1
|
He Z, Sun J, Wang M, Chen S, Mao G, Yang L. Talin1 Ser425 phosphorylation promotes colorectal cancer progression and metastasis. Transl Cancer Res 2025; 14:796-807. [PMID: 40104703 PMCID: PMC11912083 DOI: 10.21037/tcr-24-1283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/04/2024] [Indexed: 03/20/2025]
Abstract
Background Talin1 serves as a crucial element within the multiprotein adhesion complexes that facilitate processes such as cell migration, adhesion, and integrin signaling. This study aimed to explore the underlying role of Talin1 Ser425 phosphorylation in the development of colorectal cancer (CRC). Methods Blank plasmids, non-phosphorylatable mutant Talin1 S425A plasmids, and phosphorylation-mimetic mutant Talin1 S425D plasmids were constructed and used for transfection of CRC cells. The expression of mRNA and protein in CRC cells or tumor tissues was assessed by The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and UALCAN databases, immunohistochemistry (IHC), and Western blot (WB). Cell proliferation was assessed via 5-ethynyl-2-deoxyuridine (EDU) proliferation assay and colony formation assay. Cell migration and invasion were detected by wound healing assay and transwell assay. Cell apoptosis was assessed by flow cytometry. The Kaplan-Meier Plotter was used to evaluate the prognostic value of mRNA in CRC. Results TLN1 was markedly downregulated in CRC tissues while the level of Talin1 Ser425 phosphorylation in CRC tissues and aggressive CRC cells was relatively higher. The S425A mutant inhibited CRC cell proliferation, migration, and invasion, whereas the S425D mutant promoted these processes. Flow cytometry assay showed that cell apoptosis was induced by S425A mutant and suppressed by S425D mutant in RKO cells. Further investigation suggested that CDK5 might be responsible for Talin1 phosphorylation. Conclusions Talin1 Ser425 phosphorylation is of great importance in CRC development and Talin1 is supposed to be a potential tumor marker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Zhengxiu He
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Gastroenterology, Dongtai People’s Hospital, Yancheng, China
| | - Jian Sun
- Department of Respiratory Medicine, Shanghai Jiading District Anting Hospital, Shanghai, China
| | - Mengmeng Wang
- Department of Chinese Medicine Oncology, Shanghai Jiading District Anting Hospital, Shanghai, China
| | - Shanshan Chen
- Cancer Research Center, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Guoxin Mao
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Li Yang
- Department of Respiratory Medicine, Shanghai Jiading District Anting Hospital, Shanghai, China
| |
Collapse
|
2
|
Satish S, Athavale M, Kharkar PS. Targeted therapies for Glioblastoma multiforme (GBM): State-of-the-art and future prospects. Drug Dev Res 2024; 85:e22261. [PMID: 39485272 DOI: 10.1002/ddr.22261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 11/03/2024]
Abstract
Glioblastoma multiforme (GBM) remains one of the most aggressive and lethal forms of brain cancer, characterized by rapid growth and resistance to conventional therapies. The present review explores the latest advancements in targeted therapies for GBM, emphasizing the critical role of the blood-brain barrier (BBB), blood-brain-tumor barrier, tumor microenvironment, and genetic mutations in influencing treatment outcomes. The impact of the key hallmarks of GBM, for example, chemoresistance, hypoxia, and the presence of glioma stem cells on the disease progression and multidrug resistance are discussed in detail. The major focus is on the innovative strategies aimed at overcoming these challenges, such as the use of monoclonal antibodies, small-molecule inhibitors, and novel drug delivery systems designed to enhance drug penetration across the BBB. Additionally, the potential of immunotherapy, specifically immune checkpoint inhibitors and vaccine-based approaches, to improve patient prognosis was explored. Recent clinical trials and preclinical studies are reviewed to provide a comprehensive overview of the current landscape and future prospects in GBM treatment. The integration of advanced computational models and personalized medicine approaches is also considered, aiming to tailor therapies to individual patient profiles for better efficacy. Overall, while significant progress has been made in understanding and targeting the complex biology of GBM, continued research and clinical innovation are imperative to develop more effective and sustainable therapeutic options for patients battling this formidable disease.
