1
|
Li W, Zhu K, Liu Y, Liu M, Chen Q. Recent advances in PKC inhibitor development: Structural design strategies and therapeutic applications. Eur J Med Chem 2025; 287:117290. [PMID: 39904144 DOI: 10.1016/j.ejmech.2025.117290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Protein kinase C (PKC) isozymes play critical roles in diverse cellular processes and are implicated in numerous diseases, including cancer, diabetes, and autoimmune disorders. Despite extensive research efforts spanning four decades, only one PKC inhibitor has received clinical approval, highlighting the challenges in developing selective and efficacious PKC-targeting therapeutics. Here we review recent advances in the development of small-molecule PKC inhibitors, focusing on structural design strategies, pharmacological activities, and structure-activity relationships. We analyze emerging approaches including fragment-based drug design, allosteric targeting, and natural product derivatization that have yielded promising new scaffold classes. Special attention is given to innovations in achieving isozyme selectivity, particularly for PKCα and PKCβ, which have proven crucial for therapeutic applications. We discuss how integration of computational methods, structural biology insights, and rational design principles has advanced our understanding of PKC inhibition mechanisms. This comprehensive analysis reveals key challenges in PKC drug development, including the need for enhanced selectivity and reduced off-target effects, while highlighting promising directions for future therapeutic development. Our findings provide a framework for designing next-generation PKC inhibitors with improved clinical potential.
Collapse
Affiliation(s)
- Wen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Kun Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yuyin Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Meixi Liu
- Department of Endocrinology, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, 618000, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
2
|
Fatma M, Parveen S, Mir SS. Unraveling the kinase code: Role of protein kinase in lung cancer pathogenesis and therapeutic strategies. Biochim Biophys Acta Rev Cancer 2025; 1880:189309. [PMID: 40169080 DOI: 10.1016/j.bbcan.2025.189309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 02/05/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
Lung cancer is a prominent cause of cancer-related deaths globally, prompting exploration into the molecular pathways governing cancer cell signaling. Recent insights highlight the critical role of kinases in carcinogenesis and metastasis, particularly in non-small cell lung cancer (NSCLC), where protein kinases significantly contribute to drug resistance. These diverse enzymes catalyze protein phosphorylation and are implicated in cancer through misregulated expression, amplification, aberrant phosphorylation, mutations, and chromosomal translocations. Amplifications of kinases serve as important diagnostic, prognostic, and predictive biomarkers across various cancers. Notably, the Phosphatidylinositol 3-kinase (PI3K)/AKT pathway is crucial for the survival and proliferation of tumor cells. Novel therapeutic approaches are being explored to precisely target these pathways. Peptide-based therapies offer specificity and reduced toxicity compared to conventional treatments, while gene therapy targets abnormal genetic expressions. Advances in nanotechnology and CRISPR/Cas9 systems enhance gene delivery methods, holding promise for targeting specific molecular pathways in lung cancer treatment and minimizing systemic toxicity.
Collapse
Affiliation(s)
- Mariyam Fatma
- Molecular Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary Research-4 (ICEIR-4) Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Sana Parveen
- Molecular Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary Research-4 (ICEIR-4) Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary Research-4 (ICEIR-4) Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India.
