1
|
Al-Hamaly MA, Winter E, Blackburn JS. The mitochondria as an emerging target of self-renewal in T-cell acute lymphoblastic leukemia. Cancer Biol Ther 2025; 26:2460252. [PMID: 39905687 PMCID: PMC11801350 DOI: 10.1080/15384047.2025.2460252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/22/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
Acute lymphocytic leukemia (ALL) is the most common leukemia in children, with the T-cell subtype (T-ALL) accounting for 15% of those cases. Despite advancements in the treatment of T-ALL, patients still face a dismal prognosis following their first relapse. Relapse can be attributed to the inability of chemotherapy agents to eradicate leukemia stem cells (LSC), which possess self-renewal capabilities and are responsible for the long-term maintenance of the disease. Mitochondria have been recognized as a therapeutic vulnerability for cancer stem cells, including LSCs. Mitocans have shown promise in T-ALL both in vitro and in vivo, with some currently in early-phase clinical trials. However, due to challenges in studying LSCs in T-ALL, our understanding of how mitochondrial function influences self-renewal remains limited. This review highlights the emerging literature on targeting mitochondria in diverse T-ALL models, emphasizing specific mitochondrial vulnerabilities linked to LSC self-renewal and their potential to significantly improve T-ALL treatment.
Collapse
Affiliation(s)
- Majd A. Al-Hamaly
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Evelyn Winter
- Department of Agriculture, Biodiversity and Forestry, Federal University of Santa Catarina, Curitibanos, Brazil
| | - Jessica S. Blackburn
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
2
|
Demoen L, Matthijssens F, Reunes L, Palhais B, Lintermans B, T’Sas S, Fijalkowski I, Taminau J, Akele MZ, Van Belle S, Taghon T, Deforce D, Van Nieuwerburgh F, Berx G, Ntziachristos P, Debyser Z, Durinck K, Pieters T, Goossens S, Van Vlierberghe P. A dual role for PSIP1/LEDGF in T cell acute lymphoblastic leukemia. SCIENCE ADVANCES 2024; 10:eado6765. [PMID: 39485844 PMCID: PMC11529709 DOI: 10.1126/sciadv.ado6765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy. Current intensified therapeutic protocols coincide with severe side effects, and no salvage therapy is available for primary therapy-resistant or relapsed patients. This highlights the need to identify new therapeutic targets in T-ALL. PSIP1, dispensable for normal hematopoiesis, is a dependency factor in KMT2A-rearranged myeloid leukemia. Nonetheless, loss-of-function mutations suggest a tumor suppressor role for PSIP1 in T-ALL. Here, we demonstrate that the loss of Psip1 accelerates T-ALL initiation in mice which we correlated with reduced H3K27me3 binding. Contrastingly, loss of PSIP1 impaired cell proliferation in several T-ALL cell lines. In cell lines, PSIP1 down-regulation leads to a reduction of COX20, an assembly factor of the cytochrome c oxidase in the mitochondria, and to a reduction in mitochondrial respiration. This indicates that PSIP1 can exert a dual role in the context of T-ALL, either as a tumor suppressor gene during tumor initiation or as a dependency factor in tumor maintenance.
Collapse
Affiliation(s)
- Lisa Demoen
- Lab of Normal and Malignant Hematopoiesis, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Filip Matthijssens
- Lab of Normal and Malignant Hematopoiesis, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Lindy Reunes
- Lab of Normal and Malignant Hematopoiesis, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Bruno Palhais
- Lab of Normal and Malignant Hematopoiesis, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Béatrice Lintermans
- Lab of Normal and Malignant Hematopoiesis, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Sara T’Sas
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Unit for Translational Research in Oncology, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Igor Fijalkowski
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Leukemia Therapy Resistance Laboratory, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Joachim Taminau
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Department Biomedical Molecular Biology, 9000 Ghent University, Ghent, Belgium
| | - Muluembet Z. Akele
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Siska Van Belle
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Tom Taghon
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- T Cell Team Taghon, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium
| | | | - Geert Berx
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Department Biomedical Molecular Biology, 9000 Ghent University, Ghent, Belgium
| | - Panagiotis Ntziachristos
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Leukemia Therapy Resistance Laboratory, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Kaat Durinck
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Pediatric Precision Oncology Lab, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Tim Pieters
- Lab of Normal and Malignant Hematopoiesis, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Unit for Translational Research in Oncology, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Leukemia Therapy Resistance Laboratory, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Unit for Translational Research in Oncology, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Pieter Van Vlierberghe
- Lab of Normal and Malignant Hematopoiesis, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
3
|
Meyers S, Gielen O, Cools J, Demeyer S. Single-cell CRISPR screening characterizes transcriptional deregulation in T-cell acute lymphoblastic leukemia. Haematologica 2024; 109:3167-3181. [PMID: 38813729 PMCID: PMC11443379 DOI: 10.3324/haematol.2023.284901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive type of leukemia caused by accumulation of multiple genetic alterations in T-cell progenitors. However, for many genes it remains unknown how their mutations contribute to disease development. We therefore performed two single-cell CRISPR screens in primary pro-T cells ex vivo to study the transcriptional impact of loss-of-function alterations in T-ALL and correlate this with effects on cell fitness. The various perturbations were clustered based on their effects on E2F/MYC or STAT/NOTCH signatures, which play a defining role in driving T-cell proliferation. Many of the perturbations resulted in positive effects on the STAT and NOTCH signatures and were predicted to behave as haploinsufficient tumor suppressors in T-ALL. Additionally, Spi1 was identified as an essential gene for pro-T-cell survival, associated with deregulation of the MYC signature and epigenetic consequences. In contrast, Bcl11b was identified as a strong tumor suppressor gene in immature T lymphocytes, associated with deregulation of NF-kB and JAK/STAT signaling. We found a correlation between BCL11B expression level and JAK/STAT pathway mutations in T-ALL patients and demonstrated oncogenic cooperation between Bcl11b inactivation and JAK3 hyperactivation in pro-T cells. Altogether, these single-cell CRISPR screens in pro-T cells provide fundamental insights into the mechanisms of transcriptional deregulation caused by genetic alterations in T-ALL.
Collapse
Affiliation(s)
- Sarah Meyers
- Center for Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer Biology, VIB, Leuven, Belgium; Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven
| | - Olga Gielen
- Center for Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer Biology, VIB, Leuven, Belgium; Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven
| | - Jan Cools
- Center for Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer Biology, VIB, Leuven, Belgium; Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven.
| | - Sofie Demeyer
- Center for Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer Biology, VIB, Leuven, Belgium; Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven.
| |
Collapse
|
4
|
Antonio-Andres G, Morales-Martinez M, Jimenez-Hernandez E, Huerta-Yepez S. The Role of PTEN in Chemoresistance Mediated by the HIF-1α/YY1 Axis in Pediatric Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:7767. [PMID: 39063014 PMCID: PMC11276810 DOI: 10.3390/ijms25147767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Current chemotherapy treatment regimens have improved survival rates to approximately 80%; however, resistance development remains the primary cause of treatment failure, affecting around 20% of cases. Some studies indicate that loss of the phosphatase and tensin homolog (PTEN) leads to deregulation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, increasing the expression of proteins involved in chemoresistance. PTEN loss results in deregulation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and induces hypoxia-inducible factor 1-alpha (HIF-1α) expression in various cancers. Additionally, it triggers upregulation of the Yin Yang 1 (YY1) transcription factor, leading to chemoresistance mediated by glycoprotein p-170 (Gp-170). The aim of this study was to investigate the role of the PTEN/NF-κB axis in YY1 regulation via HIF-1α and its involvement in ALL. A PTEN inhibitor was administered in RS4;11 cells, followed by the evaluation of PTEN, NF-κB, HIF-1α, YY1, and Gp-170 expression, along with chemoresistance assessment. PTEN, HIF-1α, and YY1 expression levels were assessed in the peripheral blood mononuclear cells (PBMC) from pediatric ALL patients. The results reveal that the inhibition of PTEN activity significantly increases the expression of pAkt and NF-κB, which is consistent with the increase in the expression of HIF-1α and YY1 in RS4;11 cells. In turn, this inhibition increases the expression of the glycoprotein Gp-170, affecting doxorubicin accumulation in the cells treated with the inhibitor. Samples from pediatric ALL patients exhibit PTEN expression and higher HIF-1α and YY1 expression compared to controls. PTEN/Akt/NF-κB axis plays a critical role in the regulation of YY1 through HIF-1α, and this mechanism contributes to Gp-170-mediated chemoresistance in pediatric ALL.
