1
|
Lechuga LM, Cho MM, Vail DM, Captini CM, Fain SB, Begovatz P. Feasibility and optimization of 19F MRI on a clinical 3T with a large field-of-view torso coil. Phys Med Biol 2024; 69:125002. [PMID: 38759675 PMCID: PMC11149172 DOI: 10.1088/1361-6560/ad4d50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 05/19/2024]
Abstract
Objective.The objective of this work is to: (1) demonstrate fluorine-19 (19F) MRI on a 3T clinical system with a large field of view (FOV) multi-channel torso coil (2) demonstrate an example parameter selection optimization for a19F agent to maximize the signal-to-noise ratio (SNR)-efficiency for spoiled gradient echo (SPGR), balanced steady-state free precession (bSSFP), and phase-cycled bSSFP (bSSFP-C), and (3) validate detection feasibility inex vivotissues.Approach.Measurements were conducted on a 3.0T Discovery MR750w MRI (GE Healthcare, USA) with an 8-channel1H/19F torso coil (MRI Tools, Germany). Numerical simulations were conducted for perfluoropolyether to determine the theoretical parameters to maximize SNR-efficiency for the sequences. Theoretical parameters were experimentally verified, and the sensitivity of the sequences was compared with a 10 min acquisition time with a 3.125 × 3.125 × 3 mm3in-plane resolution. Feasibility of a bSSFP-C was also demonstrated in phantom andex vivotissues.Main Results. Flip angles (FAs) of 12 and 64° maximized the signal for SPGR and bSSFP, and validation of optimal FA and receiver bandwidth showed close agreement with numerical simulations. Sensitivities of 2.47, 5.81, and 4.44ms-0.5mM-1 and empirical detection limits of 20.3, 1.5, and 6.2 mM were achieved for SPGR, bSSFP, and bSSFP-C, respectively. bSSFP and bSSFP-C achieved 1.8-fold greater sensitivity over SPGR (p< 0.01).Significance.bSSFP-C was able to improve sensitivity relative to simple SPGR and reduce both bSSFP banding effects and imaging time. The sequence was used to demonstrate the feasibility of19F MRI at clinical FOVs and field strengths withinex-vivotissues.
Collapse
Affiliation(s)
- Lawrence M Lechuga
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Monica M Cho
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - David M Vail
- Department of Medical Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, United States of America
| | - Christian M Captini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- Carbone Cancer Center, University of Wisconsin, Madison, WI, United States of America
- Department of Biomedical Engineering, University of Wisconsin School of Engineering, Madison, WI, United States of America
| | - Sean B Fain
- Department of Radiology, University of Iowa, Iowa City, IA, United States of America
| | - Paul Begovatz
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| |
Collapse
|
2
|
Jiang Y, Hou X, Zhao X, Jing J, Sun L. Tracking adoptive natural killer cells via ultrasound imaging assisted with nanobubbles. Acta Biomater 2023; 169:542-555. [PMID: 37536495 DOI: 10.1016/j.actbio.2023.07.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
The recent years has witnessed an exponential growth in the field of natural killer (NK) cell-based immunotherapy for cancer treatment. As a prerequisite to precise evaluations and on-demand interventions, the noninvasive tracking of adoptive NK cells plays a crucial role not only in post-treatment monitoring, but also in offering opportunities for preclinical studies on therapy optimizations. Here, we describe an NK cell tracking strategy for cancer immunotherapy based on ultrasound imaging modality. Nanosized ultrasound contrast agents, gas vesicles (GVs), were surface-functionalized to label NK cells. Unlike traditional microbubble contrast agents, nanosized GVs with their unique thermodynamical stability enable the detection of labeled NK cells under nonlinear contrast-enhanced ultrasound (nCEUS), without a noticeable impact on cellular viability or migration. By such labeling, we were able to monitor the trafficking of systematically infused NK cells to a subcutaneous tumor model. Upon co-treatment with interleukin (IL)-2, we observed a rapid enhancement in NK cell trafficking at the tumor site as early as 3 h post-infusion. Altogether, we show that the proposed ultrasound-based tracking strategy is able to capture the dynamical changes of cell trafficking in NK cell-based immunotherapy, providing referencing information for early-phase monotherapy evaluation, as well as understanding the effects of modulatory co-treatment. STATEMENT OF SIGNIFICANCE: In cellular immunotherapies, the post-infusion monitoring of the living therapeutics has been challenging. Several popular imaging modalities have been explored the monitoring of the adoptive immune cells, evaluating their trafficking and accumulation in the tumor. Here we demonstrated, for the first time, the ultrasound imaging-based immune cell tracking strategy. We showed that the acoustic labeling of adoptive immune cells was feasible with nanosized ultrasound contrast agents, overcoming the size and stability limitations of traditional microbubbles, enabling dynamical tracking of adoptive natural killer cells in both monotherapy and synergic treatment with cytokines. This article introduced the cost-effective and ubiquitous ultrasound imaging modality into the field of cellular immunotherapies, with broad prospectives in early assessment and on-demand image-guided interventions.