| |
Collapse
|
3
|
Kovalenko E, Shaheen L, Vergasova E, Kamelin A, Rubinova V, Kharitonov D, Kim A, Plotnikov N, Elmuratov A, Borovkova N, Storozheva M, Solonin S, Gilyazova I, Mironov P, Khusnutdinova E, Petrikov S, Ilinskaya A, Ilinsky V, Rakitko A. GWAS and polygenic risk score of severe COVID-19 in Eastern Europe. Front Med (Lausanne) 2024; 11:1409714. [PMID: 39364016 PMCID: PMC11446758 DOI: 10.3389/fmed.2024.1409714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/30/2024] [Indexed: 10/05/2024] Open
Abstract
Background COVID-19 disease has infected more than 772 million people, leading to 7 million deaths. Although the severe course of COVID-19 can be prevented using appropriate treatments, effective interventions require a thorough research of the genetic factors involved in its pathogenesis. Methods We conducted a genome-wide association study (GWAS) on 7,124 individuals (comprising 6,400 controls who had mild to moderate COVID-19 and 724 cases with severe COVID-19). The inclusion criteria were acute respiratory distress syndrome (ARDS), acute respiratory failure (ARF) requiring respiratory support, or CT scans indicative of severe COVID-19 infection without any competing diseases. We also developed a polygenic risk score (PRS) model to identify individuals at high risk. Results We identified two genome-wide significant loci (P-value <5 × 10-8) and one locus with approximately genome-wide significance (P-value = 5.92 × 10-8-6.15 × 10-8). The most genome-wide significant variants were located in the leucine zipper transcription factor like 1 (LZTFL1) gene, which has been highlighted in several previous GWAS studies. Our PRS model results indicated that individuals in the top 10% group of the PRS had twice the risk of severe course of the disease compared to those at median risk [odds ratio = 2.18 (1.66, 2.86), P-value = 8.9 × 10-9]. Conclusion We conducted one of the largest studies to date on the genetics of severe COVID-19 in an Eastern European cohort. Our results are consistent with previous research and will guide further epidemiologic studies on host genetics, as well as for the development of targeted treatments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Natalia Borovkova
- N.V. Sklifosovsky Research Institute for Emergency Medicine of Moscow Healthcare Department, Moscow, Russia
| | - Maya Storozheva
- N.V. Sklifosovsky Research Institute for Emergency Medicine of Moscow Healthcare Department, Moscow, Russia
| | - Sergey Solonin
- N.V. Sklifosovsky Research Institute for Emergency Medicine of Moscow Healthcare Department, Moscow, Russia
| | - Irina Gilyazova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa, Russia
- Bashkir State Medical University, Ufa, Russia
| | | | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa, Russia
- Bashkir State Medical University, Ufa, Russia
| | - Sergey Petrikov
- N.V. Sklifosovsky Research Institute for Emergency Medicine of Moscow Healthcare Department, Moscow, Russia
| | | | | | - Alexander Rakitko
- Genotek Ltd., Moscow, Russia
- Laboratory of Bioinformatics, Faculty of Computer Science, HSE University, Moscow, Russia
| |
Collapse
|
4
|
Xing Z, Xu Y, Xu X, Yang K, Qin S, Jiao Y, Wang L. Identification and validation of a novel risk model based on cuproptosis‑associated m6A for head and neck squamous cell carcinoma. BMC Med Genomics 2024; 17:137. [PMID: 38778403 PMCID: PMC11110395 DOI: 10.1186/s12920-024-01916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a prevalent cancer with a poor survival rate due to anatomical limitations of the head and a lack of reliable biomarkers. Cuproptosis represents a novel cellular regulated death pathway, and N6-methyladenosine (m6A) is the most common internal RNA modification in mRNA. They are intricately connected to tumor formation, progression, and prognosis. This study aimed to construct a risk model for HNSCC using a set of mRNAs associated with m6A regulators and cuproptosis genes (mcrmRNA). METHODS RNA-seq and clinical data of HNSCC patients from The Cancer Genome Atlas (TCGA) database were analyzed to develop a risk model through the least absolute shrinkage and selection operator (LASSO) analysis. Survival analysis and receiver operating characteristic (ROC) analysis were performed for the high- and low-risk groups. Additionally, the model was validated using the GSE41613 dataset from the Gene Expression Omnibus (GEO) database. GSEA and CIBERSORT were applied to investigate the immune microenvironment of HNSCC. RESULTS A risk model consisting of 32 mcrmRNA was developed using the LASSO analysis. The risk score of patients was confirmed to be an independent prognostic indicator by multivariate Cox analysis. The high-risk group exhibited a higher tumor mutation burden. Additionally, CIBERSORT analysis indicated varying levels of immune cell infiltration between the two groups. Significant disparities in drug sensitivity to common medications were also observed. Enrichment analysis further unveiled significant differences in metabolic pathways and RNA processing between the two groups. CONCLUSIONS Our risk model can predict outcomes for HNSCC patients and offers valuable insights for personalized therapeutic approaches.