Collapse
Affiliation(s)
- Smera Satish
- Sathgen Therapeutics, Godavari Biorefineries Limited, Somaiya Group Company, Mumbai, India
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Maithili Athavale
- Sathgen Therapeutics, Godavari Biorefineries Limited, Somaiya Group Company, Mumbai, India
| | - Prashant S Kharkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
3
|
Nikhil K, Shah K. CDK5: an oncogene or an anti-oncogene: location location location. Mol Cancer 2023; 22:186. [PMID: 37993880 PMCID: PMC10666462 DOI: 10.1186/s12943-023-01895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
Recent studies have uncovered various physiological functions of CDK5 in many nonneuronal tissues. Upregulation of CDK5 and/or its activator p35 in neurons promotes healthy neuronal functions, but their overexpression in nonneuronal tissues is causally linked to cancer of many origins. This review focuses on the molecular mechanisms by which CDK5 recruits diverse tissue-specific substrates to elicit distinct phenotypes in sixteen different human cancers. The emerging theme suggests that CDK5's role as an oncogene or anti-oncogene depends upon its subcellular localization. CDK5 mostly acts as an oncogene, but in gastric cancer, it is a tumor suppressor due to its unique nuclear localization. This indicates that CDK5's access to certain nuclear substrates converts it into an anti-oncogenic kinase. While acting as a bonafide oncogene, CDK5 also activates a few cancer-suppressive pathways in some cancers, presumably due to the mislocalization of nuclear substrates in the cytoplasm. Therefore, directing CDK5 to the nucleus or exporting tumor-suppressive nuclear substrates to the cytoplasm may be promising approaches to combat CDK5-induced oncogenicity, analogous to neurotoxicity triggered by nuclear CDK5. Furthermore, while p35 overexpression is oncogenic, hyperactivation of CDK5 by inducing p25 formation results in apoptosis, which could be exploited to selectively kill cancer cells by dialing up CDK5 activity, instead of inhibiting it. CDK5 thus acts as a molecular rheostat, with different activity levels eliciting distinct functional outcomes. Finally, as CDK5's role is defined by its substrates, targeting them individually or in conjunction with CDK5 should create potentially valuable new clinical opportunities.
Collapse
Affiliation(s)
- Kumar Nikhil
- Department of Chemistry, Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Kavita Shah
- Department of Chemistry, Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
4
|
Xu X, Wang Y, Chen Z, Zhu Y, Wang J, Guo J. Favorable Immunotherapy Plus Tyrosine Kinase Inhibition Outcome of Renal Cell Carcinoma Patients with Low CDK5 Expression. Cancer Res Treat 2023; 55:1321-1336. [PMID: 37024096 PMCID: PMC10582544 DOI: 10.4143/crt.2022.1532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
PURPOSE Immunotherapy (IO) plus tyrosine kinase inhibitor (TKI) has become the first-line treatment for advanced renal cell carcinoma, despite the lack of prognostic biomarkers. Cyclin-dependent kinase 5 (CDK5) affects the tumor microenvironment, which may influence the efficacy of TKI+IO. MATERIALS AND METHODS Two cohorts from our center (Zhongshan Metastatic Renal Cell Carcinoma [ZS-MRCC] cohort, Zhongshan High-risk Localized Renal Cell Carcinoma [ZS-HRRCC] cohort) and one cohort from a clinical trial (JAVELIN-101) were enrolled. The expression of CDK5 of each sample was determined by RNA sequencing. Immune infiltration and T cell function were evaluated by flow cytometry and immunohistochemistry. Response and progression-free survival (PFS) were set as primary endpoints. RESULTS Patients of low CDK5 expression showed higher objective response rate (60.0% vs. 23.3%) and longer PFS in both cohorts (ZS-MRCC cohort, p=0.014; JAVELIN-101 cohort, p=0.040). CDK5 expression was enhanced in non-responders (p < 0.05). In the ZS-HRRCC cohort, CDK5 was associated with decreased tumor-infiltrating CD8+ T cells, which was proved by immunohistochemistry (p < 0.05) and flow cytometry (Spearman's ρ=-0.49, p < 0.001). In the high CDK5 subgroup, CD8+ T cells revealed a dysfunction phenotype with decreased granzyme B, and more regulatory T cells were identified. A predictive score was further constructed by random forest, involving CDK5 and T cell exhaustion features. The RFscore was also validated in both cohorts. By utilizing the model, more patients might be distinguished from the overall cohort. Additionally, only in the low RFscore did TKI+IO outperform TKI monotherapy. CONCLUSION High-CDK5 expression was associated with immunosuppression and TKI+IO resistance. RFscore based on CDK5 may be utilized as a biomarker to determine the optimal treatment strategy.