Collapse
Affiliation(s)
- Gabriela Antonio-Andres
- Oncology Disease Research Unit, Children’s Hospital of Mexico, Federico Gomez, Mexico City 06720, Mexico;
| | - Mario Morales-Martinez
- Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | | | - Sara Huerta-Yepez
- Oncology Disease Research Unit, Children’s Hospital of Mexico, Federico Gomez, Mexico City 06720, Mexico;
| |
Collapse
|
5
|
DeKryger W, Chroneos ZC. Emerging concepts of myosin 18A isoform mechanobiology in organismal and immune system physiology, development, and function. FASEB J 2024; 38:e23649. [PMID: 38776246 DOI: 10.1096/fj.202400350r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024]
Abstract
Alternative and combinatorial splicing of myosin 18A (MYO18A) gene transcripts results in expression of MYO18A protein isoforms and isoform variants with different membrane and subcellular localizations, and functional properties. MYO18A proteins are members of the myosin superfamily consisting of a myosin-like motor domain, an IQ motif, and a coiled-coil domain. MYO18A isoforms, however, lack the ability to hydrolyze ATP and do not perform ATP-dependent motor activity. MYO18A isoforms are distinguished by different amino- and carboxy-terminal extensions and domains. The domain organization and functions of MYO18Aα, MYO18Aβ, and MYO18Aγ have been studied experimentally. MYO18Aα and MYO18Aβ have a common carboxy-terminal extension but differ by the presence or absence of an amino-terminal KE repeat and PDZ domain, respectively. The amino- and carboxy-terminal extensions of MYO18Aγ contain unique proline and serine-rich domains. Computationally predicted MYO18Aε and MYO18Aδ isoforms contain the carboxy-terminal serine-rich extension but differ by the presence or absence of the amino-terminal KE/PDZ extension. Additional isoform variants within each category arise by alternative utilization or inclusion/exclusion of small exons. MYO18Aα variants are expressed in somatic cells and mature immune cells, whereas MYO18Aβ variants occur mainly in myeloid and natural killer cells. MYO18Aγ expression is selective to cardiac and skeletal muscle. In the present review perspective, we discuss current and emerging concepts of the functional specialization of MYO18A proteins in membrane and cytoskeletal dynamics, cellular communication and signaling, endocytic and exocytic organelle movement, viral infection, and as the SP-R210 receptor for surfactant protein A.
Collapse
Affiliation(s)
- William DeKryger
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Zissis C Chroneos
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
6
|
Hassan RT, Al Hassawi B, Alkazzaz M. The Clinicopathological Correlation of KRAS Mutation and PTEN Expression Status in Primary and Metastatic Colorectal Carcinoma. Cureus 2024; 16:e53884. [PMID: 38465160 PMCID: PMC10924830 DOI: 10.7759/cureus.53884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) research has identified a consistent loss of PTEN expression in both primary tumors and metastasis, highlighting its potential role in this disease. However, the impact of PTEN on downstream proteins of KRAS mutation, namely p-AKT, p-ERK, and p65 (NFkB), remains unknown. This study aims to explore the inhibitory effect of PTEN on KRAS downstream proteins and its correlation with pathological features in CRC patients. METHODS From January 1, 2015, to December 31, 2021, 86 CRC cases were collected from governmental and private laboratories in the Duhok province. Formalin-fixed, paraffin-embedded tissue blocks were obtained, and the study involved histopathological analysis, immunohistochemistry of PTEN, AKT, ERK, and P65 markers, and molecular analysis of the KRAS gene. RESULTS Among the 86 cases, there were 46 males (53.5%) and 40 females (46.5%), with an equal distribution between right colon and left colon/rectum. Tumors larger than 5cm were observed in 47 cases, predominantly displaying a polypoid or ulcerated growth pattern. Most cases were moderately differentiated adenocarcinomas, with stages II and III being the most prevalent 31 cases (36%) and 34 cases (39.5%) respectively. Significant associations were found between PTEN, ERK expressions, and tumor location in the right colon (P=0.031 and P=0.009 respectively). Tumor size correlated with P65 expression (P=0.042). KRAS mutation showed a positive relationship with the type of tumor growth (P=0.035). Tumor grade increased with KRAS mutations (P=0.043). PTEN expression correlated significantly with ERK and AKT markers (P=0.018 and 0.035 respectively). P65 exhibited an association with KRAS mutation (P=0.034). CONCLUSION The study revealed PTEN expression in association with the inhibition of AKT and ERK, and the absence of KRAS gene mutation. Conversely, PTEN is not expressed with the positively reactive P65 and the presence of KRAS mutation. This study contributes valuable insights into the complex interplay between PTEN expression, KRAS mutation, and downstream signaling pathways in CRC. It suggests potential avenues for further research and therapeutic strategies in the context of CRC treatment.
Collapse
|
7
|
Chang YS, Gills JJ, Kawabata S, Onozawa M, Della Gatta G, Ferrando AA, Aplan PD, Dennis PA. Inhibition of the NOTCH and mTOR pathways by nelfinavir as a novel treatment for T cell acute lymphoblastic leukemia. Int J Oncol 2023; 63:128. [PMID: 37800623 PMCID: PMC10609462 DOI: 10.3892/ijo.2023.5576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 09/01/2023] [Indexed: 10/07/2023] Open
Abstract
T cell acute lymphoblastic leukemia (T‑ALL), a neoplasm derived from T cell lineage‑committed lymphoblasts, is characterized by genetic alterations that result in activation of oncogenic transcription factors and the NOTCH1 pathway activation. The NOTCH is a transmembrane receptor protein activated by γ‑secretase. γ‑secretase inhibitors (GSIs) are a NOTCH‑targeted therapy for T‑ALL. However, their clinical application has not been successful due to adverse events (primarily gastrointestinal toxicity), limited efficacy, and drug resistance caused by several mechanisms, including activation of the AKT/mTOR pathway. Nelfinavir is an human immunodeficiency virus 1 aspartic protease inhibitor and has been repurposed as an anticancer drug. It acts by inducing endoplasmic reticulum (ER) stress and inhibiting the AKT/mTOR pathway. Thus, it was hypothesized that nelfinavir might inhibit the NOTCH pathway via γ‑secretase inhibition and blockade of aspartic protease presenilin, which would make nelfinavir effective against NOTCH‑associated T‑ALL. The present study assessed the efficacy of nelfinavir against T‑ALL cells and investigated mechanisms of action in vitro and in preclinical treatment studies using a SCL‑LMO1 transgenic mouse model. Nelfinavir blocks presenilin 1 processing and inhibits γ‑secretase activity as well as the NOTCH1 pathway, thus suppressing T‑ALL cell viability. Additionally, microarray analysis of nelfinavir‑treated T‑ALL cells showed that nelfinavir upregulated mRNA levels of CHAC1 (glutathione‑specific γ‑glutamylcyclotransferase 1, a negative regulator of NOTCH) and sestrin 2 (SESN2; a negative regulator of mTOR). As both factors are upregulated by ER stress, this confirmed that nelfinavir induced ER stress in T‑ALL cells. Moreover, nelfinavir suppressed NOTCH1 mRNA expression in microarray analyses. These findings suggest that nelfinavir inhibited the NOTCH1 pathway by downregulating NOTCH1 mRNA expression, upregulating CHAC1 and suppressing γ‑secretase via presenilin 1 inhibition and the mTOR pathway by upregulating SESN2 via ER stress induction. Further, nelfinavir exhibited therapeutic efficacy against T‑ALL in an SCL‑LMO1 transgenic mouse model. Collectively, these findings highlight the potential of nelfinavir as a novel therapeutic candidate for treatment of patients with T‑ALL.