Collapse
Affiliation(s)
- Zhongxu Xing
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Yijun Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Xiaoyan Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Kaiwen Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Songbing Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| | - Lili Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China.
| |
Collapse
|
5
|
Gomez F, Fisk B, McMichael JF, Mosior M, Foltz JA, Skidmore ZL, Duncavage EJ, Miller CA, Abel H, Li YS, Russler-Germain DA, Krysiak K, Watkins MP, Ramirez CA, Schmidt A, Martins Rodrigues F, Trani L, Khanna A, Wagner JA, Fulton RS, Fronick CC, O'Laughlin MD, Schappe T, Cashen AF, Mehta-Shah N, Kahl BS, Walker J, Bartlett NL, Griffith M, Fehniger TA, Griffith OL. Ultra-Deep Sequencing Reveals the Mutational Landscape of Classical Hodgkin Lymphoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:2312-2330. [PMID: 37910143 PMCID: PMC10648575 DOI: 10.1158/2767-9764.crc-23-0140] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/27/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
The malignant Hodgkin and Reed Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL) are scarce in affected lymph nodes, creating a challenge to detect driver somatic mutations. As an alternative to cell purification techniques, we hypothesized that ultra-deep exome sequencing would allow genomic study of HRS cells, thereby streamlining analysis and avoiding technical pitfalls. To test this, 31 cHL tumor/normal pairs were exome sequenced to approximately 1,000× median depth of coverage. An orthogonal error-corrected sequencing approach verified >95% of the discovered mutations. We identified mutations in genes novel to cHL including: CDH5 and PCDH7, novel stop gain mutations in IL4R, and a novel pattern of recurrent mutations in pathways regulating Hippo signaling. As a further application of our exome sequencing, we attempted to identify expressed somatic single-nucleotide variants (SNV) in single-nuclei RNA sequencing (snRNA-seq) data generated from a patient in our cohort. Our snRNA analysis identified a clear cluster of cells containing a somatic SNV identified in our deep exome data. This cluster has differentially expressed genes that are consistent with genes known to be dysregulated in HRS cells (e.g., PIM1 and PIM3). The cluster also contains cells with an expanded B-cell clonotype further supporting a malignant phenotype. This study provides proof-of-principle that ultra-deep exome sequencing can be utilized to identify recurrent mutations in HRS cells and demonstrates the feasibility of snRNA-seq in the context of cHL. These studies provide the foundation for the further analysis of genomic variants in large cohorts of patients with cHL. SIGNIFICANCE Our data demonstrate the utility of ultra-deep exome sequencing in uncovering somatic variants in Hodgkin lymphoma, creating new opportunities to define the genes that are recurrently mutated in this disease. We also show for the first time the successful application of snRNA-seq in Hodgkin lymphoma and describe the expression profile of a putative cluster of HRS cells in a single patient.
Collapse
Affiliation(s)
- Felicia Gomez
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Bryan Fisk
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Joshua F. McMichael
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Matthew Mosior
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Jennifer A. Foltz
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Zachary L. Skidmore
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Eric J. Duncavage
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Christopher A. Miller
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Haley Abel
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Yi-Shan Li
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - David A. Russler-Germain
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Kilannin Krysiak
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Marcus P. Watkins
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Cody A. Ramirez
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Alina Schmidt
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Fernanda Martins Rodrigues
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Lee Trani
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Ajay Khanna
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Julia A. Wagner
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Robert S. Fulton
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Catrina C. Fronick
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Michelle D. O'Laughlin
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Timothy Schappe
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Amanda F. Cashen
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Neha Mehta-Shah
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Brad S. Kahl
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Jason Walker
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Nancy L. Bartlett
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Malachi Griffith