Collapse
Affiliation(s)
- Xianglai Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai,
China
| | - Ying Wang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai,
China
| | - Zhaoyi Chen
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai,
China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei,
China
| | - Yanjun Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai,
China
| | - Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai,
China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai,
China
| |
Collapse
|
5
|
Amin N, Wang H, Song Q, Bhaskar M, Yadav SP, Gilbert MR, Pant H, Tabouret E, Zhuang Z. TP5: A Novel Therapeutic Approach Targeting Aberrant and Hyperactive CDK5/p25 for the Treatment of Colorectal Carcinoma. Int J Mol Sci 2023; 24:11733. [PMID: 37511490 PMCID: PMC10380212 DOI: 10.3390/ijms241411733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Colorectal carcinoma (CRC) is a prevalent cancer worldwide with a high mortality rate. Evidence suggests that increased expression of Cyclin-dependent kinase 5 (CDK5) contributes to cancer progression, making it a promising target for treatment. This study examined the efficacy of selectively inhibiting CDK5 in colorectal carcinoma using TP5, a small peptide that selectively inhibits the aberrant and hyperactive CDK5/p25 complex while preserving physiological CDK5/p35 functions. We analyzed TP5's impact on CDK5 activity, cell survival, apoptosis, the cell cycle, DNA damage, ATM phosphorylation, and reactive oxygen species (ROS) signaling in mitochondria, in CRC cell lines, both alone and in combination with chemotherapy. We also assessed TP5's efficacy on a xenograft mouse model with HCT116 cells. Our results showed that TP5 decreased CDK5 activity, impaired cell viability and colony formation, induced apoptosis, increased DNA damage, and led to the G1 phase arrest of cell cycle progression. In combination with irinotecan, TP5 demonstrated a synergy by leading to the accumulation of DNA damage, increasing the γH2A.X foci number, and inhibiting G2/M arrest induced by Sn38 treatment. TP5 alone or in combination with irinotecan increased mitochondrial ROS levels and inhibited tumor growth, prolonging mouse survival in the CRC xenograft animal model. These results suggest that TP5, either alone or in combination with irinotecan, is a promising therapeutic option for colorectal carcinoma.
Collapse
Affiliation(s)
- Niranjana Amin
- National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Herui Wang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qi Song
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manju Bhaskar
- Translational Neuroscience Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Harish Pant
- National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Emeline Tabouret
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Institute of NeuroPhysiopathology (INP), National Centre for Scientific Research (CNRS), Aix-Marseille University, 13005 Marseille, France
| | - Zhengping Zhuang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Bukowski K, Marciniak B, Kciuk M, Mujwar S, Mojzych M, Kontek R. Pyrazolo[4,3- e]tetrazolo[1,5- b][1,2,4]triazine Sulfonamides as Novel Potential Anticancer Agents: Apoptosis, Oxidative Stress, and Cell Cycle Analysis. Int J Mol Sci 2023; 24:ijms24108504. [PMID: 37239848 DOI: 10.3390/ijms24108504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The current study continues the evaluation of the anticancer potential of three de novo synthesized pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides-MM129, MM130, and MM131-against human cancer cells of HeLa, HCT 116, PC-3, and BxPC-3 lines. The pro-apoptotic activity of the investigated sulfonamides was shown by observations of changes in the mitochondrial transmembrane potential of the tested cells, externalization of phosphatidylserine on the cellular membrane surface, and cell morphology in microscopic imaging. The computational studies have shown that MM129 exhibited the lowest binding energy values when docked against CDK enzymes. In addition, the highest stability was shown for complexes formed between MM129 and CDK5/8 enzymes. All examined compounds induced cell cycle arrest in the G0/G1 phase in the BxPC-3 and PC-3 cells and simultaneously caused the accumulation of cells in the S phase in the HCT 116 cells. In addition, the increase in the subG1 fraction was observed in PC-3 and HeLa cells. The application of a fluorescent H2DCFDA probe revealed the high pro-oxidative properties of the tested triazine derivatives, especially MM131. In conclusion, the obtained results suggest that MM129, MM130, and MM131 exhibited strong pro-apoptotic properties towards investigated cells, mainly against the HeLa and HCT 116 cell lines, and high pro-oxidative potential as well. Moreover, it is suggested that the anticancer activity of the tested compounds may be associated with their ability to inhibit CDK enzymes activities.