Collapse
Affiliation(s)
- Yizhou Jiang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Room ST409 Hung Hom, Hong Kong SAR 999077, PR China
| | - Xuandi Hou
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Room ST409 Hung Hom, Hong Kong SAR 999077, PR China
| | - Xinyi Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Room ST409 Hung Hom, Hong Kong SAR 999077, PR China
| | - Jianing Jing
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Room ST409 Hung Hom, Hong Kong SAR 999077, PR China
| | - Lei Sun
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Room ST409 Hung Hom, Hong Kong SAR 999077, PR China.
| |
Collapse
|
3
|
Lauri C, Varani M, Bentivoglio V, Capriotti G, Signore A. Present status and future trends in molecular imaging of lymphocytes. Semin Nucl Med 2023; 53:125-134. [PMID: 36150910 PMCID: PMC9489269 DOI: 10.1053/j.semnuclmed.2022.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 01/28/2023]
Abstract
Immune system is emerging as a crucial protagonist in a huge variety of oncologic and non-oncologic conditions including response to vaccines and viral infections (such as SARS-CoV-2). The increasing knowledge of molecular biology underlying these diseases allowed the identification of specific targets and the possibility to use tailored therapies against them. Immunotherapies and vaccines are, indeed, more and more used nowadays for treating infections, cancer and autoimmune diseases and, therefore, there is the need to identify, quantify and monitor immune cell trafficking before and after treatment. This approach will provide crucial information for therapy decision-making. Imaging of B and T-lymphocytes trafficking by using tailored radiopharmaceuticals proved to be a successful nuclear medicine tool. In this review, we will provide an overview of the state of art and future trends for "in vivo" imaging of lymphocyte trafficking and homing by mean of specific receptor-tailored radiopharmaceuticals.
Collapse
Affiliation(s)
- Chiara Lauri
- Nuclear Medicine Unit Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, "Sapienza" University of Rome, Rome, Italy.
| | | | | | | | | |
Collapse
|
4
|
CAR-NK as a Rapidly Developed and Efficient Immunotherapeutic Strategy against Cancer. Cancers (Basel) 2022; 15:cancers15010117. [PMID: 36612114 PMCID: PMC9817948 DOI: 10.3390/cancers15010117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Chimeric antigen receptor (CAR)-modified T cell therapy has been rapidly developing in recent years, ultimately revolutionizing immunotherapeutic strategies and providing significant anti-tumor potency, mainly in treating hematological neoplasms. However, graft-versus-host disease (GVHD) and other adverse effects, such as cytokine release syndromes (CRS) and neurotoxicity associated with CAR-T cell infusion, have raised some concerns about the broad application of this therapy. Natural killer (NK) cells have been identified as promising alternative platforms for CAR-based therapies because of their unique features, such as a lack of human leukocyte antigen (HLA)-matching restriction, superior safety, and better anti-tumor activity when compared with CAR-T cells. The lack of CRS, neurotoxicity, or GVHD, in the case of CAR-NK therapy, in addition to the possibility of using allogeneic NK cells as a CAR platform for "off-the-shelf" therapy, opens new windows for strategic opportunities. This review underlines recent design achievements in CAR constructs and summarizes preclinical studies' results regarding CAR-NK therapies' safety and anti-tumor potency. Additionally, new approaches in CAR-NK technology are briefly described, and currently registered clinical trials are listed.