Collapse
Affiliation(s)
- Yoon Soo Chang
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Joell J. Gills
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shigeru Kawabata
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
| | - Masahiro Onozawa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Giusy Della Gatta
- Institute for Cancer Genetics and Joint Centers for Systems Biology, Columbia University, New York, NY 10032, USA
| | - Adolfo A. Ferrando
- Institute for Cancer Genetics and Joint Centers for Systems Biology, Columbia University, New York, NY 10032, USA
| | - Peter D. Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Phillip A. Dennis
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
8
|
Carlock C, Bai Y, Paige-Hood A, Li Q, Nguele Meke F, Zhang ZY. PRL2 inhibition elevates PTEN protein and ameliorates progression of acute myeloid leukemia. JCI Insight 2023; 8:e170065. [PMID: 37665633 PMCID: PMC10619439 DOI: 10.1172/jci.insight.170065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023] Open
Abstract
Overexpression of phosphatases of regenerating liver 2 (PRL2), detected in numerous diverse cancers, is often associated with increased severity and poor patient prognosis. PRL2-catalyzed tyrosine dephosphorylation of the tumor suppressor PTEN results in increased PTEN degradation and has been identified as a mechanism underlying PRL2 oncogenic activity. Overexpression of PRL2, coincident with reduced PTEN protein, is frequently observed in patients with acute myeloid leukemia (AML). In the current study, a PTEN-knockdown AML animal model was generated to assess the effect of conditional PRL2 inhibition on the level of PTEN protein and the development and progression of AML. Inhibition of PRL2 resulted in a significant increase in median animal survival, from 40 weeks to greater than 60 weeks. The prolonged survival reflected delayed expansion of aberrantly differentiated hematopoietic stem cells into leukemia blasts, resulting in extended time required for clinically relevant leukemia blast accumulation in the BM niche. Leukemia blast suppression following PRL2 inhibition was correlated with an increase in PTEN and downregulation of AKT/mTOR-regulated pathways. These observations directly established, in a disease model, the viability of PRL2 inhibition as a therapeutic strategy for improving clinical outcomes in AML and potentially other PTEN-deficient cancers by slowing cancer progression.
Collapse
Affiliation(s)
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology
| | | | - Qinglin Li
- Department of Medicinal Chemistry and Molecular Pharmacology
| | | | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology
- Department of Chemistry
- Institute for Cancer Research, and
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
9
|
Understanding the Roles of the Hedgehog Signaling Pathway during T-Cell Lymphopoiesis and in T-Cell Acute Lymphoblastic Leukemia (T-ALL). Int J Mol Sci 2023; 24:ijms24032962. [PMID: 36769284 PMCID: PMC9917970 DOI: 10.3390/ijms24032962] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The Hedgehog (HH) signaling network is one of the main regulators of invertebrate and vertebrate embryonic development. Along with other networks, such as NOTCH and WNT, HH signaling specifies both the early patterning and the polarity events as well as the subsequent organ formation via the temporal and spatial regulation of cell proliferation and differentiation. However, aberrant activation of HH signaling has been identified in a broad range of malignant disorders, where it positively influences proliferation, survival, and therapeutic resistance of neoplastic cells. Inhibitors targeting the HH pathway have been tested in preclinical cancer models. The HH pathway is also overactive in other blood malignancies, including T-cell acute lymphoblastic leukemia (T-ALL). This review is intended to summarize our knowledge of the biological roles and pathophysiology of the HH pathway during normal T-cell lymphopoiesis and in T-ALL. In addition, we will discuss potential therapeutic strategies that might expand the clinical usefulness of drugs targeting the HH pathway in T-ALL.
Collapse
|
10
|
Zhou R, Liang T, Li T, Huang J, Chen C. Possible mechanism of metabolic and drug resistance with L-asparaginase therapy in childhood leukaemia. Front Oncol 2023; 13:1070069. [PMID: 36816964 PMCID: PMC9929349 DOI: 10.3389/fonc.2023.1070069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
L-asparaginase, which hydrolyzes asparagine into aspartic acid and ammonia, is frequently used to treat acute lymphoblastic leukaemia in children. When combined with other chemotherapy drugs, the event-free survival rate is 90%. Due to immunogenicity and drug resistance, however, not all patients benefit from it, restricting the use of L-asparaginase therapy in other haematological cancers. To solve the problem of immunogenicity, several L-ASNase variants have emerged, such as Erwinia-ASNase and PEG-ASNase. However, even when Erwinia-ASNase is used as a substitute for E. coli-ASNase or PEG-ASNase, allergic reactions occur in 3%-33% of patients. All of these factors contributed to the development of novel L-ASNases. Additionally, L-ASNase resistance mechanisms, such as the methylation status of ASNS promoters and activation of autophagy, have further emphasized the importance of personalized treatment for paediatric haematological neoplasms. In this review, we discussed the metabolic effects of L-ASNase, mechanisms of drug resistance, applications in non-ALL leukaemia, and the development of novel L-ASNase.
Collapse
Affiliation(s)
| | | | | | | | - Chun Chen
- *Correspondence: Junbin Huang, ; Chun Chen,
| |
Collapse
|
11
|
Zapata-García JA, Riveros-Magaña AR, Ortiz-Lazareno PC, Hernández-Flores G, Jave-Suárez LF, Aguilar-Lemarroy A. Comparative Genomic Hybridization and Transcriptome Sequencing Reveal Genes with Gain in Acute Lymphoblastic Leukemia: JUP Expression Emerges as a Survival-Related Gene. Diagnostics (Basel) 2022; 12:diagnostics12112788. [PMID: 36428851 PMCID: PMC9689318 DOI: 10.3390/diagnostics12112788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) in children or adults is characterized by structural and numeric aberrations in chromosomes; these anomalies strongly correlate with prognosis and clinical outcome. Therefore, this work aimed to identify the genes present in chromosomal gain regions found more frequently in patients with acute lymphoblastic leukemia (ALL) and ALL-derived cell lines using comparative genomic hybridization (CGH). In addition, validation of the genes found in these regions was performed utilizing RNAseq from JURKAT, CEM, and SUP-B15 cell lines, as well as expression microarrays derived from a MILE study. Chromosomes with common gain zones that were maintained in six or more samples were 14, 17, and 22, in which a total of 22 genes were identified. From them, NT5C3B, CNP, ACLY, and GNB1L maintained overexpression at the mRNA level in the cell lines and in patients with ALL. It is noteworthy that SALL2 showed very high expression in T-ALL, while JUP was highly expressed in B-ALL lineages. Interestingly, the latter correlated with worse survival in patients. This provided evidence that the measurement of these genes has high potential for clinical utility; however, their expressions should first be evaluated with a sensitive test in a more significant number of patients.
Collapse
Affiliation(s)
- Jessica Alejandra Zapata-García
- Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara C.P. 44340, Mexico
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara C.P. 44340, Mexico
| | - Alma Rocío Riveros-Magaña
- Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán C.P. 49000, Mexico
- Hospital General Zona 9, Ciudad Guzmán C.P. 49000, Mexico
| | - Pablo Cesar Ortiz-Lazareno
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara C.P. 44340, Mexico
| | - Georgina Hernández-Flores
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara C.P. 44340, Mexico
| | - Luis Felipe Jave-Suárez
- Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara C.P. 44340, Mexico
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara C.P. 44340, Mexico
| | - Adriana Aguilar-Lemarroy
- Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara C.P. 44340, Mexico
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara C.P. 44340, Mexico
- Correspondence: ; Tel.: +52-331-520-7625
| |
Collapse
|
12
|
Bhattacharjee R, Ghosh S, Nath A, Basu A, Biswas O, Patil CR, Kundu CN. Theragnostic strategies harnessing the self-renewal pathways of stem-like cells in the acute myeloid leukemia. Crit Rev Oncol Hematol 2022; 177:103753. [PMID: 35803452 DOI: 10.1016/j.critrevonc.2022.103753] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 06/21/2022] [Accepted: 07/02/2022] [Indexed: 02/07/2023] Open
Abstract
Acute myelogenous leukemia (AML) is a genetically heterogeneous and aggressive cancer of the Hematopoietic Stem/progenitor cells. It is distinguished by the uncontrollable clonal growth of malignant myeloid stem cells in the bone marrow, venous blood, and other body tissues. AML is the most predominant of leukemias occurring in adults (25%) and children (15-20%). The relapse after chemotherapy is a major concern in the treatment of AML. The overall 5-year survival rate in young AML patients is about 40-45% whereas in the elderly patients it is less than 10%. Leukemia stem-like cells (LSCs) having the ability to self-renew indefinitely, repopulate and persist longer in the G0/G1 phase play a crucial role in the AML relapse and refractoriness to chemotherapy. Hence, novel treatment strategies and diagnostic biomarkers targeting LSCs are being increasingly investigated. Through this review, we have explored the signaling modulations in the LSCs as the theragnostic targets. The significance of the self-renewal pathways in overcoming the treatment challenges in AML has been highlighted.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Sharad Ghosh
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Arijit Nath
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Asmita Basu
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Ojaswi Biswas
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Chandragauda R Patil
- Department of Pharmacology, DIPSAR, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Chanakya Nath Kundu
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India.
