1
|
Liu Z, Liu Q, Zeng A, Song L. Regulatory function of endoplasmic reticulum stress in colorectal cancer: Mechanism, facts, and perspectives. Int Immunopharmacol 2025; 147:114024. [PMID: 39764998 DOI: 10.1016/j.intimp.2025.114024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/29/2025]
Abstract
Colorectal cancer (CRC) is an exceedingly common and profoundly impactful malignancy of the digestive system, posing a grave threat to human health. Endoplasmic reticulum stress (ERS) is an intracellular biological reaction that mobilizes the unfolded protein response (UPR) to tackling dysregulation in protein homeostasis. This process subtly modulates the cell to either restore normal cellular function or steer it towards apoptosis. The high metabolic demands of CRC cells sculpt a rigorous tumor microenvironment (TME), compelling CRC cells to experience ERS. Adaptive responses induced by mild ERS furnish the necessary conditions for the survival of CRC cells, whereas the cell death mechanisms triggered by sustained ERS could be considered a prospective strategy for cancer therapy. Considering the complex regulation of ERS in cancer development, this article offers a comprehensive review of the molecular mechanisms through which ERS influences CRC fate. It provides crucial insights for exploring the role of ERS in the occurrence and progression of CRC, laying a new theoretical foundation for devising precise therapeutic strategies targeting ERS. Furthermore, by synthesizing extensive clinical and preclinical studies, we delve into therapeutic strategies targeting ERS, including the potential of targeting ERS in immunotherapy, the utilization of native compounds, advancements in proteasome inhibitors, and the potential synergies of these strategies with traditional chemotherapy agents and emerging therapeutic approaches.
Collapse
Affiliation(s)
- Zihan Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan 610041, China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Yang Y, Li W, Zhao Y, Sun M, Xing F, Yang J, Zhou Y. GRP78 in Glioma Progression and Therapy: Implications for Targeted Approaches. Biomedicines 2025; 13:382. [PMID: 40002794 PMCID: PMC11852679 DOI: 10.3390/biomedicines13020382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Glioma is the most common primary malignant brain tumor, accounting for the majority of brain cancer-related deaths. Considering the limited efficacy of conventional therapies, novel molecular targeted therapies have been developed to improve outcomes and minimize toxicity. Glucose-regulated protein 78 (GRP78), a molecular chaperone primarily localized in the endoplasmic reticulum (ER), has received increasing attention for its role in glioma progression and resistance to conventional therapies. Overexpressed in gliomas, GRP78 supports tumor growth, survival, and therapeutic resistance by maintaining cellular homeostasis and regulating multiple signaling pathways. Its aberrant expression correlates with higher tumor grades and poorer patient prognosis. Beyond its intracellular functions, GRP78's presence on the cell surface and its role in the tumor microenvironment underscore its potential as a therapeutic target. Recent studies have explored innovative strategies to target GRP78, including small molecule inhibitors, monoclonal antibodies, and chimeric antigen receptor (CAR) T cell therapy, showing significant potential in glioma treatment. This review explores the biological characteristics of GRP78, its role in glioma pathophysiology, and the potential of GRP78-targeted therapy as a novel strategy to overcome treatment resistance and improve clinical outcomes. GRP78-targeted therapy, either alone or in combination with conventional treatments, could be a novel and attractive strategy for future glioma treatment.
Collapse
Affiliation(s)
- Yue Yang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Wen Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (W.L.); (Y.Z.)
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yu Zhao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (W.L.); (Y.Z.)
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Minxuan Sun
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (W.L.); (Y.Z.)
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Feifei Xing
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jiao Yang
- Suzhou Research Center of Medical School, Institute of Clinical Medicine Research, Suzhou Hospital, The Affiliated Hospital of Medical School, Nanjing University, Lijiang Road No. 1, Suzhou 215153, China
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou 215009, China
| | - Yuanshuai Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (W.L.); (Y.Z.)
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
3
|
Silva NSM, Siebeneichler B, Oliveira CS, Dores-Silva PR, Borges JC. The regulation of the thermal stability and affinity of the HSPA5 (Grp78/BiP) by clients and nucleotides is modulated by domains coupling. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141034. [PMID: 39009203 DOI: 10.1016/j.bbapap.2024.141034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
The HSPA5 protein (BiP/Grp78) serves as a pivotal chaperone in maintaining cellular protein quality control. As a member of the human HSP70 family, HSPA5 comprises two distinct domains: a nucleotide-binding domain (NBD) and a peptide-binding domain (PBD). In this study, we investigated the interdomain interactions of HSPA5, aiming to elucidate how these domains regulate its function as a chaperone. Our findings revealed that HSPA5-FL, HSPA5-T, and HSPA5-N exhibit varying affinities for ATP and ADP, with a noticeable dependency on Mg2+ for optimal interactions. Interestingly, in ADP assays, the presence of the metal ion seems to enhance NBD binding only for HSPA5-FL and HSPA5-T. Moreover, while the truncation of the C-terminus does not significantly impact the thermal stability of HSPA5, experiments involving MgATP underscore its essential role in mediating interactions and nucleotide hydrolysis. Thermal stability assays further suggested that the NBD-PBD interface enhances the stability of the NBD, more pronounced for HSPA5 than for the orthologous HSPA1A, and prevents self-aggregation through interdomain coupling. Enzymatic analyses indicated that the presence of PBD enhances NBD ATPase activity and augments its nucleotide affinity. Notably, the intrinsic chaperone activity of the PBD is dependent on the presence of the NBD, potentially due to the propensity of the PBD for self-oligomerization. Collectively, our data highlight the pivotal role of allosteric mechanisms in modulating thermal stability, nucleotide interaction, and ATPase activity of HSPA5, underscoring its significance in protein quality control within cellular environments.
Collapse
Affiliation(s)
- Noeli S M Silva
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil.
| | - Bruna Siebeneichler
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil; Exact and Technology Sciences Center, Federal University of São Carlos, São Carlos, SP 13560-970, Brazil
| | - Carlos S Oliveira
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | - Paulo R Dores-Silva
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | - Júlio C Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil.