Collapse
Affiliation(s)
- Karol Bukowski
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| | - Beata Marciniak
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| |
Collapse
|
7
|
Identifying predictive biomarkers of apatinib in third-line treatment of advanced colorectal cancer through comprehensive genomic profiling. Anticancer Drugs 2023; 34:431-438. [PMID: 36730496 DOI: 10.1097/cad.0000000000001451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Apatinib is a selective inhibitor of vascular endothelial growth factor receptor-2. Despite encouraging anticancer activity in different cancer types, some patients may not benefit from apatinib treatment. Herein, we characterized genomic profiles in colorectal cancer (CRC) patients to explore predictive biomarkers of apatinib at molecular level. We retrospectively recruited 19 CRC patients receiving apatinib as third-line treatment. Tissue samples before apatinib treatment were collected and subjected to genomic profiling using a targeted sequencing panel covering 520 cancer-related genes. After apatinib treatment, the patients achieved an objective response rate of 21% (4/19) and disease control rate of 57.9% (11/19). The median progression-free survival (PFS) and overall survival were 5 and 8.7 months, respectively. Genetic alterations were frequently identified in TP53 (95%), APC (53%), KRAS (53%) and PIK3CA (26%). Higher tumor mutation burden levels were significantly observed in patients harboring alterations in ERBB and RAS signaling pathways. Patients harboring FLT1 amplifications ( n = 3) showed significantly worse PFS than wild-type patients. Our study described molecular profiles in CRC patients receiving apatinib treatment and identified FLT1 amplification as a potential predictive biomarker for poor efficacy of apatinib. Further studies are warranted to validate the use of FLT1 amplification during apatinib treatment.
Collapse
|
8
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
9
|
Guan L, Tang Y, Li G, Qin Z, Li S. Comprehensive Analysis of Role of Cyclin-Dependent Kinases Family Members in Colorectal Cancer. Front Oncol 2022; 12:921710. [PMID: 35814446 PMCID: PMC9258493 DOI: 10.3389/fonc.2022.921710] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/24/2022] [Indexed: 01/10/2023] Open
Abstract
Background Cyclin-dependent kinases (CDKs) are cell cycle regulators, and abnormal activation can accelerate tumor cell proliferation. However, The relation between CDKs dysregulation to colorectal cancer incidence and progression have not been examined in detail. Methods:Differences in CDKs expression between colorectal cancer and normal tissues, associations between expression and clinical prognosis, incidence and frequencies of CDKs gene mutations, and the influences of CDKs on tumor infiltration by immune cells were examined by analyses of Oncomine, Gene Expression Profiling Interactive Analysis, Kaplan-Meier plotter, cBioPortal, GeneMANIA, and TIMER databases. Results Colorectal cancer tissues showed enhanced expression levels of CDKs 1/2/4/5/6/8/12/13/19 but reduced CDK3 expression. CDK7 was highly expressed in some colorectal cancer tissues but downregulated in others. Expression levels of CDK1/3/4/7/8/10/11b/13/18/19/20 were correlated with clinical stage, and CDK 5/10/12/16 expression levels predicted prognosis and survival. Differential CDKs expression correlated with cell cycle progression, amino acid polypeptide modifications, and activation of other protein kinases. Expression levels of all CDKs except CDK16 were correlated with infiltration of CD4+T, CD8+T, B and Tregs cells. Conclusions CDK 1 and 4 could be used as diagnostic biomarkers for CRC. CDK 5/10/12/16 can be utilized as prognostic biomarkers.