| |
Collapse
|
13
|
Hao X, Zhang J, Chen G, Cao W, Chen H, Chen S. Aberrant expression of GSTM5 in lung adenocarcinoma is associated with DNA hypermethylation and poor prognosis. BMC Cancer 2022; 22:685. [PMID: 35729618 PMCID: PMC9214983 DOI: 10.1186/s12885-022-09711-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glutathione-S transferases (GSTs) comprise a series of critical enzymes involved in detoxification of endogenous or xenobiotic compounds. Among several GSTs, Glutathione S-transferases mu (GSTM) has been implicated in a number of cancer types. However, the prognostic value and potential functions of the GSTM family genes have not been investigated in lung adenocarcinoma (LUAD). METHODS We examined the expression of GSTM5 in LUAD and identified associations among GSTM5 expression, clinicopathological features, survival data from the Cancer Genome Atlas (TCGA). The correlation between GSTM5 DNA methylation and its expression was analyzed using the MEXPRESS tool and UCSC Xena browser. The methylation status of GSTM5 in the promoter region in lung cancer cells was measured by methylation-specific PCR (MSP). After 5-aza-2'-deoxycytidine treatment of lung cancer cells, expression of GSTM5, cell proliferation and migration were assessed by RT-PCR, CCK-8 and transwell assays, respectively. RESULTS The results showed that GSTM5 was abnormally down-regulated in LUAD patients' tissues, and patients with low GSTM5 expression level had significantly shorter OS. Cox regression analyses revealed that GSTM5 was associated with overall survival (OS) of LUAD patients, which expression was an independent prognostic indicator in terms of OS (hazard ratio: 0.848; 95% CI: 0.762-0.945; P = 0.003). In addition, we found the promoter region of GSTM5 was hypermethylated in the tumor tissue compared with adjacent normal tissues, and the average methylation level of GSTM5 were moderately correlated with its expression. Moreover, methylation-specific PCR also showed that the GSTM5 gene promoter was hypermethylated in lung cancer cells, and treatment with 5-Aza-CdR can restore the gene expression and inhibit cell proliferation and migration. Finally, Gene Set Enrichment Analysis (GSEA) revealed that low GSTM5 expression was significantly related to DNA repair pathways. CONCLUSION Our data demonstrate that low GSTM5 expression and its high DNA methylation status may act as a novel putative molecular target gene for LUAD.
Collapse
Affiliation(s)
- Xuewei Hao
- Department of Biochemistry, Inspection Institute, Harbin Medical University-Daqing, Daqing, China
| | - Jun Zhang
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Guoyou Chen
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, No. 39 Xinyang Street, High-tech Zone, Daqing, 163319, Heilongjiang Province, China
| | - Weiwei Cao
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, No. 39 Xinyang Street, High-tech Zone, Daqing, 163319, Heilongjiang Province, China
| | - Hongyang Chen
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, No. 39 Xinyang Street, High-tech Zone, Daqing, 163319, Heilongjiang Province, China
| | - Shuo Chen
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, No. 39 Xinyang Street, High-tech Zone, Daqing, 163319, Heilongjiang Province, China.
| |
Collapse
|
14
|
Transcriptome-wide subtyping of pediatric and adult T cell acute lymphoblastic leukemia in an international study of 707 cases. Proc Natl Acad Sci U S A 2022; 119:e2120787119. [PMID: 35385357 PMCID: PMC9169777 DOI: 10.1073/pnas.2120787119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We provide transcriptomic insights into differences between pediatric and adult T cell acute lymphoblastic leukemia (T-ALL) patients through an international collaborative effort integrating RNA-sequencing data of 707 patients. Ten subtypes were identified, each characterized by distinct gene mutation profiles and dysregulated expression signatures of leukemogenic factors, and associated with T cell development stages. Adult T-ALL tends to have characteristics of early T cell precursor ALL, mostly corresponding to the mixed phenotype acute leukemia, whereas pediatric T-ALL shows a wide spectrum of aberrant molecular features, from early T cell precursor to mature T cell compartments. Our findings have important implications for disease mechanism of T-ALL that differs between pediatric and adult patients, facilitating further refined targeted therapy. T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy of T cell progenitors, known to be a heterogeneous disease in pediatric and adult patients. Here we attempted to better understand the disease at the molecular level based on the transcriptomic landscape of 707 T-ALL patients (510 pediatric, 190 adult patients, and 7 with unknown age; 599 from published cohorts and 108 newly investigated). Leveraging the information of gene expression enabled us to identify 10 subtypes (G1–G10), including the previously undescribed one characterized by GATA3 mutations, with GATA3R276Q capable of affecting lymphocyte development in zebrafish. Through associating with T cell differentiation stages, we found that high expression of LYL1/LMO2/SPI1/HOXA (G1–G6) might represent the early T cell progenitor, pro/precortical/cortical stage with a relatively high age of disease onset, and lymphoblasts with TLX3/TLX1 high expression (G7–G8) could be blocked at the cortical/postcortical stage, while those with high expression of NKX2-1/TAL1/LMO1 (G9–G10) might correspond to cortical/postcortical/mature stages of T cell development. Notably, adult patients harbored more cooperative mutations among epigenetic regulators, and genes involved in JAK-STAT and RAS signaling pathways, with 44% of patients aged 40 y or above in G1 bearing DNMT3A/IDH2 mutations usually seen in acute myeloid leukemia, suggesting the nature of mixed phenotype acute leukemia.
Collapse
|
15
|
Hlozkova K, Hermanova I, Safrhansova L, Alquezar-Artieda N, Kuzilkova D, Vavrova A, Sperkova K, Zaliova M, Stary J, Trka J, Starkova J. PTEN/PI3K/Akt pathway alters sensitivity of T-cell acute lymphoblastic leukemia to L-asparaginase. Sci Rep 2022; 12:4043. [PMID: 35260738 PMCID: PMC8904819 DOI: 10.1038/s41598-022-08049-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
Childhood T-cell acute lymphoblastic leukemia (T-ALL) still remains a therapeutic challenge due to relapses which are resistant to further treatment. l-asparaginase (ASNase) is a key therapy component in pediatric T-ALL and lower sensitivity of leukemia cells to this drug negatively influences overall treatment efficacy and outcome. PTEN protein deletion and/or activation of the PI3K/Akt signaling pathway leading to altered cell growth and metabolism are emerging as a common feature in T-ALL. We herein investigated the relationship amongst PTEN deletion, ASNase sensitivity and glucose metabolism in T-ALL cells. First, we found significant differences in the sensitivity to ASNase amongst T-ALL cell lines. While cell lines more sensitive to ASNase were PTEN wild type (WT) and had no detectable level of phosphorylated Akt (P-Akt), cell lines less sensitive to ASNase were PTEN-null with high P-Akt levels. Pharmacological inhibition of Akt in the PTEN-null cells rendered them more sensitive to ASNase and lowered their glycolytic function which then resembled PTEN WT cells. In primary T-ALL cells, although P-Akt level was not dependent exclusively on PTEN expression, their sensitivity to ASNase could also be increased by pharmacological inhibition of Akt. In summary, we highlight a promising therapeutic option for T-ALL patients with aberrant PTEN/PI3K/Akt signaling.