| |
Collapse
|
4
|
Nakatsuka A, Yamaguchi S, Wada J. GRP78 Contributes to the Beneficial Effects of SGLT2 Inhibitor on Proximal Tubular Cells in DKD. Diabetes 2024; 73:763-779. [PMID: 38394641 DOI: 10.2337/db23-0581] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
The beneficial effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors on kidney function are well-known; however, their molecular mechanisms are not fully understood. We focused on 78-kDa glucose-regulated protein (GRP78) and its interaction with SGLT2 and integrin-β1 beyond the chaperone property of GRP78. In streptozotocin (STZ)-induced diabetic mouse kidneys, GRP78, SGLT2, and integrin-β1 increased in the plasma membrane fraction, while they were suppressed by canagliflozin. The altered subcellular localization of GRP78/integrin-β1 in STZ mice promoted epithelial mesenchymal transition (EMT) and fibrosis, which were mitigated by canagliflozin. High-glucose conditions reduced intracellular GRP78, increased its secretion, and caused EMT-like changes in cultured HK2 cells, which were again inhibited by canagliflozin. Urinary GRP78 increased in STZ mice, and in vitro experiments with recombinant GRP78 suggested that inflammation spread to surrounding tubular cells and that canagliflozin reversed this effect. Under normal glucose culture, canagliflozin maintained sarco/endoplasmic reticulum (ER) Ca2+-ATPase (SERCA) activity, promoted ER robustness, reduced ER stress response impairment, and protected proximal tubular cells. In conclusion, canagliflozin restored subcellular localization of GRP78, SGLT2, and integrin-β1 and inhibited EMT and fibrosis in DKD. In nondiabetic chronic kidney disease, canagliflozin promoted ER robustness by maintaining SERCA activity and preventing ER stress response failure, and it contributed to tubular protection. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Atsuko Nakatsuka
- Division of Kidney, Diabetes and Endocrine Diseases, Okayama University Hospital, Okayama, Japan
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Satoshi Yamaguchi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
5
|
Zhang Y, Gu X, Huang L, Yang Y, He J. Enhancing precision medicine: Bispecific antibody-mediated targeted delivery of lipid nanoparticles for potential cancer therapy. Int J Pharm 2024; 654:123990. [PMID: 38467208 DOI: 10.1016/j.ijpharm.2024.123990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/13/2024]
Abstract
The precise delivery of therapeutic agents to specific cell populations, including cancer cells, remains a target in modern medicine, to enhance treatment efficacy, while minimizing unintended side effects. This study presents a strategy utilizing bispecific antibodies for the targeted delivery of nucleic acid drugs to the surface of glucose-regulated protein 78 (GRP78)-overexpressing cancer cells. Strong binding affinity of the bispecific antibodies to GRP78-overexpressing cancer cells, including HEPG2 cells, confirmed the tumor-targeting potential of this platform. Functional analyses demonstrated the role of the bispecific antibodies in enhancing lipid nanoparticle (LNP) uptake, causing increased gene expression levels of nucleic acid drugs loaded within LNPs. In vivo imaging confirmed the potency of the bispecific-antibody-modified LNPs in delivering nucleic acid drugs to tumors and sustaining therapeutic expression levels. In vivo therapy results indicated that the bispecific antibodies improved the antitumor activity of PE38-loaded LNPs in tumors overexpressing surface GRP78. This study pioneered a bispecific-antibody-centered platform for the targeted delivery of nucleic acid drugs. The robust antigen-antibody binding affinity, tumor-selective interactions, enhanced cellular uptake, and proficient gene expression promise to advance precision therapeutics in oncology. Continued refinement and translation of this drug delivery strategy are important to unlock its full clinical potential.
Collapse
Affiliation(s)
- Yue Zhang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, PR China
| | - Xiaoyan Gu
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, PR China
| | - Lili Huang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, PR China
| | - Yani Yang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, PR China
| | - Jun He
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, PR China.
| |
Collapse
|
6
|
Muruganantham JK, Veerabathiran R. Genetic Basis for Mucormycosis Progression in COVID-19 Patients: From Susceptibility to Severity. INFECTIOUS DISEASES & IMMUNITY 2024. [DOI: 10.1097/id9.0000000000000115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Abstract
The dynamics of COVID-19 and mucormycosis reveal a complex interplay of genetic factors that influence the susceptibility, severity, and immune responses. COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), exhibits an increased incidence of mucormycosis, particularly in individuals with comorbidities or corticosteroid therapy. Mucormycosis is a fungal infection that affects the sinuses, orbits, and lungs and demands timely intervention with antifungal medications and surgery because of its life-threatening nature. Research on the genetic underpinnings of this intersection has unveiled key insights into the pathogenicity of Mucorales. Breakthroughs in genetic tools have exposed virulence factors, such as the CotH protein family and high-affinity iron-uptake mechanisms. Genetic susceptibility is a pivotal element in identifying individuals at risk of developing COVID-19, facilitating early detection, and allowing for personalized treatment strategies. DPP9, MIF, and TYK2 are among the genes implicated in COVID-19 severity, emphasizing the intricate relationship between genetic makeup and viral response. The genetic landscape extends to viral entry mechanisms, thereby affecting infection efficiency. Specific polymorphisms in genes such as IFNAR2, OAS3, and TYK2 are associated with COVID-19 severity, indicating shared genetic bases between severe and hospitalized cases. Mucormycosis is genetically predisposed, particularly in immunocompromised individuals. The challenge lies in understanding the genetic factors influencing susceptibility and offering insights into pathogenesis and potential therapeutic avenues. Organ transplantation adds another layer, increasing susceptibility to infections such as COVID-19 and mucormycosis. The impact of immunosuppression on COVID-19 severity remains elusive, necessitating ongoing research on the immunological mechanisms. Despite the challenges posed by emerging SARS-CoV-2 variants, the intricate connection between genetic factors and the interplay of COVID-19 and mucormycosis presents an opportunity for personalized treatment, targeted interventions, and refined public health strategies.
Collapse
|
7
|
Wang B, He X, Zhang J, Zhang Y. Cell surface GRP78: A potential therapeutic target for high glucose-induced endothelial injury. Biochem Biophys Res Commun 2024; 692:149347. [PMID: 38056158 DOI: 10.1016/j.bbrc.2023.149347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Endothelial cell inflammation and oxidative stress are critical to developing diabetic vascular complications. GRP78 translocation to the cell surface has been observed in different types of endothelial cells, but the potential role of cell surface GRP78 in modulating endothelial inflammation and oxidative stress remains uncertain. In this study, we investigated whether inhibiting cell surface GRP78 function using a novel anti-GRP78 monoclonal antibody (MAb159) could suppress high glucose (HG)-induced endothelial inflammation and oxidative stress. Our findings demonstrated that the expression of cell surface GRP78 was increased in HG-treated HUVECs. Inhibition of cell surface GRP78 using MAb159 attenuated HG-induced endothelial injury, inflammation and oxidative stress, while activation of GRP78 by recombinant GRP78 further amplified HG-induced endothelial damage, inflammation and oxidative stress. Additionally, we discovered that cell surface GRP78 promoted HG-induced inflammation and oxidative stress by activating the TLR4/NF-κB signalling pathway. Moreover, HG-induced GRP78 translocation to the cell surface is dependent on ER stress. Our data demonstrate that targeting cell surface GRP78 could be a promising therapeutic strategy for mitigating endothelial injury, inflammation and oxidative stress.
Collapse
Affiliation(s)
- Bo Wang
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Xin He
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Jingliang Zhang
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Yingjie Zhang
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.
| |
Collapse
|
8
|
Jin Y, Cheng Z, Yuan Z, Du Y, Tian J, Shao B. Glucose-Regulated Protein 78 Targeting ICG and DOX Loaded Hollow Fe 3O 4 Nanoparticles for Hepatocellular Carcinoma Diagnosis and Therapy. Int J Nanomedicine 2024; 19:189-208. [PMID: 38223882 PMCID: PMC10785830 DOI: 10.2147/ijn.s428687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/16/2023] [Indexed: 01/16/2024] Open
Abstract
Purpose Liver cancer is considered as the third leading cause of cancer-related deaths, with hepatocellular carcinoma (HCC) accounting for approximately 90% of liver cancers. Improving the treatment of HCC is a serious challenge today. The primary objective of this study was to construct SP94-Fe3O4@ICG&DOX nanoparticles and investigate their potential diagnosis and treatment effect benefits on HCC. Methods Firstly, we synthesized and characterized SP94-Fe3O4@ICG&DOX nanoparticles and confirmed their in vitro release behavior, photothermal and photodynamic performance. Moreover, the in vivo imaging capability was also observed. Finally, the inhibitory effects on Hepa1-6 in vitro and in vivo were observed as well as biosafety. Results SP94-Fe3O4@ICG&DOX nanoparticles have a size of ~22.1 nm, with an encapsulation efficiency of 45.2% for ICG and 42.7% for DOX, showing excellent in vivo MPI and fluorescence imaging capabilities for precise tumor localization, and synergistic photo-chemotherapy (pH- and thermal-sensitive drug release) against tumors under irradiation. With the assistance of a fluorescence molecular imaging system or MPI scanner, the location and contours of the tumor were clearly visible. Under a constant laser irradiation (808 nm, 0.6 W/cm2) and a set concentration (50 µg/mL), the temperature of the solution could rapidly increase to ~45 °C, which could effectively kill the tumor cells. It could be effectively uptaken by HCC cells and significantly inhibit their proliferation under the laser irradiation (100% inhibition rate for HCC tumors). And most importantly, our nanoparticles exhibited favorable biocompatibility with normal tissues and cells. Conclusion This versatile agent can serve as an intelligent and promising nanoplatform that integrates multiple accurate diagnoses, precise positioning of cancer tissue, and effective coordination with synergistic tumor photodynamic therapy.