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri
| | - Todd A. Fehniger
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Obi L. Griffith
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
6
|
Noguchi S, Kajimoto T, Kumamoto T, Shingai M, Narasaki S, Urabe T, Imamura S, Harada K, Hide I, Tanaka S, Yanase Y, Nakamura SI, Tsutsumi YM, Sakai N. Features and mechanisms of propofol-induced protein kinase C (PKC) translocation and activation in living cells. Front Pharmacol 2023; 14:1284586. [PMID: 38026993 PMCID: PMC10662334 DOI: 10.3389/fphar.2023.1284586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background and purpose: In this study, we aimed to elucidate the action mechanisms of propofol, particularly those underlying propofol-induced protein kinase C (PKC) translocation. Experimental approach: Various PKCs fused with green fluorescent protein (PKC-GFP) or other GFP-fused proteins were expressed in HeLa cells, and their propofol-induced dynamics were observed using confocal laser scanning microscopy. Propofol-induced PKC activation in cells was estimated using the C kinase activity receptor (CKAR), an indicator of intracellular PKC activation. We also examined PKC translocation using isomers and derivatives of propofol to identify the crucial structural motifs involved in this process. Key results: Propofol persistently translocated PKCα conventional PKCs and PKCδ from novel PKCs (nPKCs) to the plasma membrane (PM). Propofol translocated PKCδ and PKCη of nPKCs to the Golgi apparatus and endoplasmic reticulum, respectively. Propofol also induced the nuclear translocation of PKCζ of atypical PKCs or proteins other than PKCs, such that the protein concentration inside and outside the nucleus became uniform. CKAR analysis revealed that propofol activated PKC in the PM and Golgi apparatus. Moreover, tests using isomers and derivatives of propofol predicted that the structural motifs important for the induction of PKC and nuclear translocation are different. Conclusion and implications: Propofol induced the subtype-specific intracellular translocation of PKCs and activated PKCs. Additionally, propofol induced the nuclear translocation of PKCs and other proteins, probably by altering the permeability of the nuclear envelope. Interestingly, propofol-induced PKC and nuclear translocation may occur via different mechanisms. Our findings provide insights into the action mechanisms of propofol.
Collapse
Affiliation(s)
- Soma Noguchi
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Taketoshi Kajimoto
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takuya Kumamoto
- Department of Synthetic Organic Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masashi Shingai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Soshi Narasaki
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Anesthesiology and Critical Care, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoaki Urabe
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Anesthesiology and Critical Care, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Serika Imamura
- Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kana Harada
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Sigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuhki Yanase
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shun-Ichi Nakamura
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuo M. Tsutsumi
- Department of Anesthesiology and Critical Care, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
7
|
Bioinformatic Analysis of Na +, K +-ATPase Regulation through Phosphorylation of the Alpha-Subunit N-Terminus. Int J Mol Sci 2022; 24:ijms24010067. [PMID: 36613508 PMCID: PMC9820343 DOI: 10.3390/ijms24010067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/01/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The Na+, K+-ATPase is an integral membrane protein which uses the energy of ATP hydrolysis to pump Na+ and K+ ions across the plasma membrane of all animal cells. It plays crucial roles in numerous physiological processes, such as cell volume regulation, nutrient reabsorption in the kidneys, nerve impulse transmission, and muscle contraction. Recent data suggest that it is regulated via an electrostatic switch mechanism involving the interaction of its lysine-rich N-terminus with the cytoplasmic surface of its surrounding lipid membrane, which can be modulated through the regulatory phosphorylation of the conserved serine and tyrosine residues on the protein's N-terminal tail. Prior data indicate that the kinases responsible for phosphorylation belong to the protein kinase C (PKC) and Src kinase families. To provide indications of which particular enzyme of these families might be responsible, we analysed them for evidence of coevolution via the mirror tree method, utilising coevolution as a marker for a functional interaction. The results obtained showed that the most likely kinase isoforms to interact with the Na+, K+-ATPase were the θ and η isoforms of PKC and the Src kinase itself. These theoretical results will guide the direction of future experimental studies.
