1
|
Liu HY, Sun XJ, Xiu SY, Zhang XY, Wang ZQ, Gu YL, Yi CX, Liu JY, Dai YS, Yuan X, Liao HP, Liu ZM, Pang XC, Li TC. Frizzled receptors (FZDs) in Wnt signaling: potential therapeutic targets for human cancers. Acta Pharmacol Sin 2024; 45:1556-1570. [PMID: 38632318 PMCID: PMC11272778 DOI: 10.1038/s41401-024-01270-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/24/2024] [Indexed: 04/19/2024]
Abstract
Frizzled receptors (FZDs) are key contributors intrinsic to the Wnt signaling pathway, activation of FZDs triggering the Wnt signaling cascade is frequently observed in human tumors and intimately associated with an aggressive carcinoma phenotype. It has been shown that the abnormal expression of FZD receptors contributes to the manifestation of malignant characteristics in human tumors such as enhanced cell proliferation, metastasis, chemotherapy resistance as well as the acquisition of cancer stemness. Given the essential roles of FZD receptors in the Wnt signaling in human tumors, this review aims to consolidate the prevailing knowledge on the specific status of FZD receptors (FZD1-10) and elucidate their respective functions in tumor progression. Furthermore, we delineate the structural basis for binding of FZD and its co-receptors to Wnt, and provide a better theoretical foundation for subsequent studies on related mechanisms. Finally, we describe the existing biological classes of small molecule-based FZD inhibitors in detail in the hope that they can provide useful assistance for design and development of novel drug candidates targeted FZDs.
Collapse
Affiliation(s)
- Hui-Yu Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiao-Jiao Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Si-Yu Xiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiang-Yu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhi-Qi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yan-Lun Gu
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Chu-Xiao Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jun-Yan Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Yu-Song Dai
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xia Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hua-Peng Liao
- Yizhang County People's Hospital, Chenzhou, 424200, China
| | - Zhen-Ming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Xiao-Cong Pang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China.
| | - Tian-Cheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, 100034, China.
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100034, China.
| |
Collapse
|
2
|
Kahn M. A Metabolic Smorgasbord Drives and Sustains CSC Heterogeneity. Cancers (Basel) 2023; 15:343. [PMID: 36672293 PMCID: PMC9856803 DOI: 10.3390/cancers15020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
A deeper understanding of the biology of therapy resistance is important for the development of optimal strategies to attain complete cancer cures [...].
Collapse
Affiliation(s)
- Michael Kahn
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
3
|
Hu X, Ono M, Chimge NO, Chosa K, Nguyen C, Melendez E, Lou CH, Lim P, Termini J, Lai KKY, Fueger PT, Teo JL, Higuchi Y, Kahn M. Differential Kat3 Usage Orchestrates the Integration of Cellular Metabolism with Differentiation. Cancers (Basel) 2021; 13:cancers13235884. [PMID: 34884992 PMCID: PMC8656857 DOI: 10.3390/cancers13235884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary The coupling of metabolism with cellular status is critically important and highly evolutionarily conserved. However, how cells coordinate metabolism with transcription as they change their status is not clear. Utilizing multiomic and functional studies, we now demonstrate the dichotomous roles of the Kat3 coactivators CBP and p300 and, in particular, their extreme N-termini, in coordinating cellular metabolism with cell differentiation. Using multiple in vitro and in vivo systems, our study sheds new light on metabolic regulation in homeostasis and disease, including cancer. Abstract The integration of cellular status with metabolism is critically important and the coupling of energy production and cellular function is highly evolutionarily conserved. This has been demonstrated in stem cell biology, organismal, cellular and tissue differentiation and in immune cell biology. However, a molecular mechanism delineating how cells coordinate and couple metabolism with transcription as they navigate quiescence, growth, proliferation, differentiation and migration remains in its infancy. The extreme N-termini of the Kat3 coactivator family members, CBP and p300, by far the least homologous regions with only 66% identity, interact with members of the nuclear receptor family, interferon activated Stat1 and transcriptionally competent β-catenin, a critical component of the Wnt signaling pathway. We now wish to report based on multiomic and functional investigations, utilizing p300 knockdown, N-terminal p300 edited and p300 S89A edited cell lines and p300 S89A knockin mice, that the N-termini of the Kat3 coactivators provide a highly evolutionarily conserved hub to integrate multiple signaling cascades to coordinate cellular metabolism with the regulation of cellular status and function.