Collapse
Affiliation(s)
- Yushen Jin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Centre for Disease Prevention and Control, Beijing, 100013, People’s Republic of China
| | - Zhongquan Cheng
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, People’s Republic of China
| | - Zhu Yuan
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, People’s Republic of China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Centre for Disease Prevention and Control, Beijing, 100013, People’s Republic of China
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People’s Republic of China
| |
Collapse
|
9
|
Yun C, Kim SH, Kwon D, Byun MR, Chung KW, Lee J, Jung YS. Doxorubicin Attenuates Free Fatty Acid-Induced Lipid Accumulation via Stimulation of p53 in HepG2 Cells. Biomol Ther (Seoul) 2024; 32:94-103. [PMID: 38148555 PMCID: PMC10762281 DOI: 10.4062/biomolther.2023.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive accumulation of fat in the liver, and there is a global increase in its incidence owing to changes in lifestyle and diet. Recent findings suggest that p53 is involved in the development of non-alcoholic fatty liver disease; however, the association between p53 expression and the disease remains unclear. Doxorubicin, an anticancer agent, increases the expression of p53. Therefore, this study aimed to investigate the role of doxorubicin-induced p53 upregulation in free fatty acid (FFA)-induced intracellular lipid accumulation. HepG2 cells were pretreated with 0.5 μg/mL of doxorubicin for 12 h, followed by treatment with FFA (0.5 mM) for 24 h to induce steatosis. Doxorubicin pretreatment upregulated p53 expression and downregulated the expression of endoplasmic reticulum stress- and lipid synthesis-associated genes in the FFA -treated HepG2 cells. Additionally, doxorubicin treatment upregulated the expression of AMP-activated protein kinase, a key modulator of lipid metabolism. Notably, siRNA-targeted p53 knockdown reversed the effects of doxorubicin in HepG2 cells. Moreover, doxorubicin treatment suppressed FFA -induced lipid accumulation in HepG2 spheroids. Conclusively, these results suggest that doxorubicin possesses potential application for the regulation of lipid metabolism by enhance the expression of p53 an in vitro NAFLD model.
Collapse
Affiliation(s)
- Chawon Yun
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Sou Hyun Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Doyoung Kwon
- College of Pharmacy, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Mi Ran Byun
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Ki Wung Chung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Jaewon Lee
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Young-Suk Jung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
10
|
Chen Y, Tao Y, Hu K, Lu J. GRP78 inhibitor HA15 increases the effect of Bortezomib on eradicating multiple myeloma cells through triggering endoplasmic reticulum stress. Heliyon 2023; 9:e19806. [PMID: 37809599 PMCID: PMC10559159 DOI: 10.1016/j.heliyon.2023.e19806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Bortezomib (BTZ), a selective proteasome inhibitor, exhibits a significant efficacy in the therapy of multiple myeloma (MM) partly through triggering endoplasmic reticulum (ER) stress-dependent apoptosis. However, sensitivity to BTZ varies greatly among patients. ER stress functions as a double-edged sword in regulating cell survival depending on cell context and ER stress extent. The major aim of this study was to investigate whether GRP78 inhibitor, HA15, increased the therapeutic effect of BTZ on MM to through further increasing ER stress and shifting the balance towards cell apoptosis. The biological role of BTZ and HA15 was assessed using Cell counting kit- (CCK-) 8, colony formation, and Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labelling (TUNEL) assay. We found that BTZ combined with HA15 remarkably decreased MM cell viability more effective than BTZ monotherapy, though low dose of HA15 did not exhibit a significant cytotoxicity to MM cells. BTZ combined with HA15 also repressed colony formation ability of MM cell and accelerated MM cell apoptosis compared with BTZ monotherapy. Mechanistically, HA15 synergized with BTZ to trigger ER stress, as evidence by significantly increased expression of ER stress markers (GRP78, ATF4, CHOP, and XBP1). Importantly, unfolded protein response (UPR) inhibitor significantly damaged the effect of BTZ combined with HA15 on accelerating MM cell death. In vivo, combination treatment with BTZ and HA15 inhibited tumor growth more effective than BTZ alone, whereas these effects were blocked by UPR inhibitor. Taken together, these results demonstrate that ER stress is a critical pathway in regulating MM cell survival, and that combination treatment with BTZ and HA15 may be an effective strategy to treat MM patients that fail to respond to BTZ monotherapy.
Collapse
Affiliation(s)
- Yirong Chen
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yuchen Tao
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Kexin Hu
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Jiahui Lu
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| |
Collapse
|
11
|
Tolue Ghasaban F, Maharati A, Zangouei AS, Zangooie A, Moghbeli M. MicroRNAs as the pivotal regulators of cisplatin resistance in head and neck cancers. Cancer Cell Int 2023; 23:170. [PMID: 37587481 PMCID: PMC10428558 DOI: 10.1186/s12935-023-03010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
Although, there is a high rate of good prognosis in early stage head and neck tumors, about half of these tumors are detected in advanced stages with poor prognosis. A combination of chemotherapy, radiotherapy, and surgery is the treatment option in head and neck cancer (HNC) patients. Although, cisplatin (CDDP) as the first-line drug has a significant role in the treatment of HNC patients, CDDP resistance can be observed in a large number of these patients. Therefore, identification of the molecular mechanisms involved in CDDP resistance can help to reduce the side effects and also provides a better therapeutic management. MicroRNAs (miRNAs) as the post-transcriptional regulators play an important role in drug resistance. Therefore, in the present review we investigated the role of miRNAs in CDDP response of head and neck tumors. It has been reported that the miRNAs exerted their roles in CDDP response by regulation of signaling pathways such as WNT, NOTCH, PI3K/AKT, TGF-β, and NF-kB as well as apoptosis, autophagy, and EMT process. The present review paves the way to suggest a non-invasive miRNA based panel marker for the prediction of CDDP response among HNC patients. Therefore, such diagnostic miRNA based panel marker reduces the CDDP side effects and improves the clinical outcomes of these patients following an efficient therapeutic management.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Zangooie
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Student research committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Li T, Fu J, Cheng J, Elfiky AA, Wei C, Fu J. New progresses on cell surface protein HSPA5/BiP/GRP78 in cancers and COVID-19. Front Immunol 2023; 14:1166680. [PMID: 37275848 PMCID: PMC10232979 DOI: 10.3389/fimmu.2023.1166680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
Heat-shock-protein family A (Hsp70) member 5 (HSPA5), aliases GRP78 or BiP, is a protein encoded with 654 amino acids by the HSPA5 gene located on human chromosome 9q33.3. When the endoplasmic reticulum (ER) was stressed, HSPA5 translocated to the cell surface, the mitochondria, and the nucleus complexed with other proteins to execute its functions. On the cell surface, HSPA5/BiP/GRP78 can play diverse functional roles in cell viability, proliferation, apoptosis, attachments, and innate and adaptive immunity regulations, which lead to various diseases, including cancers and coronavirus disease 2019 (COVID-19). COVID-19 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which caused the pandemic since the first outbreak in late December 2019. HSPA5, highly expressed in the malignant tumors, likely plays a critical role in SARS-CoV-2 invasion/attack in cancer patients via tumor tissues. In the current study, we review the newest research progresses on cell surface protein HSPA5 expressions, functions, and mechanisms for cancers and SARS-CoV-2 invasion. The therapeutic and prognostic significances and prospects in cancers and COVID-19 disease by targeting HSPA5 are also discussed. Targeting HSPA5 expression by natural products may imply the significance in clinical for both anti-COVID-19 and anti-cancers in the future.