Collapse
Affiliation(s)
- Katerina Hlozkova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ivana Hermanova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lucie Safrhansova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Natividad Alquezar-Artieda
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Daniela Kuzilkova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Adela Vavrova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kristyna Sperkova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marketa Zaliova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.,University Hospital Motol, Prague, Czech Republic
| | - Jan Stary
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.,University Hospital Motol, Prague, Czech Republic
| | - Jan Trka
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.,University Hospital Motol, Prague, Czech Republic
| | - Julia Starkova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic. .,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic. .,University Hospital Motol, Prague, Czech Republic.
| |
Collapse
|
16
|
Silic-Benussi M, Sharova E, Ciccarese F, Cavallari I, Raimondi V, Urso L, Corradin A, Kotler H, Scattolin G, Buldini B, Francescato S, Basso G, Minuzzo SA, Indraccolo S, D'Agostino DM, Ciminale V. mTOR inhibition downregulates glucose-6-phosphate dehydrogenase and induces ROS-dependent death in T-cell acute lymphoblastic leukemia cells. Redox Biol 2022; 51:102268. [PMID: 35248829 PMCID: PMC8899410 DOI: 10.1016/j.redox.2022.102268] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
| | | | | | | | - Vittoria Raimondi
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | - Loredana Urso
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy; Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | - Alberto Corradin
- Istituto Tecnico Industriale Statale "Alessandro Rossi", Vicenza, Italy
| | - Harel Kotler
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | - Gloria Scattolin
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | - Barbara Buldini
- Pediatric Hemato Oncology, Maternal and Child Health Department, University of Padova, Padova, Italy
| | - Samuela Francescato
- Pediatric Hemato Oncology, Maternal and Child Health Department, University of Padova, Padova, Italy
| | - Giuseppe Basso
- Pediatric Hemato Oncology, Maternal and Child Health Department, University of Padova, Padova, Italy; Italian Institute for Genomic Medicine, Turin, Italy
| | - Sonia A Minuzzo
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | - Stefano Indraccolo
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy; Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | - Donna M D'Agostino
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy; Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Vincenzo Ciminale
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy; Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy.
| |
Collapse
|
17
|
Qu H, Gao-Wa H, Hou Y, Ren M, Li J, Jing B, Du Y. TRIM37 interacts with PTEN to promote the growth of human T-cell acute lymphocytic leukemia cells through regulating PI3K/AKT pathway. Front Oncol 2022; 12:1016725. [PMID: 36923153 PMCID: PMC10009101 DOI: 10.3389/fonc.2022.1016725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/30/2022] [Indexed: 03/02/2023] Open
Abstract
Background TRIM37 has been reported to be associated with the tumorigenesis of cancers. However, the role of TRIM37 in T-cell acute lymphoblastic leukemia (T-ALL) remains unclear. This study aimed to characterize the effect of TRIM37 on T-ALL. Methods TRIM37 expression in T-ALL patients and T-ALL cell lines was determined by qRT-PCR and Western blot. Knockdown or overexpression of TRIM37 was conducted by transferring small-interfering TRIM37 or lentivirus-mediated transducing into T-ALL cells. CCK-8 assay and flow cytometry assay were conducted to analyze the proliferation and apoptosis of T-ALL cells. Co-immunoprecipitation experiments were conducted to investigate the relationship between TRIM37 and PTEN and the ubiquitination of PTEN. Results Our results suggested that TRIM37 expression was upregulated in the blood of T-ALL patients and T-ALL cell lines. Knockdown of TRIM37 noticeably inhibited the proliferation and promoted apoptosis of T-ALL cells. Ectopic expression of TRIM37 promoted the proliferation and suppressed the apoptosis rate of MOLT-4 cells and enhanced the phosphorylation of AKT. Moreover, TRIM37 interacted with PTEN and accelerated the degradation of PTEN via TRIM37-mediated ubiquitination in T-ALL cells. Moreover, TRIM37 reduced the sensitivity of T-ALL cells to bortezomib treatment. Additionally, PI3K/AKT signaling pathway was involved in the function of TRIM37 in T-ALL. TRIM37 contributed to the proliferation of T-ALL cells and reduced the susceptibility of T-ALL cells to bortezomib treatment through ubiquitination of PTEN and activating PI3K/AKT signaling pathway. Conclusions Our study suggested that TRIM37 could be considered as a therapeutic target for T-ALL.
Collapse
Affiliation(s)
- Honglan Qu
- Department of Hematology and Oncology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical College of Inner Mongolia University for Nationalities, Yakeshi, China
| | - Hasen Gao-Wa
- Department of Hematology and Oncology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical College of Inner Mongolia University for Nationalities, Yakeshi, China
| | - Yanyan Hou
- Department of Hematology and Oncology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical College of Inner Mongolia University for Nationalities, Yakeshi, China
| | - Mengwei Ren
- Department of Hematology and Oncology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical College of Inner Mongolia University for Nationalities, Yakeshi, China
| | - Jun Li
- Department of Hematology and Oncology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical College of Inner Mongolia University for Nationalities, Yakeshi, China
| | - Baoshong Jing
- Department of Hematology and Oncology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical College of Inner Mongolia University for Nationalities, Yakeshi, China
| | - YanDan Du
- Department of Hematology and Oncology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical College of Inner Mongolia University for Nationalities, Yakeshi, China
| |
Collapse
|
18
|
Sottoriva K, Pajcini KV. Notch Signaling in the Bone Marrow Lymphopoietic Niche. Front Immunol 2021; 12:723055. [PMID: 34394130 PMCID: PMC8355626 DOI: 10.3389/fimmu.2021.723055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Lifelong mammalian hematopoiesis requires continuous generation of mature blood cells that originate from Hematopoietic Stem and Progenitor Cells (HSPCs) situated in the post-natal Bone Marrow (BM). The BM microenvironment is inherently complex and extensive studies have been devoted to identifying the niche that maintains HSPC homeostasis and supports hematopoietic potential. The Notch signaling pathway is required for the emergence of the definitive Hematopoietic Stem Cell (HSC) during embryonic development, but its role in BM HSC homeostasis is convoluted. Recent work has begun to explore novel roles for the Notch signaling pathway in downstream progenitor populations. In this review, we will focus an important role for Notch signaling in the establishment of a T cell primed sub-population of Common Lymphoid Progenitors (CLPs). Given that its activation mechanism relies primarily on cell-to-cell contact, Notch signaling is an ideal means to investigate and define a novel BM lymphopoietic niche. We will discuss how new genetic model systems indicate a pre-thymic, BM-specific role for Notch activation in early T cell development and what this means to the paradigm of lymphoid lineage commitment. Lastly, we will examine how leukemic T-cell acute lymphoblastic leukemia (T-ALL) blasts take advantage of Notch and downstream lymphoid signals in the pathological BM niche.
Collapse
Affiliation(s)
- Kilian Sottoriva
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Kostandin V Pajcini
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| |
Collapse
|
19
|
Cancer stem cell phosphatases. Biochem J 2021; 478:2899-2920. [PMID: 34319405 DOI: 10.1042/bcj20210254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Cancer stem cells (CSCs) are involved in the initiation and progression of human malignancies by enabling cancer tissue self-renewal capacity and constituting the therapy-resistant population of tumor cells. However, despite the exhausting characterization of CSC genetics, epigenetics, and kinase signaling, eradication of CSCs remains an unattainable goal in most human malignancies. While phosphatases contribute equally with kinases to cellular phosphoregulation, our understanding of phosphatases in CSCs lags severely behind our knowledge about other CSC signaling mechanisms. Many cancer-relevant phosphatases have recently become druggable, indicating that further understanding of the CSC phosphatases might provide novel therapeutic opportunities. This review summarizes the current knowledge about fundamental, but yet poorly understood involvement of phosphatases in the regulation of major CSC signaling pathways. We also review the functional roles of phosphatases in CSC self-renewal, cancer progression, and therapy resistance; focusing particularly on hematological cancers and glioblastoma. We further discuss the small molecule targeting of CSC phosphatases and their therapeutic potential in cancer combination therapies.