Collapse
|
8
|
Jürgens L, Wethmar K. The Emerging Role of uORF-Encoded uPeptides and HLA uLigands in Cellular and Tumor Biology. Cancers (Basel) 2022; 14:6031. [PMID: 36551517 PMCID: PMC9776223 DOI: 10.3390/cancers14246031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Recent technological advances have facilitated the detection of numerous non-canonical human peptides derived from regulatory regions of mRNAs, long non-coding RNAs, and other cryptic transcripts. In this review, we first give an overview of the classification of these novel peptides and summarize recent improvements in their annotation and detection by ribosome profiling, mass spectrometry, and individual experimental analysis. A large fraction of the novel peptides originates from translation at upstream open reading frames (uORFs) that are located within the transcript leader sequence of regular mRNA. In humans, uORF-encoded peptides (uPeptides) have been detected in both healthy and malignantly transformed cells and emerge as important regulators in cellular and immunological pathways. In the second part of the review, we focus on various functional implications of uPeptides. As uPeptides frequently act at the transition of translational regulation and individual peptide function, we describe the mechanistic modes of translational regulation through ribosome stalling, the involvement in cellular programs through protein interaction and complex formation, and their role within the human leukocyte antigen (HLA)-associated immunopeptidome as HLA uLigands. We delineate how malignant transformation may lead to the formation of novel uORFs, uPeptides, or HLA uLigands and explain their potential implication in tumor biology. Ultimately, we speculate on a potential use of uPeptides as peptide drugs and discuss how uPeptides and HLA uLigands may facilitate translational inhibition of oncogenic protein messages and immunotherapeutic approaches in cancer therapy.
Collapse
Affiliation(s)
| | - Klaus Wethmar
- University Hospital Münster, Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, 48149 Münster, Germany
| |
Collapse
|
9
|
PKCeta Promotes Stress-Induced Autophagy and Senescence in Breast Cancer Cells, Presenting a Target for Therapy. Pharmaceutics 2022; 14:pharmaceutics14081704. [PMID: 36015330 PMCID: PMC9413313 DOI: 10.3390/pharmaceutics14081704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 12/22/2022] Open
Abstract
The emergence of chemoresistance in neoplastic cells is one of the major obstacles in cancer therapy. Autophagy was recently reported as one of the mechanisms that promote chemoresistance in cancer cells by protecting against apoptosis and driving senescence. Thus, understanding the role of autophagy and its underlying signaling pathways is crucial for the development of new therapeutic strategies to overcome chemoresistance. We have previously reported that PKCη is a stress-induced kinase that confers resistance in breast cancer cells against chemotherapy by inducing senescence. Here, we show that PKCη promotes autophagy induced by ER and oxidative stress and facilitates the transition from autophagy to senescence. We demonstrate that PKCη knockdown reduces both the autophagic flux and markers of senescence. Additionally, using autophagy inhibitors such as chloroquine and 3-methyladenine, we show that PKCη and autophagy are required for establishing senescence in MCF-7 in response to oxidative stress. Different drugs used in the clinic are known to induce autophagy and senescence in breast cancer cells. Our study proposes PKCη as a target for therapeutic intervention, acting in synergy with autophagy-inducing drugs to overcome resistance and enhance cell death in breast cancer.
Collapse
|
10
|
Unraveling the hidden role of a uORF-encoded peptide as a kinase inhibitor of PKCs. Proc Natl Acad Sci U S A 2021; 118:2018899118. [PMID: 34593629 PMCID: PMC8501901 DOI: 10.1073/pnas.2018899118] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 02/01/2023] Open
Abstract
Approximately 40% of human messenger RNAs (mRNAs) contain upstream open reading frames (uORFs) in their 5' untranslated regions. Some of these uORF sequences, thought to attenuate scanning ribosomes or lead to mRNA degradation, were recently shown to be translated, although the function of the encoded peptides remains unknown. Here, we show a uORF-encoded peptide that exhibits kinase inhibitory functions. This uORF, upstream of the protein kinase C-eta (PKC-η) main ORF, encodes a peptide (uPEP2) containing the typical PKC pseudosubstrate motif present in all PKCs that autoinhibits their kinase activity. We show that uPEP2 directly binds to and selectively inhibits the catalytic activity of novel PKCs but not of classical or atypical PKCs. The endogenous deletion of uORF2 or its overexpression in MCF-7 cells revealed that the endogenously translated uPEP2 reduces the protein levels of PKC-η and other novel PKCs and restricts cell proliferation. Functionally, treatment of breast cancer cells with uPEP2 diminished cell survival and their migration and synergized with chemotherapy by interfering with the response to DNA damage. Furthermore, in a xenograft of MDA-MB-231 breast cancer tumor in mice models, uPEP2 suppressed tumor progression, invasion, and metastasis. Tumor histology showed reduced proliferation, enhanced cell death, and lower protein expression levels of novel PKCs along with diminished phosphorylation of PKC substrates. Hence, our study demonstrates that uORFs may encode biologically active peptides beyond their role as translation regulators of their downstream ORFs. Together, we point to a unique function of a uORF-encoded peptide as a kinase inhibitor, pertinent to cancer therapy.