Collapse
|
5
|
Volpe A, Adusumilli PS, Schöder H, Ponomarev V. Imaging cellular immunotherapies and immune cell biomarkers: from preclinical studies to patients. J Immunother Cancer 2022; 10:jitc-2022-004902. [PMID: 36137649 PMCID: PMC9511655 DOI: 10.1136/jitc-2022-004902] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2022] [Indexed: 01/26/2023] Open
Abstract
Cellular immunotherapies have emerged as a successful therapeutic approach to fight a wide range of human diseases, including cancer. However, responses are limited to few patients and tumor types. An in-depth understanding of the complexity and dynamics of cellular immunotherapeutics, including what is behind their success and failure in a patient, the role of other immune cell types and molecular biomarkers in determining a response, is now paramount. As the cellular immunotherapy arsenal expands, whole-body non-invasive molecular imaging can shed a light on their in vivo fate and contribute to the reliable assessment of treatment outcome and prediction of therapeutic response. In this review, we outline the non-invasive strategies that can be tailored toward the molecular imaging of cellular immunotherapies and immune-related components, with a focus on those that have been extensively tested preclinically and are currently under clinical development or have already entered the clinical trial phase. We also provide a critical appraisal on the current role and consolidation of molecular imaging into clinical practice.
Collapse
Affiliation(s)
- Alessia Volpe
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA,Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA,Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Vladimir Ponomarev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA,Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York, USA,Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
6
|
Galli F, Varani M, Trapasso F, Tetti S, Signore A. Radiolabeling of monocytes, NK cells and dendritic cells and quality controls. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00187-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
7
|
Lechuga LM, Forsberg MH, Walker KL, Ludwig KD, Capitini CM, Fain SB. Detection and viability of murine NK cells in vivo in a lymphoma model using fluorine-19 MRI. NMR IN BIOMEDICINE 2021; 34:e4600. [PMID: 34409665 PMCID: PMC8635739 DOI: 10.1002/nbm.4600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 05/04/2023]
Abstract
Natural killer (NK) cell therapies are being increasingly used as an adoptive cell therapy for cancer because they can recognize tumor cells in an antigen-independent manner. While promising, the understanding of NK cell persistence, particularly within a harsh tumor microenvironment, is limited. Fluorine-19 (19 F) MRI is a noninvasive imaging modality that has shown promise in longitudinally tracking cell populations in vivo; however, it has not been studied on murine NK cells. In this study, the impact of 19 F labeling on murine NK cell viability and function was assessed in vitro and then used to quantify NK cell persistence in vivo. While there was no noticeable impact on viability, labeling NK cells with 19 F did attenuate cytotoxicity against lymphoma cells in vitro. Fluorescent microscopy verified 19 F labeling in both the cytoplasm and nucleus of NK cells. Lymphoma-bearing mice were given intratumoral injections of 19 F-labeled NK cells in which signal was detectable across the 6 day observation period via 19 F MRI. Quantification from the composite images detected 78-94% of the initially injected NK cells across 6 days, with a significant decrease between Days 3 and 6. Postmortem flow cytometry demonstrated retention of 19 F intracellularly within adoptively transferred NK cells with less than 1% of 19 F-containing cells identified as tumor-associated macrophages that presumably ingested nonviable NK cells. This work demonstrates that 19 F MRI offers a specific imaging platform to track and quantify murine NK cells within tumors noninvasively.
Collapse
Affiliation(s)
- Lawrence M Lechuga
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Matthew H Forsberg
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kirsti L Walker
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kai D Ludwig
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Sean B Fain
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Küppers J, Kürpig S, Bundschuh RA, Essler M, Lütje S. Radiolabeling Strategies of Nanobodies for Imaging Applications. Diagnostics (Basel) 2021; 11:1530. [PMID: 34573872 PMCID: PMC8471529 DOI: 10.3390/diagnostics11091530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Nanobodies are small recombinant antigen-binding fragments derived from camelid heavy-chain only antibodies. Due to their compact structure, pharmacokinetics of nanobodies are favorable compared to full-size antibodies, allowing rapid accumulation to their targets after intravenous administration, while unbound molecules are quickly cleared from the circulation. In consequence, high signal-to-background ratios can be achieved, rendering radiolabeled nanobodies high-potential candidates for imaging applications in oncology, immunology and specific diseases, for instance in the cardiovascular system. In this review, a comprehensive overview of central aspects of nanobody functionalization and radiolabeling strategies is provided.