Collapse
Affiliation(s)
- Xiaohui Hu
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China;
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Masaya Ono
- Department of Clinical Proteomics, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| | - Nyam-Osor Chimge
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Keisuke Chosa
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Cu Nguyen
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Elizabeth Melendez
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Chih-Hong Lou
- Gene Editing and Viral Vector Core, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Punnajit Lim
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - John Termini
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Keane K. Y. Lai
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Patrick T. Fueger
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Jia-Ling Teo
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Yusuke Higuchi
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Michael Kahn
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
- Correspondence:
| |
Collapse
|
4
|
Seebacher NA, Krchniakova M, Stacy AE, Skoda J, Jansson PJ. Tumour Microenvironment Stress Promotes the Development of Drug Resistance. Antioxidants (Basel) 2021; 10:1801. [PMID: 34829672 PMCID: PMC8615091 DOI: 10.3390/antiox10111801] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 01/18/2023] Open
Abstract
Multi-drug resistance (MDR) is a leading cause of cancer-related death, and it continues to be a major barrier to cancer treatment. The tumour microenvironment (TME) has proven to play an essential role in not only cancer progression and metastasis, but also the development of resistance to chemotherapy. Despite the significant advances in the efficacy of anti-cancer therapies, the development of drug resistance remains a major impediment to therapeutic success. This review highlights the interplay between various factors within the TME that collectively initiate or propagate MDR. The key TME-mediated mechanisms of MDR regulation that will be discussed herein include (1) altered metabolic processing and the reactive oxygen species (ROS)-hypoxia inducible factor (HIF) axis; (2) changes in stromal cells; (3) increased cancer cell survival via autophagy and failure of apoptosis; (4) altered drug delivery, uptake, or efflux and (5) the induction of a cancer stem cell (CSC) phenotype. The review also discusses thought-provoking ideas that may assist in overcoming the TME-induced MDR. We conclude that stressors from the TME and exposure to chemotherapeutic agents are strongly linked to the development of MDR in cancer cells. Therefore, there remains a vast area for potential research to further elicit the interplay between factors existing both within and outside the TME. Elucidating the mechanisms within this network is essential for developing new therapeutic strategies that are less prone to failure due to the development of resistance in cancer cells.
Collapse
Affiliation(s)
| | - Maria Krchniakova
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Alexandra E. Stacy
- Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia;
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Patric J. Jansson
- Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia;
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St. Leonards, NSW 2065, Australia
| |
Collapse
|
5
|
Kahn M. Taking the road less traveled - the therapeutic potential of CBP/β-catenin antagonists. Expert Opin Ther Targets 2021; 25:701-719. [PMID: 34633266 PMCID: PMC8745629 DOI: 10.1080/14728222.2021.1992386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
AREAS COVERED This perspective discusses the challenges of targeting the Wnt signaling cascade, the safety, efficacy, and therapeutic potential of specific CBP/β-catenin antagonists and a rationale for the pleiotropic effects of CBP/β-catenin antagonists beyond Wnt signaling. EXPERT OPINION CBP/β-catenin antagonists can correct lineage infidelity, enhance wound healing, both normal and aberrant (e.g. fibrosis) and force the differentiation and lineage commitment of stem cells and cancer stem cells by regulating enhancer and super-enhancer coactivator occupancy. Small molecule CBP/β-catenin antagonists rebalance the equilibrium between CBP/β-catenin versus p300/β-catenin dependent transcription and may be able to treat or prevent many diseases of aging, via maintenance of our somatic stem cell pool, and regulating mitochondrial function and metabolism involved in differentiation and immune cell function.