Collapse
|
20
|
Touzart A, Mayakonda A, Smith C, Hey J, Toth R, Cieslak A, Andrieu GP, Tran Quang C, Latiri M, Ghysdael J, Spicuglia S, Dombret H, Ifrah N, Macintyre E, Lutsik P, Boissel N, Plass C, Asnafi V. Epigenetic analysis of patients with T-ALL identifies poor outcomes and a hypomethylating agent-responsive subgroup. Sci Transl Med 2021; 13:13/595/eabc4834. [PMID: 34039737 DOI: 10.1126/scitranslmed.abc4834] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/10/2020] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Adult "T cell" acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy that is associated with poor outcomes, requiring additional therapeutic options. The DNA methylation landscapes of adult T-ALL remain undercharacterized. Here, we systematically analyzed the DNA methylation profiles of normal thymic-sorted T cell subpopulations and 143 primary adult T-ALLs as part of the French GRAALL 2003-2005 trial. Our results indicated that T-ALL is epigenetically heterogeneous consisting of five subtypes (C1-C5), which were either associated with co-occurring DNA methyltransferase 3 alpha (DNMT3A)/isocitrate dehydrogenase [NADP(+)] 2 (IDH2) mutations (C1), TAL bHLH transcription factor 1, erythroid differentiation factor (TAL1) deregulation (C2), T cell leukemia homeobox 3 (TLX3) (C3), TLX1/in cis-homeobox A9 (HOXA9) (C4), or in trans-HOXA9 overexpression (C5). Integrative analysis of DNA methylation and gene expression identified potential cluster-specific oncogenes and tumor suppressor genes. In addition to an aggressive hypomethylated subgroup (C1), our data identified an unexpected subset of hypermethylated T-ALL (C5) associated with poor outcome and primary therapeutic response. Using mouse xenografts, we demonstrated that hypermethylated T-ALL samples exhibited therapeutic responses to the DNA hypomethylating agent 5-azacytidine, which significantly (survival probability; P = 0.001 for C3, 0.01 for C4, and 0.0253 for C5) delayed tumor progression. These findings suggest that epigenetic-based therapies may provide an alternative treatment option in hypermethylated T-ALL.
Collapse
Affiliation(s)
- Aurore Touzart
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Anand Mayakonda
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Charlotte Smith
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Joschka Hey
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany.,Germany-Israeli Helmholtz Research School in Cancer Biology, 69120 Heidelberg, Germany
| | - Reka Toth
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Agata Cieslak
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Guillaume P Andrieu
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Christine Tran Quang
- Institut Curie, Orsay, France.,CNRS UMR3348, Institut Curie, Orsay, France.,INSERM 1278, Centre Universitaire, Orsay, France.,PSL Research University, Paris, France.,Paris-Saclay, 91400 Orsay, France
| | - Mehdi Latiri
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Jacques Ghysdael
- Institut Curie, Orsay, France.,CNRS UMR3348, Institut Curie, Orsay, France.,INSERM 1278, Centre Universitaire, Orsay, France.,PSL Research University, Paris, France.,Paris-Saclay, 91400 Orsay, France
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), Equipe labellisée Ligue, UMR1090, 13288 Marseille, France
| | - Hervé Dombret
- Université Paris Diderot, Institut Universitaire d'Hématologie, EA-3518, Assistance Publique-Hôpitaux de Paris, University Hospital Saint-Louis, 75010 Paris, France
| | - Norbert Ifrah
- PRES LUNAM, CHU Angers service des Maladies du Sang et INSERM U 892, 49933 Angers, France
| | - Elizabeth Macintyre
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Pavlo Lutsik
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,German Cancer Research Consortium (DKTK), 69120 Heidelberg, Germany
| | - Nicolas Boissel
- Université Paris Diderot, Institut Universitaire d'Hématologie, EA-3518, Assistance Publique-Hôpitaux de Paris, University Hospital Saint-Louis, 75010 Paris, France
| | - Christoph Plass
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. .,German Cancer Research Consortium (DKTK), 69120 Heidelberg, Germany
| | - Vahid Asnafi
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France.
| |
Collapse
|
21
|
Klink M, Rahman MA, Song C, Dhanyamraju PK, Ehudin M, Ding Y, Steffens S, Bhadauria P, Iyer S, Aliaga C, Desai D, Huang S, Claxton D, Sharma A, Gowda C. Mechanistic Basis for In Vivo Therapeutic Efficacy of CK2 Inhibitor CX-4945 in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13051127. [PMID: 33807974 PMCID: PMC7975325 DOI: 10.3390/cancers13051127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/19/2021] [Accepted: 02/28/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Acute Myeloid Leukemia is an aggressive disease with poor outcomes. New targeted therapies that can boost the effects of currently used chemotherapy medications without added toxicity are needed. Targeting an overactive kinase, called the protein Kinase CK2 in AML, helps leukemia cells undergo cell death and helps certain chemotherapy drugs work better. Here, we present evidence that CX-4945, a CK2 inhibitor drug, effectively kills leukemia cells in mouse models and shows the mechanism of action responsible for these effects. Leukemia cells are more sensitive to a decrease in CK2 kinase levels than normal cells. Our results show that inhibiting CK2 kinase makes AML cells more susceptible to anthracycline-induced cell death. Anthracyclines like daunorubicin and doxorubicin are widely used to treat leukemia in children and adults. A rational combination of protein kinase CK2 inhibitors with the standard of care chemotherapy may help treat AML more effectively. Abstract Protein Kinase CK2 (Casein Kinase 2 or CK2) is a constitutively active serine-threonine kinase overactive in human malignancies. Increased expression and activity of CK2 in Acute Myeloid Leukemia (AML) is associated with a poor outcome. CK2 promotes AML cell survival by impinging on multiple oncogenic signaling pathways. The selective small-molecule CK2 inhibitor CX-4945 has shown in vitro cytotoxicity in AML. Here, we report that CX-4945 has a strong in vivo therapeutic effect in preclinical models of AML. The analysis of genome-wide DNA-binding and gene expression in CX-4945 treated AML cells shows that one mechanism, by which CK2 inhibition exerts a therapeutic effect in AML, involves the revival of IKAROS tumor suppressor function. CK2 phosphorylates IKAROS and disrupts IKAROS’ transcriptional activity by impairing DNA-binding and association with chromatin modifiers. Here, we demonstrate that CK2 inhibition decreases IKAROS phosphorylation and restores IKAROS binding to DNA. Further functional experiments show that IKAROS negatively regulates the transcription of anti-apoptotic genes, including BCL-XL (B cell Lymphoma like–2 like 1, BCL2L1). CX-4945 restitutes the IKAROS-mediated repression of BCL-XL in vivo and sensitizes AML cells to apoptosis. Using CX-4945, alongside the cytotoxic chemotherapeutic drug daunorubicin, augments BCL-XL suppression and AML cell apoptosis. Overall, these results establish the in vivo therapeutic efficacy of CX-4945 in AML preclinical models and determine the role of CK2 and IKAROS in regulating apoptosis in AML. Furthermore, our study provides functional and mechanistic bases for the addition of CK2 inhibitors to AML therapy.
Collapse
Affiliation(s)
- Morgann Klink
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - Mohammad Atiqur Rahman
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - Chunhua Song
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
- Department of Medicine, Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Pavan Kumar Dhanyamraju
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - Melanie Ehudin
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - Yali Ding
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - Sadie Steffens
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - Preeti Bhadauria
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - Soumya Iyer
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
- Department of Radiation Oncology, University of Chicago,Chicago, IL 60607, USA
| | - Cesar Aliaga
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (C.A.); (D.C.)
| | - Dhimant Desai
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.D.); (A.S.)
| | - Suming Huang
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - David Claxton
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (C.A.); (D.C.)
| | - Arati Sharma
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.D.); (A.S.)
| | - Chandrika Gowda
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
- Correspondence: ; Tel.: 717-531-6012; Fax: 717-531-4789
| |
Collapse
|
22
|
Mroczek A, Zawitkowska J, Kowalczyk J, Lejman M. Comprehensive Overview of Gene Rearrangements in Childhood T-Cell Acute Lymphoblastic Leukaemia. Int J Mol Sci 2021; 22:E808. [PMID: 33467425 PMCID: PMC7829804 DOI: 10.3390/ijms22020808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is a relevant form of childhood neoplasm, as it accounts for over 80% of all leukaemia cases. T-cell ALL constitutes a genetically heterogeneous cancer derived from T-lymphoid progenitors. The diagnosis of T-ALL is based on morphologic, immunophenotypic, cytogenetic, and molecular features, thus the results are used for patient stratification. Due to the expression of surface and intracellular antigens, several subtypes of T-ALL can be distinguished. Although the aetiology of T-ALL remains unclear, a wide spectrum of rearrangements and mutations affecting crucial signalling pathways has been described so far. Due to intensive chemotherapy regimens and supportive care, overall cure rates of more than 80% in paediatric T-ALL patients have been accomplished. However, improved knowledge of the mechanisms of relapse, drug resistance, and determination of risk factors are crucial for patients in the high-risk group. Even though some residual disease studies have allowed the optimization of therapy, the identification of novel diagnostic and prognostic markers is required to individualize therapy. The following review summarizes our current knowledge about genetic abnormalities in paediatric patients with T-ALL. As molecular biology techniques provide insights into the biology of cancer, our study focuses on new potential therapeutic targets and predictive factors which may improve the outcome of young patients with T-ALL.