Collapse
|
11
|
Protein Kinase C as a Therapeutic Target in Non-Small Cell Lung Cancer. Int J Mol Sci 2021; 22:ijms22115527. [PMID: 34073823 PMCID: PMC8197251 DOI: 10.3390/ijms22115527] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022] Open
Abstract
Driver-directed therapeutics have revolutionized cancer treatment, presenting similar or better efficacy compared to traditional chemotherapy and substantially improving quality of life. Despite significant advances, targeted therapy is greatly limited by resistance acquisition, which emerges in nearly all patients receiving treatment. As a result, identifying the molecular modulators of resistance is of great interest. Recent work has implicated protein kinase C (PKC) isozymes as mediators of drug resistance in non-small cell lung cancer (NSCLC). Importantly, previous findings on PKC have implicated this family of enzymes in both tumor-promotive and tumor-suppressive biology in various tissues. Here, we review the biological role of PKC isozymes in NSCLC through extensive analysis of cell-line-based studies to better understand the rationale for PKC inhibition. PKC isoforms α, ε, η, ι, ζ upregulation has been reported in lung cancer, and overexpression correlates with worse prognosis in NSCLC patients. Most importantly, PKC isozymes have been established as mediators of resistance to tyrosine kinase inhibitors in NSCLC. Unfortunately, however, PKC-directed therapeutics have yielded unsatisfactory results, likely due to a lack of specific evaluation for PKC. To achieve satisfactory results in clinical trials, predictive biomarkers of PKC activity must be established and screened for prior to patient enrollment. Furthermore, tandem inhibition of PKC and molecular drivers may be a potential therapeutic strategy to prevent the emergence of resistance in NSCLC.
Collapse
|
12
|
Landolt L, Spagnoli GC, Hertig A, Brocheriou I, Marti HP. Fibrosis and cancer: shared features and mechanisms suggest common targeted therapeutic approaches. Nephrol Dial Transplant 2020; 37:1024-1032. [PMID: 33280031 DOI: 10.1093/ndt/gfaa301] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Epidemiological studies support a strong link between organ fibrosis and epithelial cancers. Moreover, clinical and experimental investigations consistently indicate that these diseases intertwine and share strikingly overlapping features. As a deregulated response to injury occurring in all body tissues, fibrosis is characterized by activation of fibroblasts and immune cells, contributing to progressive deposition of extracellular matrix (ECM) and inflammation. Cancers are driven by genetic alterations resulting in dysregulated cell survival, proliferation and dissemination. However, non-cancerous components of tumour tissues including fibroblasts, inflammatory cells and ECM play key roles in oncogenesis and cancer progression by providing a pro-mutagenic environment where cancer cells can develop, favouring their survival, expansion and invasiveness. Additional commonalities of fibrosis and cancer are also represented by overproduction of growth factors, like transforming growth factor β, epithelial-to-mesenchymal transition, high oxidative stress, Hippo pathway dysfunctions and enhanced cellular senescence. Here, we review advances in the analysis of cellular and molecular mechanisms involved in the pathogenesis of both organ fibrosis and cancer, with particular reference to chronic kidney diseases and renal cell cancers. Most importantly, improved understanding of common features is contributing to the development of innovative treatment strategies targeting shared mechanisms.
Collapse
Affiliation(s)
- Lea Landolt
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Giulio C Spagnoli
- National Research Council, Institute of Translational Pharmacology, Rome, Italy
| | - Alexandre Hertig
- Sorbonne Université, INSERM UMR S1155, Pitié-Salpêtrière Hospital, APHP6, Paris, France and
| | - Isabelle Brocheriou
- Sorbonne Université, INSERM UMR S1155, Pitié-Salpêtrière Hospital, APHP6, Paris, France and.,Department of Pathology, Pitié-Salpêtrière Hospital, Paris, France
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|