, Cui YS, Liu LJ, Zhang Y. Icotinib, an EGFR tyrosine kinase inhibitor, as adjuvant therapy for patients with stage IIA-IIIA EGFR-mutant non-small-cell lung adenocarcinoma: a multicenter, open-label, single-arm, phase II study (ICAPE). Invest New Drugs 2023; 41:44-52. [PMID: 36355317 DOI: 10.1007/s10637-022-01316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
Abstract
The survival benefit of icotinib (an oral epidermal growth factor receptor [EGFR] tyrosine kinase inhibitor) in patients with advanced lung cancer has been confirmed in several studies. This study (ICAPE) evaluated the efficacy of icotinib as adjuvant therapy for patients with stage IIA-IIIA EGFR-mutant non-small-cell lung adenocarcinoma. Patients with stage IIA-IIIA EGFR-mutant non-small-cell lung adenocarcinoma were enrolled in the multicenter, open-label, single-arm, phase II study. Eligible patients received oral icotinib 125 mg thrice daily for 1.5 years after complete surgical resection. The primary endpoint was disease-free survival (DFS). Between March 2014 and January 2018, 79 patients were enrolled. The median follow-up time was 39.7 months with a median DFS and overall survival (OS) of 41.4 months (95% CI: 33.6-51.8) and 67.0 months (95% CI: 21.2-not reached [NR]), respectively. The 1-year, 3-year, and 5-year OS rates were 100%, 83.3%, and 61.7%, respectively. No significant difference was found in the median DFS between patients with Bcl-2 interacting mediator of cell death (BIM) mutant-type and wild-type (NR vs. 41.7 months; p = 0.75). No significant difference was found in the median DFS according to EGFR mutation types. Icotinib as adjuvant therapy demonstrated a favorable survival benefit in patients with stage IIA-IIIA EGFR-mutant non-small-cell lung adenocarcinoma, indicating that icotinib might be a promising treatment option for this patient population. The optimal adjuvant duration of icotinib is still not clear and needs more incoming data to answer.
Collapse
Affiliation(s)
- Kun Qian
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, 100053, Beijing, China
| | - Qi-Rui Chen
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ming He
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zi-Tong Wang
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yu Liu
- Second Department of Thoracic Surgery, Handan Central Hospital, East District, Handan, Hebei, China
| | - Hua-Gang Liang
- Department of Thoracic Surgery, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Zhi-Yong Su
- Department of Thoracic Surgery, Affiliated Hospital of Chifeng University, Chifeng, Neimenggu, China
| | - Yu-Shang Cui
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Li-Jun Liu
- Department of Thoracic Surgery, Hebei Province People's Hospital, Shijiazhuang, Hebei, China
| | - Yi Zhang
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, 100053, Beijing, China.
| |
Collapse
|
22
|
Cicin I, Martin C, Haddad CK, Kim SW, Smolin A, Abdillah A, Yang X. ALK TKI therapy in patients with ALK-positive non-small cell lung cancer and brain metastases: A review of the literature and local experiences. Crit Rev Oncol Hematol 2022; 180:103847. [DOI: 10.1016/j.critrevonc.2022.103847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/01/2022] [Accepted: 10/12/2022] [Indexed: 11/12/2022] Open
|
23
|
Zu Y, Wang D, Ping W, Sun W. The roles of CPSF6 in proliferation, apoptosis and tumorigenicity of lung adenocarcinoma. Aging (Albany NY) 2022; 14:9300-9316. [PMID: 36446361 PMCID: PMC9740356 DOI: 10.18632/aging.204407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/27/2022] [Indexed: 11/30/2022]
Abstract
Cleavage and polyadenylation specific factor 6 (CPSF6), a member of serine/arginine-rich protein family, is implicated in HIV-1-infection and replication. Overexpression of CPSF6 predicts poor prognostic outcomes of breast cancer. However, the expression and possible function of CPSF6 in lung adenocarcinoma (LUAD) still needs to be explored. Here, we found that CPSF6 is significantly higher expressed in tumor tissues than normal tissues in multiple cancer types. Besides, CPSF6 plays a significant risky role in LUAD that is associated with overall survival (HR=1.337, P=0.051) and disease-specific survival (HR=1.4739, P=0.042). CPSF6 mRNA was up-regulated in LUAD tissues by analyzing publicly available datasets from Gene Expression Omnibus (GEO). Further survival analysis on The Cancer Genome Atlas (TCGA) dataset suggested a close correlation between CPSF6 expression and overall survival, and disease-free survival of LUAD patients. Inhibition of CPSF6 expression by lentivirus-mediated RNA interference (RNAi) in two LUAD cell lines (A549 and NCH-H1299) caused a significant reduction in cell proliferation, colony formation and a notable induction in apoptotic rate. CPSF6 knockdown in xenograft tumors inhibited LUAD cell growth in vivo. Moreover, we identified differentially expressed genes with CPSF6 inhibition by Microarray analysis, and pathway analyses revealed that CPSF6 knockdown resulted in the dysregulation of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway. Collectively, our results are the first to demonstrate that CPSF6 functions as an oncoprotein by regulating cancer-related pathways in LUAD.
Collapse
Affiliation(s)
- Yukun Zu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Dao Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wei Ping
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wei Sun
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
24
|
Kim N, Jeong D, Jo A, Eum HH, Lee HO. Prescreening of tumor samples for tumor-centric transcriptome analyses of lung adenocarcinoma. BMC Cancer 2022; 22:1186. [DOI: 10.1186/s12885-022-10317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Single-cell RNA sequencing (scRNA-seq) enables the systemic assessment of intratumoral heterogeneity within tumor cell populations and in diverse stromal cells of the tumor microenvironment. Gain of treatment resistance during tumor progression or drug treatment are important subjects of tumor-centric scRNA-seq analyses, which are hampered by scarce tumor cell portions. To guarantee the inclusion of tumor cells in the data analysis, we developed a prescreening strategy for lung adenocarcinoma.
Methods
We obtained candidate genes that were differentially expressed between normal and tumor cells, excluding stromal cells, from the scRNA-seq data. Tumor cell-specific expression of the candidate genes was assessed via real-time reverse transcription-polymerase chain reaction (RT-PCR) using lung cancer cell lines, normal vs. lung cancer tissues, and lymph node biopsy samples with or without metastasis.
Results
We found that CEA cell adhesion molecule 5 (CEACAM5) and high mobility group box 3 (HMGB3) were reliable markers for RT-PCR-based prescreening of tumor cells in lung adenocarcinoma.
Conclusions
The prescreening strategy using CEACAM5 and HMGB3 expression facilitates tumor-centric scRNA-seq analyses of lung adenocarcinoma.