Collapse
Affiliation(s)
- Liping Guan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, China
| | - Yuanyuan Tang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Guanghua Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zhao Qin
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Shaoshan Li
- Department of General Surgery of the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Shaoshan Li,
| |
Collapse
|
10
|
Binlateh T, Reudhabibadh R, Prommeenate P, Hutamekalin P. Investigation of mechanisms underlying the inhibitory effects of metformin against proliferation and growth of neuroblastoma SH-SY5Y cells. Toxicol In Vitro 2022; 83:105410. [DOI: 10.1016/j.tiv.2022.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
|
11
|
Wang D, Zhou Y, Hua L, Li J, Zhu N, Liu Y. CDK3, CDK5 and CDK8 Proteins as Prognostic and Potential Biomarkers in Colorectal Cancer Patients. Int J Gen Med 2022; 15:2233-2245. [PMID: 35250301 PMCID: PMC8893271 DOI: 10.2147/ijgm.s349576] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/16/2022] [Indexed: 12/26/2022] Open
Abstract
Introduction Methods Results Conclusion
Collapse
Affiliation(s)
- Dan Wang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, HuBei, People’s Republic of China
| | - Yanhong Zhou
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, HuBei, People’s Republic of China
| | - Li Hua
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, HuBei, People’s Republic of China
| | - Jiaxiang Li
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, HuBei, People’s Republic of China
| | - Ni Zhu
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, HuBei, People’s Republic of China
| | - Yifei Liu
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, HuBei, People’s Republic of China
- Correspondence: Yifei Liu, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, HuBei, People’s Republic of China, Tel +86-715-8266030, Email
| |
Collapse
|
12
|
Thoma OM, Neurath MF, Waldner MJ. Cyclin-Dependent Kinase Inhibitors and Their Therapeutic Potential in Colorectal Cancer Treatment. Front Pharmacol 2021; 12:757120. [PMID: 35002699 PMCID: PMC8733931 DOI: 10.3389/fphar.2021.757120] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/26/2021] [Indexed: 12/17/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are key players in cell cycle regulation. So far, more than ten CDKs have been described. Their direct interaction with cyclins allow progression through G1 phase, transitions to S and G2 phase and finally through mitosis (M). While CDK activation is important in cell renewal, its aberrant expression can lead to the development of malignant tumor cells. Dysregulations in CDK pathways are often encountered in various types of cancer, including all gastrointestinal (GI) tract tumors. This prompted the development of CDK inhibitors as novel therapies for cancer. Currently, CDK inhibitors such as CDK4/6 inhibitors are used in pre-clinical studies for cancer treatment. In this review, we will focus on the therapeutic role of various CDK inhibitors in colorectal cancer, with a special focus on the CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Oana-Maria Thoma
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- German Center for Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- German Center for Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian J Waldner
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- German Center for Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
13
|
Alamri MA, Al‐Jahdali M, Al‐Radadi NS, Hussien MA. Characterization, theoretical investigation, and biological applications of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) complexes of a triazene ligand containing a benzothiazole ring. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mona A. Alamri
- Department of Chemistry, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
- Department of Physics, College of Science and Arts in Dariyah Qassim University Dariyah Saudi Arabia
| | - Mutlaq. Al‐Jahdali
- Department of Chemistry, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
| | - Najlaa S. Al‐Radadi
- Chemistry Department, College of Science Taibah University Al‐Madinah Al‐Munawarah Saudi Arabia
| | - Mostafa A. Hussien