Collapse
Affiliation(s)
- Ting Li
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Abdo A. Elfiky
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Chunli Wei
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
13
|
Burikhanov R, Ganguly S, Ellingson S, Sviripa VM, Araujo N, Li S, Venkatraman P, Rao M, Choughule A, Brainson CF, Zhan CG, Spielmann HP, Watt DS, Govindan R, Rangnekar VM. Crizotinib induces Par-4 secretion from normal cells and GRP78 expression on the cancer cell surface for selective tumor growth inhibition. Am J Cancer Res 2023; 13:976-991. [PMID: 37034206 PMCID: PMC10077052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/20/2023] [Indexed: 04/11/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths. Lung cancer cells develop resistance to apoptosis by suppressing the secretion of the tumor suppressor Par-4 protein (also known as PAWR) and/or down-modulating the Par-4 receptor GRP78 on the cell surface (csGRP78). We sought to identify FDA-approved drugs that elevate csGRP78 on the surface of lung cancer cells and induce Par-4 secretion from the cancer cells and/or normal cells in order to inhibit cancer growth in an autocrine or paracrine manner. In an unbiased screen, we identified crizotinib (CZT), an inhibitor of activated ALK/MET/ROS1 receptor tyrosine kinase, as an inducer of csGRP78 expression in ALK-negative, KRAS or EGFR mutant lung cancer cells. Elevation of csGRP78 in the lung cancer cells was dependent on activation of the non-receptor tyrosine kinase SRC by CZT. Inhibition of SRC activation in the cancer cells prevented csGRP78 translocation but promoted Par-4 secretion by CZT, implying that activated SRC prevented Par-4 secretion. In normal cells, CZT did not activate SRC and csGRP78 elevation but induced Par-4 secretion. Consequently, CZT induced Par-4 secretion from normal cells and elevated csGRP78 in the ALK-negative tumor cells to cause paracrine apoptosis in cancer cell cultures and growth inhibition of tumor xenografts in mice. Thus, CZT induces differential activation of SRC in normal and cancer cells to trigger the pro-apoptotic Par-4-GRP78 axis. As csGRP78 is a targetable receptor, CZT can be repurposed to elevate csGRP78 for inhibition of ALK-negative lung tumors.
Collapse
Affiliation(s)
- Ravshan Burikhanov
- Department of Radiation Medicine, College of Medicine, University of KentuckyLexington, Kentucky, USA
| | - Saptadwipa Ganguly
- Department of Toxicology and Cancer Biology, College of Medicine, University of KentuckyLexington, Kentucky, USA
| | - Sally Ellingson
- Department of Internal Medicine, College of Medicine, University of KentuckyLexington, Kentucky, USA
| | - Vitaliy M Sviripa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of KentuckyLexington, Kentucky, USA
| | - Nathalia Araujo
- Department of Toxicology and Cancer Biology, College of Medicine, University of KentuckyLexington, Kentucky, USA
| | - Shunqiang Li
- Department of Medicine, Division of Oncology, Washington UniversitySt. Louis, Missouri, USA
| | - Prasanna Venkatraman
- Tata Memorial Centre-Advanced Centre for Treatment Research and Education in CancerNavi Mumbai, Maharashtra, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Center for Translational Research, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher EducationManipal, Karnataka, India
| | - Anuradha Choughule
- Tata Memorial Centre-Advanced Centre for Treatment Research and Education in CancerNavi Mumbai, Maharashtra, India
| | - Christine F Brainson
- Department of Toxicology and Cancer Biology, College of Medicine, University of KentuckyLexington, Kentucky, USA
- Markey Cancer Center, University of KentuckyLexington, Kentucky, USA
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of KentuckyLexington, Kentucky, USA
| | - H Peter Spielmann
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of KentuckyLexington, Kentucky, USA
| | - David S Watt
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of KentuckyLexington, Kentucky, USA
| | - Ramaswamy Govindan
- Department of Medicine, Division of Oncology, Washington UniversitySt. Louis, Missouri, USA
| | - Vivek M Rangnekar
- Department of Radiation Medicine, College of Medicine, University of KentuckyLexington, Kentucky, USA
- Markey Cancer Center, University of KentuckyLexington, Kentucky, USA
| |
Collapse
|
14
|
Maleksabet H, Rezaee E, Tabatabai SA. Host-Cell Surface Binding Targets in SARS-CoV-2 for Drug Design. Curr Pharm Des 2022; 28:3583-3591. [PMID: 36420875 DOI: 10.2174/1381612829666221123111849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/20/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022]
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a major public health threat to all countries worldwide. SARS-CoV-2 interactions with its receptor are the first step in the invasion of the host cell. The coronavirus spike protein (S) is crucial in binding to receptors on host cells. Additionally, targeting the SARS-CoV-2 viral receptors is considered a therapeutic option in this regard. In this review of literature, we summarized five potential host cell receptors, as host-cell surface bindings, including angiotensin-converting enzyme 2 (ACE2), neuropilin 1 (NRP-1), dipeptidyl peptidase 4 (DPP4), glucose regulated protein-78 (GRP78), and cluster of differentiation 147 (CD147) related to the SARS-CoV-2 infection. Among these targets, ACE2 was recognized as the main SARS-CoV-2 receptor, expressed at a low/moderate level in the human respiratory system, which is also involved in SARS-CoV-2 entrance, so the virus may utilize other secondary receptors. Besides ACE2, CD147 was discovered as a novel SARS-CoV-2 receptor, CD147 appears to be an alternate receptor for SARSCoV- 2 infection. NRP-1, as a single-transmembrane glycoprotein, has been recently found to operate as an entrance factor and enhance SARS Coronavirus 2 (SARS-CoV-2) infection under in-vitro. DPP4, which was discovered as the first gene clustered with ACE2, may serve as a potential SARS-CoV-2 spike protein binding target. GRP78 could be recognized as a secondary receptor for SARS-CoV-2 because it is widely expressed at substantially greater levels, rather than ACE2, in bronchial epithelial cells and the respiratory mucosa. This review highlights recent literature on this topic.
Collapse
Affiliation(s)
- Hanieh Maleksabet
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Rezaee
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayyed Abbas Tabatabai
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Wu W, Gou H, Xiang B, Geng R, Dong J, Yang X, Chen D, Dai R, Chen L, Liu J. EGCG Enhances the Chemosensitivity of Colorectal Cancer to Irinotecan through GRP78-MediatedEndoplasmic Reticulum Stress. JOURNAL OF ONCOLOGY 2022; 2022:7099589. [PMID: 36147440 PMCID: PMC9489388 DOI: 10.1155/2022/7099589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022]
Abstract
This study aimed to explore the role of GRP78-mediated endoplasmic reticulum stress (ERS) in the synergistic inhibition of colorectal cancer by epigallocatechin-3-gallate (EGCG) and irinotecan (IRI). Findings showed that EGCG alone or in combination with irinotecan can significantly promote intracellular GRP78 protein expression, reduce mitochondrial membrane potential and intracellular ROS in RKO and HCT 116 cells, and induce cell apoptosis. In addition, glucose regulatory protein 78 kDa (GRP78) is significantly over-expressed in both colorectal cancer (CRC) tumor specimens and mouse xenografts. The inhibition of GRP78 by small interfering RNA led to the decrease of the sensitivity of CRC cells to the drug combination, while the overexpression of it by plasmid significantly increased the apoptosis of cells after the drug combination. The experimental results in the mouse xenografts model showed that the combination of EGCG and irinotecan could inhibit the growth of subcutaneous tumors of HCT116 cells better than the two drugs alone. EGCG can induce GRP78-mediated endoplasmic reticulum stress and enhance the chemo-sensitivity of colorectal cancer cells when coadministered with irinotecan.