Collapse
|
25
|
Asgaonkar K, Tanksali S, Abhang K, Sagar A. Development of optimized pyrimido-thiazole scaffold derivatives as anticancer and multitargeting tyrosine kinase inhibitors using computational studies. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Dzul Keflee R, Hoong Leong K, Ogawa S, Bignon J, Chiang Chan M, Weng Kong K. Overview of the multifaceted resistances toward EGFR-TKIs and new chemotherapeutic strategies in non-small cell lung cancer. Biochem Pharmacol 2022; 205:115262. [PMID: 36191627 DOI: 10.1016/j.bcp.2022.115262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/02/2022]
Abstract
The role of epidermal growth factor receptor (EGFR) in non-small cell lung cancer (NSCLC) has been vastly studied over the last decade. This has led to the rapid development of many generations of EGFR tyrosine kinase inhibitors (EGFR-TKIs). However, patients treated with third-generation TKIs (osimertinib, avitinib and rociletinib) targeting the EGFR T790M mutation have shown emerging resistances and relapses. Therefore, further molecular understanding of NSCLC mutations, bypass signalling, tumour microenvironment and the existence of cancer stem cells to overcome such resistances is warranted. This will pave the way for designing novel and effective chemotherapies to improve patients' overall survival. In this review, we provide an overview of the multifaceted mechanism of resistances towards EGFR-TKIs, as well as the challenges and perspectives that should be addressed in strategising chemotherapeutic treatments to overcome the ever evolving and adaptive nature of NSCLC.
Collapse
Affiliation(s)
- Rashidi Dzul Keflee
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kok Hoong Leong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Satoshi Ogawa
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Jerome Bignon
- Institut de Chimie des Substances Naturelles CNRS UPR 2301, Université Paris Saclay, Gif-sur-Yvette, France
| | - Mun Chiang Chan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kin Weng Kong
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
27
|
Study on the Potential Mechanism of miR-22-5p in Non-Small-Cell Lung Cancer. DISEASE MARKERS 2022; 2022:3750734. [PMID: 36111260 PMCID: PMC9470364 DOI: 10.1155/2022/3750734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/06/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022]
Abstract
Objective Non-small-cell lung cancer (NSCLC) ranks among one of the most lethal malignancies worldwide. A better and comprehensive understanding of the mechanism of its malignant progression will be helpful for clinical treating NSCLC. Methods The miRNA expression profiles and target gene profiles downloaded from the Gene Expression Omnibus and TargetScan databases were used to identify the key regulatory pattern in NSCLC by bioinformatic analysis. The regulation of miRNA to target mRNA was verified by luciferase reporter assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot. A series of the in vitro and in vivo experiments were conducted to examine the mechanism of the overexpression or knockdown of the miRNA and/or target gene. Results In this study, miR-22-5p was remarkably downregulated in NSCLC than in normal lung cells. The in vitro experiments showed that it could substantially inhibit NSCLC cell proliferation, invasion, migration, and epithelial–mesenchymal transition (EMT) progression. The results of luciferase reporter assay, qRT-PCR, and Western blot revealed that TWIST2 was a direct target gene of miR-22-5p. The results of in vitro and in vivo feedback experiments further demonstrated that miR-22-5p relied on TWIST2-induced malignant progression to regulate NSCLC proliferation, metastasis, and EMT progression. Conclusions This study revealed that miR-22-5p downregulation contributed to the malignant progression of NSCLC by targeting TWIST2. The findings highlight a potential novel pathway that could be therapeutically targeted in treating NSCLC.
Collapse
|
28
|
A study of miRNAs as cornerstone in lung cancer pathogenesis and therapeutic resistance: A focus on signaling pathways interplay. Pathol Res Pract 2022; 237:154053. [DOI: 10.1016/j.prp.2022.154053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/16/2022] [Accepted: 07/28/2022] [Indexed: 02/06/2023]
|
29
|
Youssef MA, Panda SS, Aboshouk DR, Said MF, El Taweel A, GabAllah M, Fayad W, Soliman AF, Mostafa A, Fawzy NG, Girgis AS. Novel Curcumin Mimics: Design, Synthesis, Biological Properties and Computational Studies of Piperidone‐Piperazine Conjugates. ChemistrySelect 2022. [DOI: 10.1002/slct.202201406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- M. Adel Youssef
- Department of Chemistry Faculty of Science Helwan University Helwan Egypt
| | - Siva S. Panda
- Department of Chemistry and Physics Augusta University Augusta GA 30912 USA
| | - Dalia R. Aboshouk
- Department of Pesticide Chemistry National Research Centre Dokki Giza 12622 Egypt
| | - Mona F. Said
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Cairo University Cairo 11562 Egypt
| | - Ahmed El Taweel
- Center of Scientific Excellence for Influenza Viruses National Research Centre Dokki Giza 12622 Egypt
| | - Mohamed GabAllah
- Center of Scientific Excellence for Influenza Viruses National Research Centre Dokki Giza 12622 Egypt
| | - Walid Fayad
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department National Research Centre Dokki, Giza 12622 Egypt
| | - Ahmed F. Soliman
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department National Research Centre Dokki, Giza 12622 Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses National Research Centre Dokki Giza 12622 Egypt
| | - Nehmedo G. Fawzy
- Department of Pesticide Chemistry National Research Centre Dokki Giza 12622 Egypt
| | - Adel S. Girgis
- Department of Pesticide Chemistry National Research Centre Dokki Giza 12622 Egypt
| |
Collapse
|
30
|
Treatment of Metastatic Melanoma with a Combination of Immunotherapies and Molecularly Targeted Therapies. Cancers (Basel) 2022; 14:cancers14153779. [PMID: 35954441 PMCID: PMC9367420 DOI: 10.3390/cancers14153779] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/02/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Immunotherapies and molecularly targeted therapies have drastically changed the therapeutic approach for unresectable advanced or metastatic melanoma. The majority of melanoma patients have benefitted from these therapies; however, some patients acquire resistance to them. Novel combinations of immunotherapies and molecularly targeted therapies may be more efficient in treating these patients. In this review, we discuss various combination therapies under pre-clinical and clinical development which can reduce toxicity, enhance efficacy, and prevent recurrences in patients with metastatic melanoma. Abstract Melanoma possesses invasive metastatic growth patterns and is one of the most aggressive types of skin cancer. In 2021, it is estimated that 7180 deaths were attributed to melanoma in the United States alone. Once melanoma metastasizes, traditional therapies are no longer effective. Instead, immunotherapies, such as ipilimumab, pembrolizumab, and nivolumab, are the treatment options for malignant melanoma. Several biomarkers involved in tumorigenesis have been identified as potential targets for molecularly targeted melanoma therapy, such as tyrosine kinase inhibitors (TKIs). Unfortunately, melanoma quickly acquires resistance to these molecularly targeted therapies. To bypass resistance, combination treatment with immunotherapies and single or multiple TKIs have been employed and have been shown to improve the prognosis of melanoma patients compared to monotherapy. This review discusses several combination therapies that target melanoma biomarkers, such as BRAF, MEK, RAS, c-KIT, VEGFR, c-MET and PI3K. Several of these regimens are already FDA-approved for treating metastatic melanoma, while others are still in clinical trials. Continued research into the causes of resistance and factors influencing the efficacy of these combination treatments, such as specific mutations in oncogenic proteins, may further improve the effectiveness of combination therapies, providing a better prognosis for melanoma patients.