- Department of Chemistry, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
- Department of Chemistry, Faculty of Science Port Said University Port Said Egypt
| |
Collapse
|
14
|
Li X, Huang J, Yu T, Fang X, Lou L, Xin S, Ji L, Jiang F, Lou Y. Fusobacterium nucleatum Promotes the Progression of Colorectal Cancer Through Cdk5-Activated Wnt/β-Catenin Signaling. Front Microbiol 2021; 11:545251. [PMID: 33488528 PMCID: PMC7815597 DOI: 10.3389/fmicb.2020.545251] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND/AIMS Growing evidence supports the direct link of Fusobacterium nucleatum with colorectal cancer (CRC). However, to date, the underlying mechanism of action remains poorly understood. In this study, we examined the effects of F. nucleatum on the progression of CRC and investigated whether cyclin-dependent kinase 5 (Cdk5) is involved in the effect through activating the Wnt/β-catenin signaling pathway. MATERIALS AND METHODS CRC tissues and matched histologically normal specimens were collected from patients who were diagnosed with CRC and underwent surgical treatment in our hospital between January 2018 and January 2019. Two human CRC cell lines, including DLD-1 and SW480, were utilized mainly for in vitro mechanistic investigations. RESULTS The abundance of F. nucleatum was significantly greater in CRC tissues than in cancer-free specimens, which was significantly correlated with the progression of CRC. In vitro investigations revealed that F. nucleatum significantly enhanced the proliferation and migration of CRC cells. Furthermore, F. nucleatum significantly induced the expression of Cdk5 and activation of the Wnt/β-catenin signaling pathway. Notably, knockdown of Cdk5 significantly abrogated the effects of F. nucleatum on cellular processes and Wnt/β-catenin signaling in relation to the progression of CRC. CONCLUSION The results of this study demonstrate that F. nucleatum orchestrates a molecular network involving the direct role of Cdk5 in activating Wnt/β-catenin signaling to modulate CRC progression. Thus, in-depth investigations of F. nucleatum-associated molecular pathways may offer valuable insight into the pathogenesis of CRC, which may help further the development of treatment for this disease.
Collapse
Affiliation(s)
- Xiang Li
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Colorectal Cancer Research Center, Wenzhou Medical University, Wenzhou, China
| | - Jiepeng Huang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Colorectal Cancer Research Center, Wenzhou Medical University, Wenzhou, China
| | - Tingting Yu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Colorectal Cancer Research Center, Wenzhou Medical University, Wenzhou, China
| | - Xiaoting Fang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Colorectal Cancer Research Center, Wenzhou Medical University, Wenzhou, China
| | - Liqin Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Colorectal Cancer Research Center, Wenzhou Medical University, Wenzhou, China
| | - Shijun Xin
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Colorectal Cancer Research Center, Wenzhou Medical University, Wenzhou, China
| | - Ling Ji
- Colorectal Cancer Research Center, Wenzhou Medical University, Wenzhou, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feizhao Jiang
- Colorectal Cancer Research Center, Wenzhou Medical University, Wenzhou, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Colorectal Cancer Research Center, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
Do PA, Lee CH. The Role of CDK5 in Tumours and Tumour Microenvironments. Cancers (Basel) 2020; 13:E101. [PMID: 33396266 PMCID: PMC7795262 DOI: 10.3390/cancers13010101] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Cyclin-dependent kinase 5 (CDK5), which belongs to the protein kinase family, regulates neuronal function but is also associated with cancer development and has been proposed as a target for cancer treatment. Indeed, CDK5 has roles in cell proliferation, apoptosis, angiogenesis, inflammation, and immune response. Aberrant CDK5 activation triggers tumour progression in numerous types of cancer. In this review, we summarise the role of CDK5 in cancer and neurons and CDK5 inhibitors. We expect that our review helps researchers to develop CDK5 inhibitors as treatments for refractory cancer.