Collapse
Affiliation(s)
- Wenbing Wu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Hui Gou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Bin Xiang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Ruiman Geng
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jingying Dong
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaolong Yang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Dan Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
- Patent Examination Cooperation Sichuan Center of the Patent Office, China National Intellectual Property Administration, Chengdu 610041, China
| | - Rongyang Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Lihong Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Ji Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
ER Stress Response and Induction of Apoptosis in Malignant Pleural Mesothelioma: The Achilles Heel Targeted by the Anticancer Ruthenium Drug BOLD-100. Cancers (Basel) 2022; 14:cancers14174126. [PMID: 36077664 PMCID: PMC9454852 DOI: 10.3390/cancers14174126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Malignant mesothelioma is a rare cancer arising from the serosal surfaces of the body, mainly from the pleural layer. This cancer, strongly linked to asbestos exposure, shows a very inauspicious prognosis. In fact, there is no efficient therapeutic treatment for malignant pleural mesothelioma (MPM). Thus, there is an urgent need to develop novel therapeutic approaches to treat this form of cancer. Our previous study showed the importance of GRP78 in MPM survival. BOLD-100 is a specific modulator of GRP78 and we have observed that it shows cytotoxicity against MPM cells. In particular, we describe that BOLD-100 increases oxidative stress and deregulates the calcium homeostasis leading to cell stress and, ultimately, to cell death. Our in vitro data strongly suggest that BOLD-100 inhibits the growth of MPM cell lines, proposing the application as a single agent, or in combination with other standard-of-care drugs, to treat MPM. Abstract Malignant mesothelioma is a rare cancer arising from the serosal surfaces of the body, mainly from the pleural layer. This cancer is strongly related to asbestos exposure and shows a very inauspicious prognosis, because there are scarce therapeutic options for this rare disease. Thus, there is an urgent need to develop novel therapeutic approaches to treat this form of cancer. To explore the biology of malignant pleural mesothelioma (MPM), we previously observed that MPM cell lines show high expression of the GRP78 protein, which is a chaperone protein and the master regulator of the unfolded protein response (UPR) that resides in the endoplasmic reticulum (ER). Based on our previous studies showing the importance of GRP78 in MPM, we observed that BOLD-100, a specific modulator of GRP78 and the UPR, shows cytotoxicity against MPM cells. Our studies demonstrated that BOLD-100 increases ROS production and Ca2+ release from the ER, leading to ER stress activation and, ultimately, to cell death. Our in vitro data strongly suggest that BOLD-100 inhibits the growth of MPM cell lines, proposing the application as a single agent, or in combination with other standard-of-care drugs, to treat MPM.
Collapse
|
17
|
Prostate Apoptosis Response-4 (Par-4): A Novel Target in Pyronaridine-Induced Apoptosis in Glioblastoma (GBM) Cells. Cancers (Basel) 2022; 14:cancers14133198. [PMID: 35804970 PMCID: PMC9264948 DOI: 10.3390/cancers14133198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary GBM treatment is an area of high unmet need due to the heterogeneous and anaplastic character of this cancer in turn leading to an extremely poor prognosis. Finding new molecular entities by traditional or de novo approaches to drug discovery is lengthy and expensive. Repurposing existing drugs can be attractive as the process is often less risky, more cost, and time-effective. Amongst potential drug-repurposing candidates, Pyronaridine (PYR), an antimalarial drug has shown anti-cancer effects against several cancers, however, its potential for the treatment of GBM has not been explored. In this study, we have identified a unique mechanism of action of PYR against GBM by upregulating a tumor suppressor protein, Par-4 along with the elucidation of the complex network of pathways mediated through Par-4 leading to GBM cell death. Abstract Glioblastoma (GBM) is an aggressive form of brain tumor with a median survival of approximately 12 months. With no new drugs in the last few decades and limited success in clinics for known therapies, drug repurposing is an attractive choice for its treatment. Here, we examined the efficacy of pyronaridine (PYR), an anti-malarial drug in GBM cells. PYR induced anti-proliferative activity in GBM cells with IC50 ranging from 1.16 to 6.82 µM. Synergistic activity was observed when PYR was combined with Doxorubicin and Ritonavir. Mechanistically, PYR triggered mitochondrial membrane depolarization and enhanced the ROS levels causing caspase-3 mediated apoptosis. PYR significantly decreased markers associated with proliferation, EMT, hypoxia, and stemness and upregulated the expression of E-cadherin. Interestingly, PYR induced the expression of intracellular as well as secretory Par-4, a tumor suppressor in GBM cells, which was confirmed using siRNA. Notably, Par-4 levels in plasma samples of GBM patients were significantly lower than normal healthy volunteers. Thus, our study demonstrates for the first time that PYR can be repurposed against GBM with a novel mechanism of action involving Par-4. Herewith, we discuss the role of upregulated Par-4 in a highly interconnected signaling network thereby advocating its importance as a therapeutic target.
Collapse
|
18
|
Wang GS, Chen JY, Chen WC, Wei IC, Lin SW, Liao KW, Yang TS, Liu JF. Surfactin induces ER stress-mediated apoptosis via IRE1-ASK1-JNK signaling in human osteosarcoma. ENVIRONMENTAL TOXICOLOGY 2022; 37:574-584. [PMID: 34850538 DOI: 10.1002/tox.23423] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/02/2021] [Accepted: 11/16/2021] [Indexed: 05/12/2023]
Abstract
Osteosarcoma, one of primary bone tumor in children and young adults, has poor prognosis and drug resistances to chemotherapy. In order to reinforce the conventional therapies and antagonize the osteosarcoma in patients, a novel strategy is required for developing a new treatment. In this study, surfactin, a natural product from Bacillus subtilis, showed the efficiency of cell death in osteosarcoma, but not in normal cells. Surfactin triggers ER stress mechanism by promoting the aberrant Ca2+ release from ER lumen and ER-signaling to mitochondrial dysfunction following caspases activation mediating cell apoptosis. Surfactin-induced ER stress not only upregulated of glucose-regulated protein 78/94 and IRE1-ASK1-JNK pathway but also leading to calpains and Bcl-2 proteins family involving the release of cytochrome c. The releases into cytosol trigger the cleavage of caspase-9 and caspase-3 to induce cell apoptosis. In this study, surfactin demonstrated the potential functions to trigger the ER stress, ER stress-associated IRE1-ASK1-JNK signaling pathway, mitochondrial dysfunction, and caspase activations leading to programmed cell apoptosis. Importantly, implicating the signaling pathway that regulates the connection between ER stress and mitochondrial dysfunction causing apoptosis associated with surfactin. These results indicated a potential application of surfactin strengthen current conventional therapies.
Collapse
Affiliation(s)
- Guo-Shou Wang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Orthopedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ji-Ying Chen
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Orthopedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wei-Cheng Chen
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Division of Sports Medicine and Surgery, Department of Orthopedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - I-Chin Wei
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan
| | - Szu-Wei Lin
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan
| | - Kuang-Wen Liao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Tzu-Sen Yang
- International PhD Program in Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei, Taiwan
| | - Ju-Fang Liu
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
19
|
Shan S, Niu J, Yin R, Shi J, Zhang L, Wu C, Li H, Li Z. Peroxidase from foxtail millet bran exerts anti-colorectal cancer activity via targeting cell-surface GRP78 to inactivate STAT3 pathway. Acta Pharm Sin B 2022; 12:1254-1270. [PMID: 35530132 PMCID: PMC9069399 DOI: 10.1016/j.apsb.2021.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022] Open
Abstract
Molecular targeted therapy has become an emerging promising strategy in cancer treatment, and screening the agents targeting at cancer cell specific targets is very desirable for cancer treatment. Our previous study firstly found that a secretory peroxidase of class III derived from foxtail millet bran (FMBP) exhibited excellent targeting anti-colorectal cancer (CRC) activity in vivo and in vitro, whereas its underlying target remains unclear. The highlight of present study focuses on the finding that cell surface glucose-regulated protein 78 (csGRP78) abnormally located on CRC is positively correlated with the anti-CRC effects of FMBP, indicating it serves as a potential target of FMBP against CRC. Further, we demonstrated that the combination of FMBP with the nucleotide binding domain (NBD) of csGRP78 interfered with the downstream activation of signal transducer and activator of transcription 3 (STAT3) in CRC cells, thus promoting the intracellular accumulation of reactive oxygen species (ROS) and cell grown inhibition. These phenomena were further confirmed in nude mice tumor model. Collectively, our study highlights csGRP78 acts as an underlying target of FMBP against CRC, uncovering the clinical potential of FMBP as a targeted agent for CRC in the future.