Collapse
Affiliation(s)
- Anna Mroczek
- Department of Paediatric Haematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (J.Z.); (J.K.)
| | - Joanna Zawitkowska
- Department of Paediatric Haematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (J.Z.); (J.K.)
| | - Jerzy Kowalczyk
- Department of Paediatric Haematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (J.Z.); (J.K.)
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
23
|
Datta N, Chakraborty S, Basu M, Ghosh MK. Tumor Suppressors Having Oncogenic Functions: The Double Agents. Cells 2020; 10:cells10010046. [PMID: 33396222 PMCID: PMC7824251 DOI: 10.3390/cells10010046] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer progression involves multiple genetic and epigenetic events, which involve gain-of-functions of oncogenes and loss-of-functions of tumor suppressor genes. Classical tumor suppressor genes are recessive in nature, anti-proliferative, and frequently found inactivated or mutated in cancers. However, extensive research over the last few years have elucidated that certain tumor suppressor genes do not conform to these standard definitions and might act as “double agents”, playing contrasting roles in vivo in cells, where either due to haploinsufficiency, epigenetic hypermethylation, or due to involvement with multiple genetic and oncogenic events, they play an enhanced proliferative role and facilitate the pathogenesis of cancer. This review discusses and highlights some of these exceptions; the genetic events, cellular contexts, and mechanisms by which four important tumor suppressors—pRb, PTEN, FOXO, and PML display their oncogenic potentials and pro-survival traits in cancer.
Collapse
Affiliation(s)
- Neerajana Datta
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India; (N.D.); (S.C.)
| | - Shrabastee Chakraborty
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India; (N.D.); (S.C.)
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, West Bengal PIN-743372, India;
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India; (N.D.); (S.C.)
- Correspondence:
| |
Collapse
|
24
|
Kong D, Fan S, Sun L, Chen X, Zhao Y, Zhao L, Guo Z, Li Y. Growth inhibition and suppression of the mTOR and Wnt/β-catenin pathways in T-acute lymphoblastic leukemia by rapamycin and MYCN depletion. Hematol Oncol 2020; 39:222-230. [PMID: 33300153 DOI: 10.1002/hon.2831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy. Understanding of the molecular pathogenesis may lead to novel therapeutic targets. Rapamycin, the mammalian target of rapamycin (mTOR) inhibitor, showed inhibitory effects on T-ALL cells. In this study, we showed that rapamycin significantly reduced MYCN mRNA and protein in a concentration-dependent manner in T-ALL cells. Selective knockdown of MYCN by small interfering RNA had similar effects to rapamycin to inhibit T-ALL proliferation and colony formation and to induce G1-phase cell-cycle arrest and apoptosis. The inhibitory effects of rapamycin and MYCN depletion were also found in a Molt-4 xenograft model. Rapamycin and MYCN inhibition suppressed both Wnt/β-catenin and mTOR signaling pathways. The results suggest the effects of rapamycin on adult T-ALL is likely mediated by downregulation of MYCN. The findings suggest MYCN a potential target for the treatment of adult T-ALL. Additionally, dual targeting of mTOR and Wnt/β-catenin pathways may represent a novel strategy in the treatment of adult T-ALL.
Collapse
Affiliation(s)
- Desheng Kong
- Department of Hematology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shengjin Fan
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Lili Sun
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xi Chen
- Department of Hematology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yanqiu Zhao
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Linlin Zhao
- Department of Blood Transfusion, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhibo Guo
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yinghua Li
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
25
|
Li G, Gao L, Zhao J, Liu D, Li H, Hu M. LncRNA ANRIL/miR-7-5p/TCF4 axis contributes to the progression of T cell acute lymphoblastic leukemia. Cancer Cell Int 2020; 20:335. [PMID: 32714094 PMCID: PMC7376839 DOI: 10.1186/s12935-020-01376-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/24/2020] [Indexed: 02/08/2023] Open
Abstract
Background Antisense non-coding RNA in the INK4 locus (ANRIL) is of great importance in cell biological behaviors, and ANRIL functions in many kinds of cancers including leukemia. However, the mechanism of ANRIL in the progression of T-cell acute lymphoblastic leukemia (T-ALL) has not been clarified clearly. Methods qRT-PCR was performed to detect ANRIL expression in T-ALL samples. T-ALL cell lines (MOLT4, CCRF-CEM and KOPT-K1) were used as the cell models. The function of ANRIL on T-ALL cells was investigated by CCK-8 assays, Transwell assays, and apoptosis experiments in vitro. qRT-PCR, Western blot, luciferase reporter assay and RIP assay were used to confirm the interactions between ANRIL and miR-7-5p, miR-7-5p and its target gene transcription factor 4 (TCF4). Results ANRIL was significantly up-regulated in T-ALL samples. Its knockdown markedly inhibited viability, migration and invasion of T-ALL cells, but its overexpression exerted the opposite effects. TCF4 was proved to be a target gene of miR-7-5p. ANRIL down-regulated miR-7-5p via sponging it and in turn up-regulated TCF4. Conclusions LncRNA ANRIL can modulate malignant phenotypes of T-ALL cells, possibly by regulating miR-7-5p/TCF4 axis, and it serves as a potential therapeutic target for T-ALL.
Collapse
Affiliation(s)
- Gang Li
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Lan Gao
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Jing Zhao
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Dejun Liu
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Hui Li
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Min Hu
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| |
Collapse
|
26
|
Saleeva DV, Mikhailov VF, Rozhdestvenskii LM, Shulenina LV, Raeva NF, Zasukhina GD. Changes in the Activity of Genes Involved in the Regulation of Hematopoiesis during Tumorigenesis in Irradiated Mice. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2020; 491:57-59. [PMID: 32483710 DOI: 10.1134/s0012496620020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 11/23/2022]
Abstract
We used 183 F1 CBA×C57Bl hybrid mice to study the delayed effects of low-power long-term γ-irradiation at a dose of 12.6 Gy (10 mGy/min) 8 and 10 months after the treatment. Eight months after the treatment we found the increased expression of the transcription factor NFκB and its target genes iNOS and G-SCF in the bone marrow (BM). Ten months after the treatment malignant lymphomas were revealed in 14 of 94 mice in the liver, abdominal cavity, and subcutaneously. In the BM of these mice, the transcription of the PTEN, NFκB, and iNOS genes was inhibited and the contents of long non-coding RNAs (lncRNAs) lnc p21, NEAT1, and microRNA miR-125b were decreased. The expression of the NFκB(p65) gene and miR-125b was inhibited in the BM of irradiated mice without tumors ten months after the treatment. These data show the deregulation of the P53 system supporting the genome stability in the BM of irradiated mice. These indices will be studied as potential markers of risk of development of irradiation-induced tumors.