Collapse
Affiliation(s)
- Michael Kahn
- Department of Molecular Medicine, City of Hope, Beckman Research Institute, 1500 East Duarte Road Flower Building, Duarte, CA, USA
| |
Collapse
|
6
|
Liang Y, Wang B, Chen S, Ye Z, Chai X, Li R, Li X, Kong G, Li Y, Zhang X, Che Z, Xie Q, Lian J, Lin B, Zhang X, Huang X, Huang W, Qiu X, Zeng J. Beta-1 syntrophin (SNTB1) regulates colorectal cancer progression and stemness via regulation of the Wnt/β-catenin signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1016. [PMID: 34277816 PMCID: PMC8267293 DOI: 10.21037/atm-21-2700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/15/2021] [Indexed: 12/31/2022]
Abstract
Background Beta-1 syntrophin (SNTB1) is an intracellular scaffold protein that provides a platform for the formation of signal transduction complexes, thereby modulating and coordinating various intracellular signaling events and crucial cellular processes. However, the physiological role of SNTB1 is poorly understood. This study aims to explore the role of SNTB1 in colorectal cancer (CRC) tumorigenesis and progression, with particular focus on SNTB1’s expression pattern, clinical relevance, and possible molecular mechanism in CRC development. Methods SNTB1 expression was analyzed in both clinical tissues and The Cancer Genome Atlas (TCGA) database. Real-time polymerase chain reaction (PCR), Western blot, and immunohistochemical assays were used to detect the relative mRNA and protein levels of SNTB1. Statistical analysis was performed to examine the correlation between SNTB1 expression and the clinicopathological characteristics of patients with CRC. Bioinformatics gene set enrichment analysis (GSEA), Western blot, luciferase assay, and agonist recovery assays were conducted to evaluate the relevance of SNTB1 and the β-catenin signaling pathway in CRC. A flow cytometry-based Hoechst 33342 efflux assay was applied to assess the proportion of the side population (SP) within total CRC cells. Results Elevated levels of SNTB1 were identified in CRC tissues and cell lines. The elevation of SNTB1 was positively correlated with the degree of malignancy and poor prognosis in CRC. We further revealed that, by modulating the β-catenin signaling pathway, silencing SNTB1 expression suppressed tumor growth and cancer stemness in vitro, as well as tumorigenesis in vivo. Conclusions These findings suggest that SNTB1 plays a crucial role in colorectal tumorigenesis and progression by modulating β-catenin signaling and the stemness maintenance of cancer cells.
Collapse
Affiliation(s)
- Yanfang Liang
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
| | - Bin Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, China
| | - Shasha Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, China.,Department of Clinical Laboratory, The Third People's Hospital of Shenzhen, Shenzhen, China
| | - Ziyu Ye
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, China
| | - Xingxing Chai
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, China.,Laboratory Animal Center, Guangdong Medical University, Zhanjiang, China
| | - Ronggang Li
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Xiaoping Li
- Department of Gastrointestinal Surgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Gang Kong
- Department of Gastrointestinal Surgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Yanyun Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, China
| | - Xueying Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, China
| | - Zhengping Che
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, China
| | - Qi Xie
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, China
| | - Jiachun Lian
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, China
| | - Bihua Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, China.,Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Xin Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, China.,Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China.,Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang, China
| | - Xueqin Huang
- Department of Otolaryngology Second School of Clinical College, Guangdong Medical University, Dongguan, China
| | - Weijuan Huang
- Department of Pharmacy, Dongguan Hospital Affiliated to Jinan University, Marina Bay Central Hospital of Dongguan, Dongguan, China
| | - Xianxiu Qiu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, China
| | - Jincheng Zeng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, China.,Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang, China.,Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, Guangdong Medical University, Dongguan, China
| |
Collapse
|
7
|
Feng D, Lin J, Wang W, Yan K, Liang H, Liang J, Yu H, Ling B. Wnt3a/β-Catenin/CBP Activation in the Progression of Cervical Intraepithelial Neoplasia. Pathol Oncol Res 2021; 27:609620. [PMID: 34257574 PMCID: PMC8262210 DOI: 10.3389/pore.2021.609620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/10/2021] [Indexed: 11/21/2022]
Abstract
Piwil2 reprograms HPV-infected reserve cells in the cervix into tumor-initiated cells (TICs) and upregulates Wnt3a expression sequentially, which leads to cervical intraepithelial neoplasia (CIN) and ultimately squamous cell carcinoma (SCC). However, little is known regarding Wnt signaling in the maintenance of TIC stemness during the progression of cervical lesions. We herein investigated the expression of canonical Wnt3a signaling and related genes by microarray data set analysis and immunohistochemical (IHC) staining of samples obtained by biopsy of normal cervix, low- and high-grade CIN, and invasive SCC tissue. Array data analyzed by GEO2R showed higher expression levels of Wnt signaling and their target genes, significant upregulation of stemness-associated markers, and notably downregulated cell differentiation markers in CIN and SCC tissues compared with those in the normal cervix tissue. Further, Gene Set Enrichment Analysis (GSEA) revealed that Wnt pathway-related genes significantly enriched in SCC. IHC staining showed gradually increased immunoreactivity score of Wnt3a and CBP and notable translocation of β-catenin from the membrane to the cytoplasm and nucleus during the lesion progression. The intensity and proportion of P16, Ki67 and CK17 staining also increased with the progression of cervical lesions, whereas minimal to negative Involucrin expression was observed in CIN2/3 and SCC. Therefore, canonical Wnt signaling may contribute to the progression of CIN to SCC and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Dingqing Feng
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Jie Lin
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Wenhui Wang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Keqin Yan
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Haiyan Liang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Jing Liang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Huan Yu
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Bin Ling
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Lai KKY, Kahn M. Pharmacologically Targeting the WNT/β-Catenin Signaling Cascade: Avoiding the Sword of Damocles. Handb Exp Pharmacol 2021; 269:383-422. [PMID: 34463849 DOI: 10.1007/164_2021_523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
WNT/β-catenin signaling plays fundamental roles in numerous developmental processes and in adult tissue homeostasis and repair after injury, by controlling cellular self-renewal, activation, division, differentiation, movement, genetic stability, and apoptosis. As such, it comes as no surprise that dysregulation of WNT/β-catenin signaling is associated with various diseases, including cancer, fibrosis, neurodegeneration, etc. Although multiple agents that specifically target the WNT/β-catenin signaling pathway have been studied preclinically and a number have entered clinical trials, none has been approved by the FDA to date. In this chapter, we provide our insights as to the reason(s) it has been so difficult to safely pharmacologically target the WNT/β-catenin signaling pathway and discuss the significant efforts undertaken towards this goal.