Collapse
|
31
|
Quantum chemical evaluation, QSAR analysis, molecular docking and dynamics investigation of s-triazine derivatives as potential anticancer agents. Struct Chem 2022. [DOI: 10.1007/s11224-022-01968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Huang L, Liao Z, Liu Z, Chen Y, Huang T, Xiao H. Application and Prospect of CRISPR/Cas9 Technology in Reversing Drug Resistance of Non-Small Cell Lung Cancer. Front Pharmacol 2022; 13:900825. [PMID: 35620280 PMCID: PMC9127258 DOI: 10.3389/fphar.2022.900825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer drug resistance has always been a major factor affecting the treatment of non-small cell lung cancer, which reduces the quality of life of patients. The clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) technology, as an efficient and convenient new gene-editing technology, has provided a lot of help to the clinic and accelerated the research of cancer and drug resistance. In this review, we introduce the mechanisms of drug resistance in non-small cell lung cancer (NSCLC), discuss how the CRISPR/Cas9 system can reverse multidrug resistance in NSCLC, and focus on drug resistance gene mutations. To improve the prognosis of NSCLC patients and further improve patients' quality of life, it is necessary to utilize the CRISPR/Cas9 system in systematic research on cancer drug resistance.
Collapse
Affiliation(s)
- Lu Huang
- Department of Clinical Pharmacy, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital and Institute, University of Electronic Science and Technology of China, Chengdu, China.,Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhi Liao
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhixi Liu
- Department of Clinical Pharmacy, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital and Institute, University of Electronic Science and Technology of China, Chengdu, China.,Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
| | - Yan Chen
- Department of Clinical Pharmacy, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital and Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingwenli Huang
- Department of Clinical Pharmacy, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital and Institute, University of Electronic Science and Technology of China, Chengdu, China.,Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
| | - Hongtao Xiao
- Department of Clinical Pharmacy, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital and Institute, University of Electronic Science and Technology of China, Chengdu, China.,Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
33
|
Osude C, Lin L, Patel M, Eckburg A, Berei J, Kuckovic A, Dube N, Rastogi A, Gautam S, Smith TJ, Sreenivassappa SB, Puri N. Mediating EGFR-TKI Resistance by VEGF/VEGFR Autocrine Pathway in Non-Small Cell Lung Cancer. Cells 2022; 11:1694. [PMID: 35626731 PMCID: PMC9139342 DOI: 10.3390/cells11101694] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/06/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
NSCLC treatment includes targeting of EGFR with tyrosine kinase inhibitors (TKIs) such as Erlotinib; however, resistance to TKIs is commonly acquired through T790M EGFR mutations or overexpression of vascular endothelial growth factor receptor-2 (VEGFR-2). We investigated the mechanisms of EGFR-TKI resistance in NSCLC cell lines with EGFR mutations or acquired resistance to Erlotinib. These studies showed upregulated gene and protein expression of VEGF, VEGFR-2, and a VEGF co-receptor neuropilin-1 (NP-1) in Erlotinib-resistant (1.4-5.3-fold) and EGFR double-mutant (L858R and T790M; 4.1-8.3-fold) NSCLC cells compared to parental and EGFR single-mutant (L858R) NSCLC cell lines, respectively. Immunofluorescence and FACS analysis revealed increased expression of VEGFR-2 and NP-1 in EGFR-TKI-resistant cell lines compared to TKI-sensitive cell lines. Cell proliferation assays showed that treatment with a VEGFR-2 inhibitor combined with Erlotinib lowered cell survival in EGFR double-mutant NSCLC cells to 9% compared to 72% after treatment with Erlotinib alone. Furthermore, Kaplan-Meier analysis revealed shorter median survival in late-stage NSCLC patients with high vs. low VEGFR-2 expression (14 mos vs. 21 mos). The results indicate that VEGFR-2 may play a key role in EGFR-TKI resistance and that combined treatment of Erlotinib with a VEGFR-2 inhibitor may serve as an effective therapy in NSCLC patients with EGFR mutations.
Collapse
Affiliation(s)
- Chike Osude
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| | - Leo Lin
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| | - Meet Patel
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| | - Adam Eckburg
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| | - Joseph Berei
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| | - Adijan Kuckovic
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| | - Namrata Dube
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| | - Aayush Rastogi
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| | - Shruti Gautam
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| | - Thomas J. Smith
- College of Education, Northern Illinois University, Dekalb, IL 60115, USA;
| | | | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| |
Collapse
|
34
|
Kasuma D, Soeroso NN, Tarigan SP, Syahruddin E. Survival Rate in Lung Adenocarcinoma with Mutation of the EGFR Gene with Tyrosine Kinase Inhibitor Treatment. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: EGFR mutation is a genetic disorder that is often observed and examined in Non-Small Cell Lung Carcinoma. EGFR mutation detection aims to predict sensitivity to EGFR-TKI and acts as first-line therapy. Targeted therapy with EGFR-TKI can increase the survival rate of patients with Non-Small Cell Lung Cancer compared to chemotherapy. This study aims to obtain data on the survival rate of patients with Non-Small Cell Lung Carcinoma who received targeted therapy at H. Adam Malik Hospital.
Methods: This study is a descriptive study with a retrospective cohort design carried out at the Oncology Polyclinic at RSUP H Adam Malik Medan for 5 years, from January 2014 to December 2018. The subjects of this study were all patients with lung cancer type adenocarcinoma who had received therapy with generation 1 or 2 EGFR TKI.
Results: 99 patients were included as subjects of this study. From the study, the most influential factors on lung cancer were gender, age, and smoking addiction. The study consisted of 60.6% male, 92.9% of the respondents aged 40 years and over, 56.5% active, and 43.4% passive smokers and 41.4% of the respondents with severe Brinkman index. The 30-month survival rate of EGFR-TKI (Gefitinib) patients treated with NSCLC Adenocarcinoma (Gefitinib) from 2014 to 2018 at H. Adam Malik Hospital Medan was 6.3% with a median survival of 7 months. The duration of progression-free survival in patients receiving Erlotinib therapy was 6.6 months (6.6 ± 2.51 months), while the length of progression-free survival for patients treated with Gefitinib was 9.1 months (9.1 ± 6.9 months). The results of statistical tests showed that there was no difference in progression-free survival rate between those who received Erlotinib and Gefitinib (P = 0.82).
Conclusion: The 30-month survival rate of lung adenocarcinoma patients treated with EGFR-TKI from 2014 to 2018 was 6.1% with a median survival of 7 months. Those who received Erlotinib therapy experienced Progression-Free Survival for 6.6 months and those who received Gefitinib experienced Progression-Free Survival for 9.1 months.