Collapse
Key Words
- CAC, colitis-associated carcinogenesis
- CDKs, cyclin-dependent kinases
- CETSA, cellular thermal shift assay
- CRC, colorectal cancer
- Co-IP, co-immunoprecipitation
- Colorectal cancer
- DCFH-DA, dichloro-dihydro-fluorescein diacetate
- EGFR, epidermal growth factor receptor
- ER, endoplasmic reticulum
- FDA, U.S. Food and Drug Administration
- FMBP
- FMBP, peroxidase derived from foxtail millet bran
- Foxtail millet bran
- GRP78, glucose-regulated protein 78
- H&E, hematoxylin & eosin
- ISM, isthmin
- MPs, membrane proteins
- NBD, the nucleotide binding domain of csGRP78
- PD-1, programmed death-1
- ROS
- ROS, reactive oxygen species
- SBD, substrate-binding domain of csGRP78
- SPF, specific pathogen free
- STAT3
- STAT3, signal transducer and activator of transcription 3
- TRAIL, tumor necrosis factor-related apoptosis-inducing ligand
- csGRP78
- csGRP78, cell surface glucose-regulated protein 78
- rGRP78, recombinant GRP78
Collapse
|
20
|
Song C, Zhen J, Gong A, Zhang L. Cripto-1/Glucose-Regulated Protein 78 Affects Proliferation, Migration and Apoptosis of Ovarian Carcinoma Cells. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: The Cripto-1 (CR-1)/glucose-regulated protein 78 (GRP78) complex was involved in enhancing survival in different types of cells. CR-1 presented increased levels in ovarian carcinoma tissue. However, the potential mechanism of CR-1/GRP78 was unclear in ovarian cancer.
Thus, the study aimed to analyze the role of CR-1/GRP78 in ovarian carcinoma cells. Methods and materials: The CR-1 and GRP78 expression in different ovarian cancer cell lines were detected by RT-qPCR and Western blot (WB). Immunoprecipitation assay was performed to analyze whether
Cripto-1 interacted with GRP78. The CR-1 interfering plasmids or GRP-78 overexpressing plasmids transfected into cells were used to decrease endogenous CR-1 levels and increase GRP-78 levels. Cell clonogenicity and proliferation capabilities were separately evaluated by clone growth assay,
along with the detection of cell migration and invasion abilities by transwell and wound healing assay. In addition, Matrix Metalloproteinases (MMPs) levels were detected by WB. The cell apoptosis was analyzed by Flow Cytometer and the detection of apoptosis-related proteins. Results:
The results showed that CR-1 and GRP78 levels were higher in SKOV3 than other cell lines. Furthermore, CR-1 interacted with GRP78 in cells, which formed protein complex. CR-1 silence significantly decreased GRP-78 levels. Moreover, GRP78 overexpression blocked the anti-survival effects caused
by CR-1 knockdown. Conclusion: CR-1 silence inhibited cell proliferation and promoted apoptosis via GRP78. It replied that GRP-78 overexpression might enhance the biological functions of CR-1/GRP78 complex ameliorated by CR-1 silence. Thus, CR-1/GRP78 could be a potential target for
treating ovarian carcinoma.
Collapse
Affiliation(s)
- Chunhong Song
- Department of Pathology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, 050011, China
| | - Juan Zhen
- Department of Pathology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, 050011, China
| | - Aihua Gong
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian, 116000, China
| | - Longying Zhang
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian, 116000, China
| |
Collapse
|
21
|
Lam TYW, Nguyen N, Peh HY, Shanmugasundaram M, Chandna R, Tee JH, Ong CB, Hossain MZ, Venugopal S, Zhang T, Xu S, Qiu T, Kong WT, Chakarov S, Srivastava S, Liao W, Kim JS, Teh M, Ginhoux F, Fred Wong WS, Ge R. ISM1 protects lung homeostasis via cell-surface GRP78-mediated alveolar macrophage apoptosis. Proc Natl Acad Sci U S A 2022; 119:e2019161119. [PMID: 35046017 PMCID: PMC8794848 DOI: 10.1073/pnas.2019161119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/20/2021] [Indexed: 12/18/2022] Open
Abstract
Alveolar macrophages (AMs) are critical for lung immune defense and homeostasis. They are orchestrators of chronic obstructive pulmonary disease (COPD), with their number significantly increased and functions altered in COPD. However, it is unclear how AM number and function are controlled in a healthy lung and if changes in AMs without environmental assault are sufficient to trigger lung inflammation and COPD. We report here that absence of isthmin 1 (ISM1) in mice (Ism1-/- ) leads to increase in both AM number and functional heterogeneity, with enduring lung inflammation, progressive emphysema, and significant lung function decline, phenotypes similar to human COPD. We reveal that ISM1 is a lung resident anti-inflammatory protein that selectively triggers the apoptosis of AMs that harbor high levels of its receptor cell-surface GRP78 (csGRP78). csGRP78 is present at a heterogeneous level in the AMs of a healthy lung, but csGRP78high AMs are expanded in Ism1-/- mice, cigarette smoke (CS)-induced COPD mice, and human COPD lung, making these cells the prime targets of ISM1-mediated apoptosis. We show that csGRP78high AMs mostly express MMP-12, hence proinflammatory. Intratracheal delivery of recombinant ISM1 (rISM1) depleted csGRP78high AMs in both Ism1-/- and CS-induced COPD mice, blocked emphysema development, and preserved lung function. Consistently, ISM1 expression in human lungs positively correlates with AM apoptosis, suggesting similar function of ISM1-csGRP78 in human lungs. Our findings reveal that AM apoptosis regulation is an important physiological mechanism for maintaining lung homeostasis and demonstrate the potential of pulmonary-delivered rISM1 to target csGRP78 as a therapeutic strategy for COPD.