Collapse
Affiliation(s)
- D V Saleeva
- Burnazyan Federal Medical Biophysical Center, Federal Biomedical Agency of the Russian Federation, 123098, Moscow, Russia.
| | - V F Mikhailov
- Burnazyan Federal Medical Biophysical Center, Federal Biomedical Agency of the Russian Federation, 123098, Moscow, Russia
| | - L M Rozhdestvenskii
- Burnazyan Federal Medical Biophysical Center, Federal Biomedical Agency of the Russian Federation, 123098, Moscow, Russia
| | - L V Shulenina
- Burnazyan Federal Medical Biophysical Center, Federal Biomedical Agency of the Russian Federation, 123098, Moscow, Russia
| | - N F Raeva
- Burnazyan Federal Medical Biophysical Center, Federal Biomedical Agency of the Russian Federation, 123098, Moscow, Russia
| | - G D Zasukhina
- Burnazyan Federal Medical Biophysical Center, Federal Biomedical Agency of the Russian Federation, 123098, Moscow, Russia.,Vavilov Institute of General Genetics, Russian Academy of Sciences, 117971, Moscow, Russia
| |
Collapse
|
27
|
Zhang Y, Lee S, Xu W. Miltefosine suppression of Pten null T-ALL leukemia via β-catenin degradation through inhibition of pT308-Akt and TGFβ1/Smad3. Biochem Biophys Res Commun 2020; 524:1018-1024. [PMID: 32063363 DOI: 10.1016/j.bbrc.2020.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/31/2022]
Abstract
Pten deletion in the hematopoietic stem cells (HSC) causes a myeloproliferative disorder, which may subsequently develop into a T-cell acute lymphoblastic leukemia (T-ALL). β-catenin expression was dramatically increased in the c-KitmidCD3+Lin- leukemia stem cells (LSC) and was critical for T-ALL development. Therefore, the inactivation of β-catenin in LSC may have a potential to eliminate the LSC. In this study, we investigated the mechanism of enhancement of the β-catenin expression and subsequently used a drug to inactivate β-catenin expression in T-ALL. Western blot (WB) analysis revealed an increased level of β-catenin in the leukemic cells, but not in the pre-leukemic cells. Furthermore, the WB analysis of the thymic cells from different stages of leukemia development showed that increased expression of β-catenin was not via the pS9-GSK3β signaling, but was dependent on the pT308-Akt activation. Miltefosine (Hexadecylphosphocholine) is the first oral anti-Leishmania drug, which is a phospholipid agent and has been shown to inhibit the PI3K/Akt activity. Treatment of the PtenΔ/Δ leukemic mice with Miltefosine for different durations demonstrated that the pT308-Akt and the β-catenin expressions were inhibited in the leukemia blast cells. Miltefosine treatment also suppressed the TGFβ1/Smad3 signaling pathway. Analysis of TGFβ1 in the sorted subpopulations of the blast cells showed that TGFβ1 was secreted by the CD3+CD4- subpopulation and may exert effects on the subpopulations of both CD3+CD4+ and CD3+CD4- leukemia blast cells. When a TGFβR1 inhibitor, SB431542 was injected into the PtenΔ/Δ leukemic mice, the Smad3 and β-catenin expressions were down-regulated. On the basis of the results, we conclude that Miltefosine can suppress leukemia by degrading β-catenin through repression of the pT308-Akt and TGFβ1/Smad3 signaling pathways. This study demonstrates a possibility to inhibit Pten loss-associated leukemia genesis via targeting Akt and Smad3.
Collapse
Affiliation(s)
- Yanmei Zhang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Sauhar Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus, Subang Jaya, Selangor, Malaysia
| | - Wei Xu
- ZJU-UoE Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China.
| |
Collapse
|
28
|
Evangelisti C, Chiarini F, Cappellini A, Paganelli F, Fini M, Santi S, Martelli AM, Neri LM, Evangelisti C. Targeting Wnt/β-catenin and PI3K/Akt/mTOR pathways in T-cell acute lymphoblastic leukemia. J Cell Physiol 2020; 235:5413-5428. [PMID: 31904116 DOI: 10.1002/jcp.29429] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological disorder that results from the clonal transformation of T-cell precursors. Phosphatidylinositol 3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) and canonical Wnt/β-catenin signaling pathways play a crucial role in T-cell development and in self-renewal of healthy and leukemic stem cells. Notably, β-catenin is a transcriptional regulator of several genes involved in cancer cell proliferation and survival. In this way, aberrations of components belonging to the aforementioned networks contribute to T-ALL pathogenesis. For this reason, inhibition of both pathways could represent an innovative strategy in this hematological malignancy. Here, we show that combined targeting of Wnt/β-catenin pathway through ICG-001, a CBP/β-catenin transcription inhibitor, and of the PI3K/Akt/mTOR axis through ZSTK-474, a PI3K inhibitor, downregulated proliferation, survival, and clonogenic activity of T-ALL cells. ICG-001 and ZSTK-474 displayed cytotoxic effects, and, when combined together, induced a significant increase in apoptotic cells. This induction of apoptosis was associated with the downregulation of Wnt/β-catenin and PI3K/Akt/mTOR pathways. All these findings were confirmed under hypoxic conditions that mimic the bone marrow niche where leukemic stem cells are believed to reside. Taken together, our findings highlight potentially promising treatment consisting of cotargeting Wnt/β-catenin and PI3K/Akt/mTOR pathways in T-ALL settings.
Collapse
Affiliation(s)
- Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Chiarini
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandra Cappellini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Spartaco Santi
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| | - Camilla Evangelisti
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
29
|
Cellular Processes Involved in Jurkat Cells Exposed to Nanosecond Pulsed Electric Field. Int J Mol Sci 2019; 20:ijms20235847. [PMID: 31766457 PMCID: PMC6929111 DOI: 10.3390/ijms20235847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
Recently, nanosecond pulsed electric field (nsPEF) has been considered as a new tool for tumor therapy, but its molecular mechanism of function remains to be fully elucidated. Here, we explored the cellular processes of Jurkat cells exposed to nanosecond pulsed electric field. Differentially expressed genes (DEGs) were acquired from the GEO2R, followed by analysis with a series of bioinformatics tools. Subsequently, 3D protein models of hub genes were modeled by Modeller 9.21 and Rosetta 3.9. Then, a 100 ns molecular dynamics simulation for each hub protein was performed with GROMACS 2018.2. Finally, three kinds of nsPEF voltages (0.01, 0.05, and 0.5 mV/mm) were used to simulate the molecular dynamics of hub proteins for 100 ns. A total of 1769 DEGs and eight hub genes were obtained. Molecular dynamic analysis, including root mean square deviation (RMSD), root mean square fluctuation (RMSF), and the Rg, demonstrated that the 3D structure of hub proteins was built, and the structural characteristics of hub proteins under different nsPEFs were acquired. In conclusion, we explored the effect of nsPEF on Jurkat cell signaling pathway from the perspective of molecular informatics, which will be helpful in understanding the complex effects of nsPEF on acute T-cell leukemia Jurkat cells.
Collapse
|
30
|
Piazzi M, Bavelloni A, Gallo A, Faenza I, Blalock WL. Signal Transduction in Ribosome Biogenesis: A Recipe to Avoid Disaster. Int J Mol Sci 2019; 20:ijms20112718. [PMID: 31163577 PMCID: PMC6600399 DOI: 10.3390/ijms20112718] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/27/2022] Open
Abstract
Energetically speaking, ribosome biogenesis is by far the most costly process of the cell and, therefore, must be highly regulated in order to avoid unnecessary energy expenditure. Not only must ribosomal RNA (rRNA) synthesis, ribosomal protein (RP) transcription, translation, and nuclear import, as well as ribosome assembly, be tightly controlled, these events must be coordinated with other cellular events, such as cell division and differentiation. In addition, ribosome biogenesis must respond rapidly to environmental cues mediated by internal and cell surface receptors, or stress (oxidative stress, DNA damage, amino acid depletion, etc.). This review examines some of the well-studied pathways known to control ribosome biogenesis (PI3K-AKT-mTOR, RB-p53, MYC) and how they may interact with some of the less well studied pathways (eIF2α kinase and RNA editing/splicing) in higher eukaryotes to regulate ribosome biogenesis, assembly, and protein translation in a dynamic manner.
Collapse
Affiliation(s)
- Manuela Piazzi
- Istituto di Genetica Molecolare-Luigi Luca Cavalli Sforza, UOS Bologna, Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy.
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | | | - Angela Gallo
- RNA Editing Laboratory, Dipartimento di Oncoematologia, IRCCS, Ospedale Pediatrica Bambino Gesù, 00146 Rome, Italy.
| | - Irene Faenza
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40126 Bologna, Italy.
| | - William L Blalock
- Istituto di Genetica Molecolare-Luigi Luca Cavalli Sforza, UOS Bologna, Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy.
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| |
Collapse
|