Collapse
|
35
|
Silva F, Pereira T, Neves I, Morgado J, Freitas C, Malafaia M, Sousa J, Fonseca J, Negrão E, Flor de Lima B, Correia da Silva M, Madureira AJ, Ramos I, Costa JL, Hespanhol V, Cunha A, Oliveira HP. Towards Machine Learning-Aided Lung Cancer Clinical Routines: Approaches and Open Challenges. J Pers Med 2022; 12:480. [PMID: 35330479 PMCID: PMC8950137 DOI: 10.3390/jpm12030480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 12/15/2022] Open
Abstract
Advancements in the development of computer-aided decision (CAD) systems for clinical routines provide unquestionable benefits in connecting human medical expertise with machine intelligence, to achieve better quality healthcare. Considering the large number of incidences and mortality numbers associated with lung cancer, there is a need for the most accurate clinical procedures; thus, the possibility of using artificial intelligence (AI) tools for decision support is becoming a closer reality. At any stage of the lung cancer clinical pathway, specific obstacles are identified and "motivate" the application of innovative AI solutions. This work provides a comprehensive review of the most recent research dedicated toward the development of CAD tools using computed tomography images for lung cancer-related tasks. We discuss the major challenges and provide critical perspectives on future directions. Although we focus on lung cancer in this review, we also provide a more clear definition of the path used to integrate AI in healthcare, emphasizing fundamental research points that are crucial for overcoming current barriers.
Collapse
Affiliation(s)
- Francisco Silva
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FCUP—Faculty of Science, University of Porto, 4169-007 Porto, Portugal
| | - Tania Pereira
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
| | - Inês Neves
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- ICBAS—Abel Salazar Biomedical Sciences Institute, University of Porto, 4050-313 Porto, Portugal
| | - Joana Morgado
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
| | - Cláudia Freitas
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Mafalda Malafaia
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FEUP—Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Joana Sousa
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
| | - João Fonseca
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FEUP—Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Eduardo Negrão
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
| | - Beatriz Flor de Lima
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
| | - Miguel Correia da Silva
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
| | - António J. Madureira
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Isabel Ramos
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - José Luis Costa
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Venceslau Hespanhol
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - António Cunha
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- UTAD—University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Hélder P. Oliveira
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FCUP—Faculty of Science, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
36
|
Polymorphism of Baculoviral Inhibitor of Apoptosis Repeat-Containing 5 (BIRC5) Can Be Associated with Clinical Outcome of Non-Small Cell Lung Cancer. Cells 2022; 11:cells11060956. [PMID: 35326407 PMCID: PMC8946487 DOI: 10.3390/cells11060956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/04/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) comprises about 85% of all lung cancers. Currently, NSCLC therapy is based on the analysis of specific predictors, whose presence qualifies patients for appropriate treatment. Baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5), also known as “survivin”, is a protein whose expression is characteristic for most malignant tumors and fetal tissue, while absent in mature cells. The biological role of BIRC5 is to counteract apoptosis by inhibiting the initiating and effector activities of caspases and binding to microtubules of the mitotic spindle. In our study, we looked for a relationship between BIRC5 gene polymorphism and the effectiveness of platinum-based chemotherapy. The study group consisted of 104 patients with newly diagnosed locally advanced or metastatic NSCLC. DNA was isolated from pretreatment blood samples, and SNPs of BIRC5 gene were analyzed. All patients received first-line platinum-based chemotherapy. Univariate analysis showed that a specific BIRC5 genotype was significantly associated with a higher risk of early progression (homozygous GG vs. heterozygous CG or CC: 28.9% vs. 11.9%). The presence of a homozygous GG genotype of the BIRC5 gene was insignificantly related to PFS shortening and TTP shortening. Moreover, significantly higher risk of overall survival shortening was associated with the BIRC5 homozygous GG genotype. Thus, studies on polymorphisms of selected genes affecting apoptosis may have a practical benefit for clinicians who monitor and treat NSCLC.
Collapse
|
37
|
Harnessing Natural Killer Cells in Non-Small Cell Lung Cancer. Cells 2022; 11:cells11040605. [PMID: 35203256 PMCID: PMC8869885 DOI: 10.3390/cells11040605] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. There are two main subtypes: small cell lung cancer (SCLC), and non-small cell lung cancer (NSCLC). NSCLC accounts for 85% of lung cancer diagnoses. Early lung cancer very often has no specific symptoms, and many patients present with late stage disease. Despite the various treatments currently available, many patients experience tumor relapse or develop therapeutic resistance, highlighting the need for more effective therapies. The development of immunotherapies has revolutionized the cancer treatment landscape by enhancing the body’s own immune system to fight cancer. Natural killer (NK) cells are crucial anti-tumor immune cells, and their exclusion from the tumor microenvironment is associated with poorer survival. It is well established that NK cell frequencies and functions are impaired in NSCLC; thus, placing NK cell-based immunotherapies as a desirable therapeutic concept for this malignancy. Immunotherapies such as checkpoint inhibitors are transforming outcomes for NSCLC. This review explores the current treatment landscape for NSCLC, the role of NK cells and their dysfunction in the cancer setting, the advancement of NK cell therapies, and their future utility in NSCLC.
Collapse
|
38
|
ALK, NUT, and TRK Do Not Play Relevant Roles in Gastric Cancer—Results of an Immunohistochemical Study in a Large Series. Diagnostics (Basel) 2022; 12:diagnostics12020429. [PMID: 35204520 PMCID: PMC8870766 DOI: 10.3390/diagnostics12020429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 12/24/2022] Open
Abstract
ALK, NUT, and TRK are rare molecular aberrations that are pathognomonic for specific rare tumors. In low frequencies, however, they are found in a wide range of other tumor entities. This study aimed to investigate the frequency, association with clinicopathological characteristics, and prognosis of the immunohistochemical expressions of ALK, NUT, and TRK in 477 adenocarcinomas of the stomach and gastroesophageal junction. Seven cases (1.5%) showed an expression of TRK. In NGS, no NTRK fusion was confirmed. No case with ALK or NUT expression was detected. ALK, NUT, and NTRK expression does not seem to play an important role in gastric carcinomas.
Collapse
|
39
|
Wan L, Cheng Z, Sun Q, Jiang K. LncRNA HOXC-AS3 increases non-small cell lung cancer cell migration and invasion by sponging premature miR-96. Expert Rev Respir Med 2022; 16:587-593. [PMID: 35034519 DOI: 10.1080/17476348.2022.2030223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND HOXC cluster antisense RNA 3 (HOXC-AS3) has been characterized as a critical long noncoding RNA (lncRNA) player in breast cancer and gastric cancer, while its role in non-small cell lung cancer (NSCLC) is not clear. We hypothesized that HOXC-AS3 could interact with premature microRNA (miR)-96. This study was therefore carried out to explore the crosstalk between HOXC-AS3 and miR-96 in NSCLC. METHODS The expression of HOXC-AS3 and miR-96 (both mature and premature) were detected using RT-qPCR. Nuclear fractionation assay and RNA pull-down assay were performed to detect the subcellular location of HOXC-AS3 and potential interaction with premature miR-96, respectively. Overexpression assays were performed to determine the role of HOXC-AS3 in the maturation of miR-96. Transwell assays were performed to explore the role of HOXC-AS3 and miR-96 in NSCLC cell invasion and migration. RESULTS NSCLC tissues exhibited significantly increased expression levels of HOXC-AS3 and premature miR-96. HOXC-AS3 was localized to both nucleus and cytoplasm, and a direct interaction between HOXC-AS3 and premature miR-96 was observed. In NSCLC cells, HOXC-AS3 upregulated the expression of premature miR-96 but downregulated the expression of mature miR-96. Moreover, HOXC-AS3 suppressed the role of miR-96 in inhibiting NSCLC cell invasion and migration. CONCLUSION HOXC-AS3 may increase NSCLC cell growth and invasion by sponging premature miR-96 to suppress its maturation.