Collapse
Affiliation(s)
- Terence Y W Lam
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Ngan Nguyen
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Hong Yong Peh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Mahalakshmi Shanmugasundaram
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Ritu Chandna
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Jong Huat Tee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Chee Bing Ong
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore 138673, Singapore
| | - Md Zakir Hossain
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Shruthi Venugopal
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Tianyi Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Simin Xu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Tao Qiu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Wan Ting Kong
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore 138648, Singapore
| | - Svetoslav Chakarov
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore 138648, Singapore
| | - Supriya Srivastava
- Department of Medicine, National University Hospital, Singapore 119228, Singapore
| | - Wupeng Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Seoul 08826, South Korea
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Ming Teh
- Department of Pathology, National University Hospital, Singapore 119228
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore 138648, Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Immunology Program, Life Science Institute, National University of Singapore, Singapore 117456, Singapore
- Singapore-Hebrew University of Jerusalem Alliance for Research and Enterprise, National University of Singapore, Singapore 138602, Singapore
| | - Ruowen Ge
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore;
| |
Collapse
|
22
|
Gumashta J, Gumashta R. COVID19 associated mucormycosis: Is GRP78 a possible link? J Infect Public Health 2021; 14:1351-1357. [PMID: 34538732 PMCID: PMC8431836 DOI: 10.1016/j.jiph.2021.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
This review aimed to study molecular mechanisms for high incidence of life-threatening mucormycosis infection in COVID19 cases during second wave of SARS CoV2 pandemic in India. Hyperglycaemia, impaired immunity, acidosis, raised ferritin, glucocorticoid therapy, and COVID19 specific other factors have been implicated in pathogenesis of COVID19 associated mucormycosis (CAMM). Endoplasmic reticulum chaperone 'Glucose Related Protein 78' (GRP78), also involved in SARS CoV2 entry, is the host receptor for invasion by Mucorales. GRP78 is over-expressed by SARS CoV2, hyperglycaemia and ferritin. Delta variant of SARS CoV2 and indiscriminate use of steroids were distinguishing features of second wave and appear to upregulate GRP78 through intricate interplay between internal and external milieu. Common invasive fungal infections like candidiasis and aspergillosis, not utilizing GRP78 as receptor, were inconspicuous. Further molecular research to unravel mechanisms involved in the pathogenesis of CAMM shall effectively complement existing strategies for its prevention and treatment.
Collapse
Affiliation(s)
- Jyotsna Gumashta
- Department of Physiology, All India Institute of Medical Sciences, Nagpur, Maharashtra, India.
| | - Raghvendra Gumashta
- Department of Community Medicine, People's College of Medical Sciences and Research Centre, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
23
|
Mallick R, Duttaroy AK. Can interruption of innate immune recognition-mediated emergency myelopoiesis impede tumor progression? Med Hypotheses 2021; 155:110663. [PMID: 34403869 DOI: 10.1016/j.mehy.2021.110663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/08/2021] [Indexed: 01/01/2023]
Abstract
Cancer cells survive and grow despite various advanced anti-cancer therapy. To overcome this antineoplastic resistance, adjuvant therapy is often required to prevent cancer cells' immunoescape capacity. Established tumors build a stressful and hostile microenvironment in order to escape protective innate and adaptive immune responses. Specific conditions and factors within tumors, including hypoxia, nutrient starvation, acidic pH, and increased levels of free radicals, provoke a state of "endoplasmic reticulum stress" in both malignant cells and infiltrating myeloid cells. The stimulated endoplasmic reticulum stress can affect cancer progression via cross-talks with the innate immune system. Recently, the immunosuppressive activities of myeloid cells in the development of antineoplastic resistance are gaining more attention. Based on all these available data, we hypothesize that interruption of innate-immune recognition-mediated emergency myelopoiesis may be beneficial in halting cancer progression.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
24
|
Proteins Marking the Sequence of Genotoxic Signaling from Irradiated Mesenchymal Stromal Cells to CD34+ Cells. Int J Mol Sci 2021; 22:ijms22115844. [PMID: 34072546 PMCID: PMC8197937 DOI: 10.3390/ijms22115844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Non-targeted effects (NTE) of ionizing radiation may initiate myeloid neoplasms (MN). Here, protein mediators (I) in irradiated human mesenchymal stromal cells (MSC) as the NTE source, (II) in MSC conditioned supernatant and (III) in human bone marrow CD34+ cells undergoing genotoxic NTE were investigated. Healthy sublethal irradiated MSC showed significantly increased levels of reactive oxygen species. These cells responded by increasing intracellular abundance of proteins involved in proteasomal degradation, protein translation, cytoskeleton dynamics, nucleocytoplasmic shuttling, and those with antioxidant activity. Among the increased proteins were THY1 and GNA11/14, which are signaling proteins with hitherto unknown functions in the radiation response and NTE. In the corresponding MSC conditioned medium, the three chaperones GRP78, CALR, and PDIA3 were increased. Together with GPI, these were the only four altered proteins, which were associated with the observed genotoxic NTE. Healthy CD34+ cells cultured in MSC conditioned medium suffered from more than a six-fold increase in γH2AX focal staining, indicative for DNA double-strand breaks, as well as numerical and structural chromosomal aberrations within three days. At this stage, five proteins were altered, among them IQGAP1, HMGB1, and PA2G4, which are involved in malign development. In summary, our data provide novel insights into three sequential steps of genotoxic signaling from irradiated MSC to CD34+ cells, implicating that induced NTE might initiate the development of MN.
Collapse
|
25
|
Gonzalez-Gronow M, Gopal U, Austin RC, Pizzo SV. Glucose-regulated protein (GRP78) is an important cell surface receptor for viral invasion, cancers, and neurological disorders. IUBMB Life 2021; 73:843-854. [PMID: 33960608 DOI: 10.1002/iub.2502] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/14/2021] [Accepted: 05/01/2021] [Indexed: 12/22/2022]
Abstract
The 78 kDa glucose-regulated protein (GRP78) is an endoplasmic reticulum (ER)-resident molecular chaperone. GRP78 is a member of the 70 kDa heat shock family of proteins involved in correcting and clearing misfolded proteins in the ER. In response to cellular stress, GRP78 escapes from the ER and moves to the plasma membrane where it (a) functions as a receptor for many ligands, and (b) behaves as an autoantigen for autoantibodies that contribute to human disease and cancer. Cell surface GRP78 (csGRP78) associates with the major histocompatibility complex class I (MHC-I), and is the port of entry for several viruses, including the predictive binding of the novel SARS-CoV-2. Furthermore, csGRP78 is found in association with partners as diverse as the teratocarcinoma-derived growth factor 1 (Cripto), the melanocortin-4 receptor (MC4R) and the DnaJ-like protein MTJ-1. CsGRP78 also serves as a receptor for a large variety of ligands including activated α2 -macroglobulin (α2 M*), plasminogen kringle 5 (K5), microplasminogen, the voltage-dependent anion channel (VDAC), tissue factor (TF), and the prostate apoptosis response-4 protein (Par-4). In this review, we discuss the mechanisms involved in the translocation of GRP78 from the ER to the cell surface, and the role of secreted GRP78 and its autoantibodies in cancer and neurological disorders.
Collapse
Affiliation(s)
- Mario Gonzalez-Gronow
- Department of Biological Sciences, Laboratory of Environmental Neurotoxicology, Faculty of Medicine, Universidad Católica del Norte, Coquimbo, Chile.,Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Udhayakumar Gopal
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University and The Research Institute of St. Joseph's Hamilton, Hamilton, Ontario, Canada
| | - Salvatore V Pizzo
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
26
|
Zhang Y, Greer RA, Song Y, Praveen H, Song Y. In silico identification of available drugs targeting cell surface BiP to disrupt SARS-CoV-2 binding and replication: Drug repurposing approach. Eur J Pharm Sci 2021; 160:105771. [PMID: 33617948 PMCID: PMC7894100 DOI: 10.1016/j.ejps.2021.105771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022]
Abstract
Aims Cell surface binding immunoglobin protein (csBiP) is predicted to be susceptible to SARS-CoV-2 binding. With a substrate-binding domain (SBD) that binds to polypeptides and a nucleotide-binding domain (NBD) that can initiate extrinsic caspase-dependent apoptosis, csBiP may be a promising therapeutic target for COVID-19. This study aims to identify FDA-approved drugs that can neutralize viral binding and prevent viral replication by targeting the functional domains of csBiP. Methods In silico screening of 1999 FDA-approved drugs against the functional domains of BiP were performed using three molecular docking programs to avoid bias from individual docking programs. Top ligands were selected by averaging the ligand rankings from three programs. Interactions between top ligands and functional domains of BiP were analyzed. Key findings The top 10 SBD-binding candidates are velpatasvir, irinotecan, netupitant, lapatinib, doramectin, conivaptan, fenoverine, duvelisib, irbesartan, and pazopanib. The top 10 NBD-binding candidates are nilotinib, eltrombopag, grapiprant, topotecan, acetohexamide, vemurafenib, paritaprevir, pixantrone, azosemide, and piperaquine-phosphate. Among them, Velpatasvir and paritaprevir are antiviral agents that target the protease of hepatitis C virus. Netupitant is an anti-inflammatory drug that inhibits neurokinin-1 receptor, which contributes to acute inflammation. Grapiprant is an anti-inflammatory drug that inhibits the prostaglandin E2 receptor protein subtype 4, which is expressed on immune cells and triggers inflammation. These predicted SBD-binding drugs could disrupt SARS-CoV-2 binding to csBiP, and NBD-binding drugs may falter viral attachment and replication by locking the SBD in closed conformation and triggering apoptosis in infected cells. Significance csBiP appears to be a novel therapeutic target against COVID-19 by preventing viral attachment and replication. These identified drugs could be repurposed to treat COVID-19 patients.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, United States
| | - Rory A Greer
- Department of Biomedical Engineering, The University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, United States
| | - Yuwei Song
- Department of Dermatology, The University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, United States
| | - Hrithik Praveen
- Department of Biomedical Engineering, The University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, United States
| | - Yuhua Song
- Department of Biomedical Engineering, The University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, United States.