Collapse
Affiliation(s)
- Keane K Y Lai
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Michael Kahn
- Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
9
|
He S, Tang S. WNT/β-catenin signaling in the development of liver cancers. Biomed Pharmacother 2020; 132:110851. [PMID: 33080466 DOI: 10.1016/j.biopha.2020.110851] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/27/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
The WNT/β-catenin signaling pathway is a highly conserved and tightly controlled molecular mechanism that regulates embryonic development, cellular proliferation and differentiation. Of note, accumulating evidence has shown that the aberrant of WNT/β-catenin signaling promotes the development and/or progression of liver cancer, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), the two most prevalent primary liver tumours in adults. There are two different WNT signaling pathways have been identified, which were termed non-canonical and canonical pathways, the latter involving the activation of β-catenin. β-catenin, acting as an intracellular signal transducer in the WNT signaling pathway, is encoded by CTNNB1 and plays a critical role in tumorigenesis. In the past research, most liver tumors have mutations in genes encoding key components of the WNT/β-catenin signaling pathway. In addition, several of other signaling pathways also can crosswalk with β-catenin. In this review, we discuss the most relevant molecular mechanisms of action and regulation of WNT/β-catenin signaling in the development and pathophysiology of liver cancers, as well as in the development of therapeutics.
Collapse
Affiliation(s)
- Shuai He
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Shilei Tang
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China.
| |
Collapse
|
10
|
Labusch M, Mancini L, Morizet D, Bally-Cuif L. Conserved and Divergent Features of Adult Neurogenesis in Zebrafish. Front Cell Dev Biol 2020; 8:525. [PMID: 32695781 PMCID: PMC7338623 DOI: 10.3389/fcell.2020.00525] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Adult neurogenesis, i.e., the generation of neurons from neural stem cells (NSCs) in the adult brain, contributes to brain plasticity in all vertebrates. It varies, however, greatly in extent, location and physiological characteristics between species. During the last decade, the teleost zebrafish (D. rerio) was increasingly used to study the molecular and cellular properties of adult NSCs, in particular as a prominent NSC population was discovered at the ventricular surface of the dorsal telencephalon (pallium), in territories homologous to the adult neurogenic niches of rodents. This model, for its specific features (large NSC population, amenability to intravital imaging, high regenerative capacity) allowed rapid progress in the characterization of basic adult NSC features. We review here these findings, with specific comparisons with the situation in rodents. We specifically discuss the cellular nature of NSCs (astroglial or neuroepithelial cells), their heterogeneities and their neurogenic lineages, and the mechanisms controlling NSC quiescence and fate choices, which all impact the neurogenic output. We further discuss the regulation of NSC activity in response to physiological triggers and non-physiological conditions such as regenerative contexts.
Collapse
Affiliation(s)
- Miriam Labusch
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR 3738, CNRS, Team Supported by the Ligue Nationale Contre le Cancer, Paris, France.,Sorbonne Université, Collège Doctoral, Paris, France
| | - Laure Mancini
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR 3738, CNRS, Team Supported by the Ligue Nationale Contre le Cancer, Paris, France.,Sorbonne Université, Collège Doctoral, Paris, France
| | - David Morizet
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR 3738, CNRS, Team Supported by the Ligue Nationale Contre le Cancer, Paris, France.,Sorbonne Université, Collège Doctoral, Paris, France
| | - Laure Bally-Cuif
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR 3738, CNRS, Team Supported by the Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|