Collapse
Affiliation(s)
- Li Wan
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, 43000, People's Republic of China
| | - Zaixing Cheng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, 43000, People's Republic of China
| | - Quanchao Sun
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, 43000, People's Republic of China
| | - Ke Jiang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, 43000, People's Republic of China
| |
Collapse
|
40
|
Rijavec E, Biello F, Indini A, Grossi F, Genova C. Current Insights on the Treatment of Anaplastic Lymphoma Kinase-Positive Metastatic Non-Small Cell Lung Cancer: Focus on Brigatinib. Clin Pharmacol 2022; 14:1-9. [PMID: 35082536 PMCID: PMC8786362 DOI: 10.2147/cpaa.s284850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/14/2022] [Indexed: 11/26/2022] Open
Abstract
Rearrangement of anaplastic lymphoma kinase (ALK) gene is detected in approximately 5% of non-small cell lung cancer (NSCLC) patients. Tyrosine kinase inhibitors targeting ALK have significantly improved the prognosis of these patients. However, most patients experienced disease progression within a few years due to acquired resistance. Brigatinib is a second-generation ALK inhibitor effective in presence of several ALK mutations with demonstrated activity against central nervous system metastases. Currently, brigatinib is approved to treat ALK-positive metastatic NSCLC patients not previously treated with ALK inhibitors and patients who have progressed on or are intolerant to crizotinib. In this review, we provide a summary of results from clinical trials involving brigatinib, and we discuss its possible role in the management of ALK-positive NSCLC in the following years.
Collapse
Affiliation(s)
- Erika Rijavec
- Medical Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
- Correspondence: Erika Rijavec, Email
| | - Federica Biello
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Alice Indini
- Division of Medical Oncology, University of Insubria, ASST dei Sette Laghi, Varese, Italy
| | - Francesco Grossi
- Division of Medical Oncology, University of Insubria, ASST dei Sette Laghi, Varese, Italy
| | - Carlo Genova
- UO Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), Università degli Studi di Genova, Genova, Italy
| |
Collapse
|
41
|
Angeles AK, Christopoulos P, Yuan Z, Bauer S, Janke F, Ogrodnik SJ, Reck M, Schlesner M, Meister M, Schneider MA, Dietz S, Stenzinger A, Thomas M, Sültmann H. Early identification of disease progression in ALK-rearranged lung cancer using circulating tumor DNA analysis. NPJ Precis Oncol 2021; 5:100. [PMID: 34876698 PMCID: PMC8651695 DOI: 10.1038/s41698-021-00239-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022] Open
Abstract
Targeted kinase inhibitors improve the prognosis of lung cancer patients with ALK alterations (ALK+). However, due to the emergence of acquired resistance and varied clinical trajectories, early detection of disease progression is warranted to guide patient management and therapy decisions. We utilized 343 longitudinal plasma DNA samples from 43 ALK+ NSCLC patients receiving ALK-directed therapies to determine molecular progression based on matched panel-based targeted next-generation sequencing (tNGS), and shallow whole-genome sequencing (sWGS). ALK-related alterations were detected in 22 out of 43 (51%) patients. Among 343 longitudinal plasma samples analyzed, 174 (51%) were ctDNA-positive. ALK variant and fusion kinetics generally reflected the disease course. Evidence for early molecular progression was observed in 19 patients (44%). Detection of ctDNA at therapy baseline indicated shorter times to progression compared to cases without mutations at baseline. In patients who succumbed to the disease, ctDNA levels were highly elevated towards the end of life. Our results demonstrate the potential utility of these NGS assays in the clinical management of ALK+ NSCLC.
Collapse
Affiliation(s)
- Arlou Kristina Angeles
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Petros Christopoulos
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Oncology, Thoraxklinik and National Center for Tumor Disease (NCT) at Heidelberg University Hospital, Heidelberg, Germany
| | - Zhao Yuan
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simone Bauer
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Florian Janke
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Simon John Ogrodnik
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Martin Reck
- Lung Clinic Grosshansdorf, Airway Research Center North, German Center for Lung Research, Grosshansdorf, Germany
| | - Matthias Schlesner
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Biomedical Informatics, Data Mining and Data Analytics, Faculty for Applied Informatics, Augsburg University, Augsburg, Germany
| | - Michael Meister
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Marc A Schneider
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Steffen Dietz
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- AstraZeneca GmbH, Wedel, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, Heidelberg University, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Michael Thomas
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Oncology, Thoraxklinik and National Center for Tumor Disease (NCT) at Heidelberg University Hospital, Heidelberg, Germany
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany.
| |
Collapse
|
42
|
Srour AM, Panda SS, Mostafa A, Fayad W, El-Manawaty MA, A. F. Soliman A, Moatasim Y, El Taweel A, Abdelhameed MF, Bekheit MS, Ali MA, Girgis AS. Synthesis of aspirin-curcumin mimic conjugates of potential antitumor and anti-SARS-CoV-2 properties. Bioorg Chem 2021; 117:105466. [PMID: 34775204 PMCID: PMC8566089 DOI: 10.1016/j.bioorg.2021.105466] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/31/2021] [Indexed: 12/16/2022]
Abstract
Series of piperidone-salicylate conjugates were synthesized through the reaction of 3E,5E-bis(arylidene)-4-piperidones with the appropriate acid chloride of acetylsalicylate in the presence of triethylamine. All the synthesized conjugates reveal antiproliferative properties against A431 (squamous skin) cancer cell line with potency higher than that of 5-fluorouracil. Many of the synthesized agents also exhibit promising antiproliferative properties against HCT116 (colon) cancer cell line, of which 5o and 5c are the most effective with 12.9, 9.8 folds potency compared with Sunitinib. Promising activity is also shown against MCF7 (breast) cancer cell line with 1.19, 1.12 folds relative to 5-fluorouracil. PI-flow cytometry of compound 5c supports the arrest of cell cycle at G1-phase. However, compound 5o and Sunitinib arrest the cell cycle at S-phase. The synthesized conjugates can be considered as multi-targeted tyrosine kinase inhibitors due to the promising properties against VEGFR-2 and EGFR in MCF7 and HCT116. CDOCKER studies support the EGFR inhibitory properties. Compounds 5p and 5i possessing thienylidene heterocycle are anti-SARS-CoV-2 with high therapeutic indices. Many of the synthesized agents show enhanced COX-1/2 properties than aspirin with better selectivity index towards COX-2 relative to COX-1. The possible applicability of the potent candidates discovered as antitumor and anti-SARS-CoV-2 is supported by the safe profile against normal (non-cancer, RPE1 and VERO-E6) cells.