Collapse
Affiliation(s)
- Jim Küppers
- Department of Nuclear Medicine, University Hospital Bonn, 53127 Bonn, Germany; (S.K.); (R.A.B.); (M.E.); (S.L.)
| | | | | | | | | |
Collapse
|
9
|
Persano S, Das P, Pellegrino T. Magnetic Nanostructures as Emerging Therapeutic Tools to Boost Anti-Tumour Immunity. Cancers (Basel) 2021; 13:2735. [PMID: 34073106 PMCID: PMC8198238 DOI: 10.3390/cancers13112735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer immunotherapy has shown remarkable results in various cancer types through a range of immunotherapeutic approaches, including chimeric antigen receptor-T cell (CAR-T) therapy, immune checkpoint blockade (ICB), and therapeutic vaccines. Despite the enormous potential of cancer immunotherapy, its application in various clinical settings has been limited by immune evasion and immune suppressive mechanisms occurring locally or systemically, low durable response rates, and severe side effects. In the last decades, the rapid advancement of nanotechnology has been aiming at the development of novel synthetic nanocarriers enabling precise and enhanced delivery of immunotherapeutics, while improving drug stability and effectiveness. Magnetic nanostructured formulations are particularly intriguing because of their easy surface functionalization, low cost, and robust manufacturing procedures, together with their suitability for the implementation of magnetically-guided and heat-based therapeutic strategies. Here, we summarize and discuss the unique features of magnetic-based nanostructures, which can be opportunely designed to potentiate classic immunotherapies, such as therapeutic vaccines, ICB, adoptive cell therapy (ACT), and in situ vaccination. Finally, we focus on how multifunctional magnetic delivery systems can facilitate the anti-tumour therapies relying on multiple immunotherapies and/or other therapeutic modalities. Combinatorial magnetic-based therapies are indeed offering the possibility to overcome current challenges in cancer immunotherapy.
Collapse
Affiliation(s)
- Stefano Persano
- Nanomaterials for Biomedical Applications, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy;
| | | | - Teresa Pellegrino
- Nanomaterials for Biomedical Applications, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy;
| |
Collapse
|
10
|
Oliveira FA, Nucci MP, Filgueiras IS, Ferreira JM, Nucci LP, Mamani JB, Alvieri F, Souza LEB, Rego GNA, Kondo AT, Hamerschlak N, Gamarra LF. Noninvasive Tracking of Hematopoietic Stem Cells in a Bone Marrow Transplant Model. Cells 2020; 9:cells9040939. [PMID: 32290257 PMCID: PMC7226958 DOI: 10.3390/cells9040939] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
The hematopoietic stem cell engraftment depends on adequate cell numbers, their homing, and the subsequent short and long-term engraftment of these cells in the niche. We performed a systematic review of the methods employed to track hematopoietic reconstitution using molecular imaging. We searched articles indexed, published prior to January 2020, in PubMed, Cochrane, and Scopus with the following keyword sequences: (Hematopoietic Stem Cell OR Hematopoietic Progenitor Cell) AND (Tracking OR Homing) AND (Transplantation). Of 2191 articles identified, only 21 articles were included in this review, after screening and eligibility assessment. The cell source was in the majority of bone marrow from mice (43%), followed by the umbilical cord from humans (33%). The labeling agent had the follow distribution between the selected studies: 14% nanoparticle, 29% radioisotope, 19% fluorophore, 19% luciferase, and 19% animal transgenic. The type of graft used in the studies was 57% allogeneic, 38% xenogeneic, and 5% autologous, being the HSC receptor: 57% mice, 9% rat, 19% fish, 5% for dog, porcine and salamander. The imaging technique used in the HSC tracking had the following distribution between studies: Positron emission tomography/single-photon emission computed tomography 29%, bioluminescence 33%, fluorescence 19%, magnetic resonance imaging 14%, and near-infrared fluorescence imaging 5%. The efficiency of the graft was evaluated in 61% of the selected studies, and before one month of implantation, the cell renewal was very low (less than 20%), but after three months, the efficiency was more than 50%, mainly in the allogeneic graft. In conclusion, our review showed an increase in using noninvasive imaging techniques in HSC tracking using the bone marrow transplant model. However, successful transplantation depends on the formation of engraftment, and the functionality of cells after the graft, aspects that are poorly explored and that have high relevance for clinical analysis.
Collapse
Affiliation(s)
- Fernando A. Oliveira
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Mariana P. Nucci
- LIM44—Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil;
| | - Igor S. Filgueiras
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - João M. Ferreira
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Leopoldo P. Nucci
- Centro Universitário do Planalto Central, Brasília DF 72445-020, Brazil;
| | - Javier B. Mamani
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Fernando Alvieri
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Lucas E. B. Souza
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto SP 14049-900, Brazil;
| | - Gabriel N. A. Rego
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Andrea T. Kondo
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Nelson Hamerschlak
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Lionel F. Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
- Correspondence: ; Tel.: +55-11-2151-0243
| |
Collapse
|