Collapse
Affiliation(s)
| | - Chang Hoon Lee
- Phamaceutical Biochemistry, College of Pharmacy, BK21 FOUR Team, and Integrated Research Institute for Drug Development, Dongguk University, Goyang 100-715, Korea;
| |
Collapse
|
16
|
Sawayama H, Miyamoto Y, Ogawa K, Yoshida N, Baba H. Investigation of colorectal cancer in accordance with consensus molecular subtype classification. Ann Gastroenterol Surg 2020; 4:528-539. [PMID: 33005848 PMCID: PMC7511559 DOI: 10.1002/ags3.12362] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/06/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023] Open
Abstract
The classification of colorectal cancer (CRC) plays a pivotal role in predicting a patient's prognosis and determining treatment strategies. The consensus molecular subtype (CMS) classification system was constructed by analyzing genetic information from 18 CRC data sets, containing 4151 CRC samples. CRC was classified into four subtypes with distinct molecular and biological characteristics: CMS1 (microsatellite instability immune), CMS2 (canonical), CMS3 (metabolic), and CMS4 (mesenchymal). Since their designation in 2015, these classifications have been applied to basic and translational research of CRC, with the hope that understanding these subsets will influence a clinician's approach to therapeutic treatment and improve clinical outcomes. We reviewed CRC investigations in accordance with CMSs published in the last 5 years to further explore the clinical significance of these subtypes and identify underlying trends that may direct relevant future research. We determined that CMSs linked common features of CRC cell lines and PDX models in various studies. Furthermore, associations between prognosis and clinicopathological findings, including pathological grade and the stage of carcinogenesis, tumor budding, and tumor location, were correlated with CMS classification. Novel prognostic factors were identified, and the relationship between chemotherapeutic drug resistance and CMS has been fortified by our compilation of research; thus, indicating that this review provides advanced insight into clinical questions and treatment strategies for CRC.
Collapse
Affiliation(s)
- Hiroshi Sawayama
- Department of Gastroenterological SurgeryGraduate School of Medical SciencesKumamoto UniversityHonjoJapan
| | - Yuji Miyamoto
- Department of Gastroenterological SurgeryGraduate School of Medical SciencesKumamoto UniversityHonjoJapan
| | - Katsuhiro Ogawa
- Department of Gastroenterological SurgeryGraduate School of Medical SciencesKumamoto UniversityHonjoJapan
| | - Naoya Yoshida
- Department of Gastroenterological SurgeryGraduate School of Medical SciencesKumamoto UniversityHonjoJapan
| | - Hideo Baba
- Department of Gastroenterological SurgeryGraduate School of Medical SciencesKumamoto UniversityHonjoJapan
| |
Collapse
|
17
|
Saidy B, Rakha EA, Green AR, Ellis IO, Martin SG, Storr SJ. Retrospective assessment of cyclin-dependent kinase 5 mRNA and protein expression and its association with patient survival in breast cancer. J Cell Mol Med 2020; 24:6263-6271. [PMID: 32352232 PMCID: PMC7294162 DOI: 10.1111/jcmm.15268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/20/2020] [Accepted: 03/26/2020] [Indexed: 12/15/2022] Open
Abstract
Cyclin‐dependent kinase 5 (Cdk5) is an atypical member of the cyclin‐dependent kinase family and functions as a serine/threonine kinase that can be activated by non‐cyclin binding activators p35 or p39. Cdk5 expression and activity has been linked with the development and progression of cancer; however, its expression in breast cancer has not been fully described. Protein expression of Cdk5 was determined in a large cohort of early‐stage invasive breast cancer tumours (n = 1110) with long‐term follow‐up data using immunohistochemistry. Expression of CDK5 mRNA was assessed in the METABRIC cohort (n = 1980). Low nuclear and cytoplasmic expression of Cdk5 expression was significantly associated with shorter breast cancer‐specific survival (P = .004 and P = .001, respectively). Importantly, low nuclear and cytoplasmic expression of Cdk5 remained associated with survival in multivariate analysis, including potentially confounding factors (hazard ratio (HR) = 0.612, 95% confidence interval (CI) = 0.418‐0.896, P = .011 and HR = 0.507, 95% CI = 0.318‐0.809, P = .004, respectively). In addition, low nuclear and cytoplasmic expression of Cdk5 was significantly associated with clinicopathological criteria associated with adverse patient prognosis. Low CDK5 mRNA expression was associated with shorter patient survival (P = .005) in the METABRIC cohort; no associations between copy gain or loss and survival were observed. These data suggest that low Cdk5 expression is associated with poor clinical outcome of breast cancer patients and may be of clinical relevance.
Collapse
Affiliation(s)
- Behnaz Saidy
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Emad A Rakha
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Andrew R Green
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Ian O Ellis
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Stewart G Martin
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Sarah J Storr
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| |
Collapse
|