Collapse
Affiliation(s)
- Aladdin M. Srour
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Siva S. Panda
- Department of Chemistry & Physics, Augusta University, Augusta, GA 30912, US
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Walid Fayad
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - May A. El-Manawaty
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ahmed A. F. Soliman
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Ahmed El Taweel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | | | - Mohamed S. Bekheit
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Adel S. Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt,Corresponding author
| |
Collapse
|
43
|
Dong W, Lei P, Liu X, Li Q, Cheng X. Case Report: Complete Response to Nivolumab in a Patient With Programmed Cell Death 1 Ligand 1-Positive and Multiple Gene-Driven Anaplastic Lymphoma Kinase Tyrosine Kinase Inhibitor-Resistant Lung Adenocarcinoma. Front Immunol 2021; 12:686057. [PMID: 34804000 PMCID: PMC8600068 DOI: 10.3389/fimmu.2021.686057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Multiple gene-driven programmed cell death 1 ligand 1 (PD-L1)-expressing non-small-cell lung cancer (NSCLC) is very rare. Previous studies have shown that patients with NSCLC with anaplastic lymphoma kinase (ALK) gene rearrangement rarely benefit from PD-L1 inhibitors. Besides the secondary mutations in ALK gene, other mechanisms might contribute to tumor resistance to ALK tyrosine kinase inhibitors (ALK-TKIs). Herein, we present a case of PD-L1-overexpressing lung adenocarcinoma that harbors both EML4-ALK gene rearrangement and BRAF mutation. In particular, a second molecular analysis after resistance to first- and second-generation ALK-TKIs revealed a high PD-L1 expression and tumor mutation burden. Therefore, treatment with nivolumab monotherapy, an anti-PD-1 inhibitor, was started and the patient achieved complete remission. This case report suggested that PD-1 inhibitors might be an effective treatment option for patients with multiple gene-driven PD-L1-expressing NSCLC harboring ALK gene rearrangement.
Collapse
Affiliation(s)
- Wen Dong
- Department of Respiratory Medicine, Hainan Cancer Hospital, Haikou, China
| | - Pengfei Lei
- Department of Cardiothoracic Surgery, Yueyang Second People's Hospital, Yueyang, China
| | - Xin Liu
- Department of Medical Center, Geneplus-Beijing Institution, Beijing, China
| | - Qin Li
- Department of Medical Center, Geneplus-Beijing Institution, Beijing, China
| | - Xiangyang Cheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
44
|
Li L, Li Y, Zou H. A novel role for apatinib in enhancing radiosensitivity in non-small cell lung cancer cells by suppressing the AKT and ERK pathways. PeerJ 2021; 9:e12356. [PMID: 34760374 PMCID: PMC8557687 DOI: 10.7717/peerj.12356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background Radioresistance is still the major cause of radiotherapy failure and poor prognosis in patients with non-small cell lung cancer (NSCLC). Apatinib (AP) is a highly selective inhibitor of vascular endothelial growth factor receptor 2 (VEGFR2). Whether and how AP affects radiosensitivity in NSCLC remains unknown. The present study aimed to explore the radiosensitization effect of AP in NSCLC and its underlying mechanism as a radiosensitizer. Methods The NSCLC cell lines A549 and LK2 were treated with AP, ionizing radiation (IR), or both AP and IR. Expression of VEGFR2 was analyzed by western blot and RT-PCR. Cell proliferation was measured using CCK-8 and colony formation assays. Apoptosis and cell cycle distribution in NSCLC cells were analyzed by flow cytometry. Nuclear phosphorylated histone H2AX foci immunofluorescence staining was performed to evaluate the efficacy of the combination treatment. Western blot was used to explore the potential mechanisms of action. Results AP inhibited cell proliferation in a dose- and time-dependent manner. Flow cytometry analysis indicated that AP significantly increased radiation-induced apoptosis. Colony formation assays revealed that AP enhanced the radiosensitivity of NSCLC cells. AP strongly restored radiosensitivity by increasing IR-induced G2/M phase arrest. AP effectively inhibited repair of radiation-induced DNA double-strand breaks. Western blot analysis showed that AP enhanced radiosensitivity by downregulating AKT and extracellular signal-regulated kinase (ERK) signaling. Conclusion Our findings suggest that AP may enhance radiosensitivity in NSCLC cells by blocking AKT and ERK signaling. Therefore, AP may be a potential clinical radiotherapy synergist and a novel small-molecule radiosensitizer in NSCLC. Our study fills a gap in the field of anti-angiogenic drugs and radiosensitivity.
Collapse
Affiliation(s)
- Lin Li
- The First Oncology Department, The Fourth Hospital of China Medical University, Shenyang, Liaoning, China.,Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuexian Li
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Huawei Zou
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
45
|
Serna-Blasco R, Sánchez-Herrero E, Berrocal Renedo M, Calabuig-Fariñas S, Molina-Vila MÁ, Provencio M, Romero A. R-Score: A New Parameter to Assess the Quality of Variants' Calls Assessed by NGS Using Liquid Biopsies. BIOLOGY 2021; 10:954. [PMID: 34681053 PMCID: PMC8533561 DOI: 10.3390/biology10100954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 11/17/2022]
Abstract
Next-generation sequencing (NGS) has enabled a deeper knowledge of the molecular landscape in non-small cell lung cancer (NSCLC), identifying a growing number of targetable molecular alterations in key genes. However, NGS profiling of liquid biopsies risk for false positive and false negative calls and parameters assessing the quality of NGS calls remains lacking. In this study, we have evaluated the positive percent agreement (PPA) between NGS and digital PCR calls when assessing EGFR mutation status using 85 plasma samples from 82 EGFR-positive NSCLC patients. According to our data, variant allele fraction (VAF) was significantly lower in discordant calls and the median of the absolute values of all pairwise differences (MAPD) was significantly higher in discordant calls (p < 0.001 in both cases). Based on these results, we propose a new parameter that integrates both variables, named R-score. Next, we sought to evaluate the PPA for EGFR mutation calls between two independent NGS platforms using a subset of 40 samples from the same cohort. Remarkably, there was a significant linear correlation between the PPA and the R-score (r = 0.97; p < 0.001). Specifically, the PPA of samples with an R-score ≤ -1.25 was 95.83%, whereas PPA falls to 81.63% in samples with R-score ≤ 0.25. In conclusion, R-score significantly correlates with PPA and can assist laboratory medicine specialists and data scientists to select reliable variants detected by NGS.
Collapse
Affiliation(s)
- Roberto Serna-Blasco
- Liquid Biopsy Laboratory, University Hospital Puerta de Hierro, 28222 Madrid, Spain; (R.S.-B.); (E.S.-H.); (M.B.R.)
| | - Estela Sánchez-Herrero
- Liquid Biopsy Laboratory, University Hospital Puerta de Hierro, 28222 Madrid, Spain; (R.S.-B.); (E.S.-H.); (M.B.R.)
- Atrys Health, I+D Department, 08025 Barcelona, Spain
| | - María Berrocal Renedo
- Liquid Biopsy Laboratory, University Hospital Puerta de Hierro, 28222 Madrid, Spain; (R.S.-B.); (E.S.-H.); (M.B.R.)
| | - Silvia Calabuig-Fariñas
- CIBERONC, Liquid Biopsy WM, 28029 Madrid, Spain;
- Mixed Unit TRIAL, Príncipe Felipe Research Center & General University Hospital of Valencia Research Foundation, 46012 Valencia, Spain
- Department of Pathology, Universitat de València, 46010 Valencia, Spain
| | - Miguel Ángel Molina-Vila
- Laboratory of Oncology/Pangaea Oncology, Quirón-Dexeus University Hospital, 08028 Barcelona, Spain;
| | - Mariano Provencio
- Medical Oncology, University Hospital Puerta de Hierro, 28222 Madrid, Spain;
| | - Atocha Romero
- Liquid Biopsy Laboratory, University Hospital Puerta de Hierro, 28222 Madrid, Spain; (R.S.-B.); (E.S.-H.); (M.B.R.)
- Medical Oncology, University Hospital Puerta de Hierro, 28222 Madrid, Spain;
| |
Collapse
|
46
|
Wang L, Tang L, Ge T, Zhu F, Liu D, Guo H, Qian P, Xu N. LncRNA DLGAP1-AS2 regulates miR-503/cyclin D1 to promote cell proliferation in non-small cell lung cancer. BMC Pulm Med 2021; 21:277. [PMID: 34454450 PMCID: PMC8401159 DOI: 10.1186/s12890-021-01633-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
Background LncRNA DLGAP1-AS2 plays an oncogenic role in glioma, while its role in other cancers is unknown. This study aimed to study the role of DLGAP1-AS2 in non-small cell lung cancer (NSCLC). Methods Expression of DLGAP1-AS2 in NSCLC and paired non-tumor tissues from 64 NSCLC patients and the prognostic value of DLGAP1-AS2 for NSCLC were analyzed by performing a 5-year follow-up study. The interaction between DLGAP1-AS2 and miR-503 was confirmed by dual luciferase reporter assay, and their relationship was explored in NSCLC cells transfected with DLGAP1-AS2 expression vector or miR-503 mimic. The roles of DLGAP1-AS2 and miR-503 in regulating cyclin D1 expression were analyzed by RT-qPCR and Western blot. Cell proliferation was analyzed by CCK-8 assay. Results DLGAP1-AS2 was upregulated in NSCLC and predicted poor survival. Interaction between DLGAP1-AS2 and miR-503 was confirmed by dual luciferase activity assay. Overexpression experiments showed that DLGAP1-AS2 and miR-503 overexpression failed to significantly affect the expression of each other. Interestingly, DLGAP1-AS2 overexpression upregulated cyclin D1, a target of miR-503, increased cell proliferation and reduced the effects of miR-503 overexpression on cyclin D1 expression and cell proliferation. Conclusions DLGAP1-AS2 may regulate miR-503/cyclin D1 to promote cell proliferation in NSCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01633-0.
Collapse
Affiliation(s)
- Lu Wang
- Department of Thoracic Surgery, Anhui Chest Hospital, No. 397 Jixi Road, Shushan District, Hefei City, Anhui Province, 230022, People's Republic of China
| | - Lei Tang
- Department of Thoracic Surgery, Anhui Chest Hospital, No. 397 Jixi Road, Shushan District, Hefei City, Anhui Province, 230022, People's Republic of China
| | - Tengfei Ge
- Department of Thoracic Surgery, Anhui Chest Hospital, No. 397 Jixi Road, Shushan District, Hefei City, Anhui Province, 230022, People's Republic of China
| | - Feng Zhu
- Department of Thoracic Surgery, Anhui Chest Hospital, No. 397 Jixi Road, Shushan District, Hefei City, Anhui Province, 230022, People's Republic of China
| | - Dan Liu
- Department of Thoracic Surgery, Anhui Chest Hospital, No. 397 Jixi Road, Shushan District, Hefei City, Anhui Province, 230022, People's Republic of China
| | - Hua Guo
- Department of Thoracic Surgery, Anhui Chest Hospital, No. 397 Jixi Road, Shushan District, Hefei City, Anhui Province, 230022, People's Republic of China
| | - Peng Qian
- Department of Thoracic Surgery, Anhui Chest Hospital, No. 397 Jixi Road, Shushan District, Hefei City, Anhui Province, 230022, People's Republic of China
| | - Ning Xu
- Department of Thoracic Surgery, Anhui Chest Hospital, No. 397 Jixi Road, Shushan District, Hefei City, Anhui Province, 230022, People's Republic of China.
| |
Collapse
|
47
|
Monastirioti A, Papadaki C, Rounis K, Kalapanida D, Mavroudis D, Agelaki S. A Prognostic Role for Circulating microRNAs Involved in Macrophage Polarization in Advanced Non-Small Cell Lung Cancer. Cells 2021; 10:cells10081988. [PMID: 34440757 PMCID: PMC8391493 DOI: 10.3390/cells10081988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Circulating microRNAs (miRNAs) are key regulators of the crosstalk between tumor cells and immune response. In the present study, miRNAs (let-7c, miR-26a, miR-30d, miR-98, miR-195, miR-202) reported to be involved in the polarization of macrophages were examined for associations with the outcomes of non-small cell lung cancer (NSCLC) patients (N = 125) treated with first-line platinum-based chemotherapy. RT-qPCR was used to analyze miRNA expression levels in the plasma of patients prior to treatment. In our results, disease progression was correlated with high miR-202 expression (HR: 2.335; p = 0.040). Additionally, high miR-202 expression was characterized as an independent prognostic factor for shorter progression-free survival (PFS, HR: 1.564; p = 0.021) and overall survival (OS, HR: 1.558; p = 0.024). Moreover, high miR-202 independently predicted shorter OS (HR: 1.989; p = 0.008) in the non-squamous (non-SqCC) subgroup, and high miR-26a was correlated with shorter OS in the squamous (SqCC) subgroup (10.07 vs. 13.53 months, p = 0.033). The results of the present study propose that the expression levels of circulating miRNAs involved in macrophage polarization are correlated with survival measures in NSCLC patients, and their role as potential biomarkers merits further investigation.
Collapse
Affiliation(s)
- Alexia Monastirioti
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Vassilika Vouton, 71003 Heraklion, Crete, Greece; (A.M.); (C.P.); (D.M.)
| | - Chara Papadaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Vassilika Vouton, 71003 Heraklion, Crete, Greece; (A.M.); (C.P.); (D.M.)
| | - Konstantinos Rounis
- Department of Medical Oncology, University General Hospital of Heraklion, Vassilika Vouton, 71110 Heraklion, Crete, Greece; (K.R.); (D.K.)
| | - Despoina Kalapanida
- Department of Medical Oncology, University General Hospital of Heraklion, Vassilika Vouton, 71110 Heraklion, Crete, Greece; (K.R.); (D.K.)
| | - Dimitrios Mavroudis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Vassilika Vouton, 71003 Heraklion, Crete, Greece; (A.M.); (C.P.); (D.M.)
- Department of Medical Oncology, University General Hospital of Heraklion, Vassilika Vouton, 71110 Heraklion, Crete, Greece; (K.R.); (D.K.)
| | - Sofia Agelaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Vassilika Vouton, 71003 Heraklion, Crete, Greece; (A.M.); (C.P.); (D.M.)
- Department of Medical Oncology, University General Hospital of Heraklion, Vassilika Vouton, 71110 Heraklion, Crete, Greece; (K.R.); (D.K.)
- Correspondence: ; Tel.: +30-281-0392438
| |
Collapse
|
48
|
Lu A, Shi Y, Liu Y, Lin J, Zhang H, Guo Y, Li L, Lin Z, Wu J, Ji D, Wang C. Integrative analyses identified ion channel genes GJB2 and SCNN1B as prognostic biomarkers and therapeutic targets for lung adenocarcinoma. Lung Cancer 2021; 158:29-39. [PMID: 34111567 DOI: 10.1016/j.lungcan.2021.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Abnormal expressions of ion channel genes are associated with the occurrence and progression of tumors. At present, their roles in the carcinogenesis of lung adenocarcinoma (LUAD) are not clear. MATERIALS AND METHODS Differentially expressed (DE) genes in the tumorigenesis were identified from 328 ion channel genes in 102 LUAD and paired adjacent normal samples. Similar analyses were performed between 177 metastatic and 286 non-metastatic LUAD samples to identify DE ion channel genes in the progression of LUAD. Independent prognostic factors selected from DE ion channel genes were used to construct a prognostic model. Correlation analysis and drugs-drug targets interaction network were used to screen the potential drugs for LUAD patients stratified by GJB2 or SCNN1B. RESULTS Six ion channel genes (GJB2, CACNA1D, KCNQ1, SCNN1B, SCNN1G and TRPV6) were continuous differentially expressed in the tumorigenesis and progression of LUAD. The survival analysis in four datasets with 522 LUAD samples showed that GJB2 and SCNN1B were independent prognostic biomarkers. Patients with overexpression of GJB2 or underexpression of SCNN1B had shorter overall survival. Moreover, multi-omics analysis showed that hypomethylation of GJB2 and hypermethylation of SCNN1B in the promoter region may contribute to their aberrant expressions. KEGG enrichment analysis showed that the overexpressed genes in the group with high GJB2 or low SCNN1B were enriched in cancer-related pathways, while the underexpressed genes were enriched in metabolism-related pathways. The prognostic model with GJB2 and SCNN1B can stratify all LUAD patients into two groups with significantly different survival. Correlation analysis and drugs-drug targets interaction network suggested that GJB2 and SCNN1B expression might have indicative therapeutic values for LUAD patients. Finally, pan-cancer analysis in other eight cancer types showed that GJB2 and SCNN1B might be also potential prognostic factors for KIRC. CONCLUSIONS GJB2 and SCNN1B were identified as prognostic biomarkers and therapeutic targets for LUAD.
Collapse
Affiliation(s)
- Ao Lu
- Department of Gastroenterology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350122, China; Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.
| | - Yidan Shi
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Yijuan Liu
- Department of Gastroenterology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350122, China
| | - Jiahao Lin
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Huarong Zhang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Yating Guo
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Lisheng Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zeman Lin
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Junling Wu
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Daihan Ji
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Chengdang Wang
- Department of Gastroenterology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
49
|
Triple negative breast cancer and non-small cell lung cancer: Clinical challenges and nano-formulation approaches. J Control Release 2021; 337:27-58. [PMID: 34273417 DOI: 10.1016/j.jconrel.2021.07.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023]
Abstract
Triple negative breast cancer (TNBC) and non-small cell lung cancer (NSCLC) are amongst the most aggressive forms of solid tumors. TNBC is highlighted by absence of genetic components of progesterone receptor, HER2/neu and estrogen receptor in breast cancer. NSCLC is characterized by integration of malignant carcinoma into respiratory system. Both cancers are associated with poor median and overall survival rates with low progression free survival with high incidences of relapse. These cancers are characterized by tumor heterogeneity, genetic mutations, generation of cancer-stem cells, immune-resistance and chemoresistance. Further, these neoplasms have been reported for tumor cross-talk into second primary cancers for each other. Current chemotherapeutic regimens include usage of multiple agents in tandem to affect tumor cells through multiple mechanisms with various such combinations being clinically tested. However, lack of controlled delivery and effective temporospatial presence of chemotherapeutics has resulted in suboptimal therapeutic response. Consequently, passive targeted albumin bound paclitaxel and PEGylated liposomal doxorubicin have been clinically used and tested with newer drugs for improved therapeutic efficacy in these cancers. Active targeting of nanocarriers against surface overexpressed proteins in both neoplasms have been explored. However, use of single agent nanoparticulate formulations against both cancers have failed to elicit desired outcomes. This review aims to identify clinical unmet need in these cancers while establishing a correlation with tested nano-formulation approaches and issues with preclinical to clinical translation. Lipid and polymer-based drug-drug and drug-gene combinatorial nanocarriers delivering multiple chemotherapeutics simultaneously to desired site of action have been detailed. Finally, emerging opportunities such as pharmacological targets (immune check point and epigentic modulators) as well as gene-based modulation (siRNA/CRISPR/Cas9) and the nano-formulation challenges for effective treatment of both cancers have been explored.
Collapse
|
50
|
Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, Yang W, Tian C, Miao Z, Wang T, Yang S. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther 2021; 6:201. [PMID: 34054126 PMCID: PMC8165101 DOI: 10.1038/s41392-021-00572-w] [Citation(s) in RCA: 793] [Impact Index Per Article: 198.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Due to the advantages in efficacy and safety compared with traditional chemotherapy drugs, targeted therapeutic drugs have become mainstream cancer treatments. Since the first tyrosine kinase inhibitor imatinib was approved to enter the market by the US Food and Drug Administration (FDA) in 2001, an increasing number of small-molecule targeted drugs have been developed for the treatment of malignancies. By December 2020, 89 small-molecule targeted antitumor drugs have been approved by the US FDA and the National Medical Products Administration (NMPA) of China. Despite great progress, small-molecule targeted anti-cancer drugs still face many challenges, such as a low response rate and drug resistance. To better promote the development of targeted anti-cancer drugs, we conducted a comprehensive review of small-molecule targeted anti-cancer drugs according to the target classification. We present all the approved drugs as well as important drug candidates in clinical trials for each target, discuss the current challenges, and provide insights and perspectives for the research and development of anti-cancer drugs.
Collapse
Affiliation(s)
- Lei Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Yueshan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Liang Xiong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Wenjing Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ming Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ting Yuan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Wei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chenyu Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zhuang Miao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Tianqi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|