| |
Collapse
|
27
|
Fu J, Wei C, He J, Zhang L, Zhou J, Balaji KS, Shen S, Peng J, Sharma A, Fu J. Evaluation and characterization of HSPA5 (GRP78) expression profiles in normal individuals and cancer patients with COVID-19. Int J Biol Sci 2021; 17:897-910. [PMID: 33767597 PMCID: PMC7975696 DOI: 10.7150/ijbs.54055] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
HSPA5 (BiP, GRP78) has been reported as a potential host-cell receptor for SARS-Cov-2, but its expression profiles on different tissues including tumors, its susceptibility to SARS-Cov-2 virus and severity of its adverse effects on malignant patients are unclear. In the current study, HSPA5 has been found to be expressed ubiquitously in normal tissues and significantly increased in 14 of 31 types of cancer tissues. In lung cancer, mRNA levels of HSPA5 were 253-fold increase than that of ACE2. Meanwhile, in both malignant tumors and matched normal samples across almost all cancer types, mRNA levels of HSPA5 were much higher than those of ACE2. Higher expression of HSPA5 significantly decreased patient overall survival (OS) in 7 types of cancers. Moreover, systematic analyses found that 7.15% of 5,068 COVID-19 cases have malignant cancer coincidental situations, and the rate of severe events of COVID-19 patients with cancers present a higher trend than that for all COVID-19 patients, showing a significant difference (33.33% vs 16.09%, p<0.01). Collectively, these data imply that the tissues with high HSPA5 expression, not low ACE2 expression, are susceptible to be invaded by SARS-CoV-2. Taken together, this study not only indicates the clinical significance of HSPA5 in COVID-19 disease and cancers, but also provides potential clues for further medical treatments and managements of COVID-19 patients.
Collapse
Affiliation(s)
- Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Chunli Wei
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Jiayue He
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Lianmei Zhang
- Department of Pathology, the Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu, China
| | - Ju Zhou
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | | | - Shiyi Shen
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Jiangzhou Peng
- Department of Thoracic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China
| | - Amrish Sharma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston 77030, Texas, USA
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| |
Collapse
|
28
|
Kothandan R, Rajan CASG, Arjun J, Raj RRM, Syed S. Virtual screening of phytochemical compounds as potential inhibitors against SARS-CoV-2 infection. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021; 10:9. [PMID: 33527080 PMCID: PMC7841026 DOI: 10.1186/s43088-021-00095-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022] Open
Abstract
Background The present pandemic situation due to coronavirus has led to the search for newer prevention, diagnostic, and treatment methods. The onset of the corona infection in a human results in acute respiratory illness followed by death if not diagnosed and treated with suitable antiretroviral drugs. With the unavailability of the targeted drug treatment, several repurposed drugs are being used for treatment. However, the side-effects of the drugs urges us to move to a search for newer synthetic- or phytochemical-based drugs. The present study investigates the use of various phytochemicals virtually screened from various plant sources in Western Ghats, India, and subsequently molecular docking studies were performed to identify the efficacy of the drug in retroviral infection particularly coronavirus infection. Results Out of 57 phytochemicals screened initially based on the structural and physicochemical properties, 39 were effectively used for the docking analysis. Finally, 5 lead compounds with highest hydrophobic interaction and number of H-bonds were screened. Results from the interaction analysis suggest Piperolactam A to be pocketed well with good hydrophobic interaction with the residues in the binding region R1. ADME and toxicity profiling also reveals Piperolactam A with higher LogS values indicating higher permeation and hydrophilicity. Toxicity profiling suggests that the 5 screened compounds to be relatively safe. Conclusion The in silico methods used in this study suggests that the compound Piperolactam A to be the most effective inhibitor of S-protein from binding to the GRP78 receptor. By blocking the binding of the S-protein to the CS-GRP78 cell surface receptor, they can inhibit the binding of the virus to the host. Supplementary Information The online version contains supplementary material available at 10.1186/s43088-021-00095-x.
Collapse
Affiliation(s)
- Ram Kothandan
- Bioinformatics Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| | | | - Janamitra Arjun
- Bioinformatics Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| | - Rejoe Raymond Michael Raj
- Bioinformatics Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| | - Sowfia Syed
- Bioinformatics Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| |
Collapse
|
29
|
Thakur G, Sathe G, Kundu I, Biswas B, Gautam P, Alkahtani S, Idicula-Thomas S, Sirdeshmukh R, Kishore U, Madan T. Membrane Interactome of a Recombinant Fragment of Human Surfactant Protein D Reveals GRP78 as a Novel Binding Partner in PC3, a Metastatic Prostate Cancer Cell Line. Front Immunol 2021; 11:600660. [PMID: 33542717 PMCID: PMC7850985 DOI: 10.3389/fimmu.2020.600660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/15/2020] [Indexed: 01/08/2023] Open
Abstract
Surfactant protein-D (SP-D), a member of the collectin family has been shown to induce apoptosis in cancer cells. SP-D is composed of an N-terminal collagen-like domain and a calcium-dependent carbohydrate recognition domain (CRD). Recently, we reported that a recombinant fragment of human SP-D (rfhSP-D), composed of homotrimeric CRD region, induced intrinsic apoptotic pathway in prostate cancer cells. Here, we analyzed the membrane interactome of rfhSP-D in an androgen-independent prostate cancer cell line, PC3, by high resolution mass spectrometry and identified 347 proteins. Computational analysis of PPI network of this interactome in the context of prostate cancer metastasis and apoptosis revealed Glucose Regulated Protein of 78 kDa (GRP78) as an important binding partner of rfhSP-D. Docking studies suggested that rfhSP-D (CRD) bound to the substrate-binding domain of glycosylated GRP78. This was further supported by the observations that human recombinant GRP78 interfered with the binding of rfhSP-D to anti-SP-D polyclonal antibodies; GRP78 also significantly inhibited the binding of recombinant full-length human SP-D with a monoclonal antibody specific to the CRD in a dose-dependent manner. We conclude that the interaction with rfhSP-D is likely to interfere with the pro-survival signaling of GRP78.
Collapse
Affiliation(s)
- Gargi Thakur
- Department of Innate Immunity, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Gajanan Sathe
- Institute of Bioinformatics, Bengaluru, India.,Manipal Academy of Higher Education, Manipal, India
| | - Indra Kundu
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Barnali Biswas
- Department of Innate Immunity, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Poonam Gautam
- Laboratory of Molecular Oncology, ICMR-National Institute of Pathology, New Delhi, India
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Susan Idicula-Thomas
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Ravi Sirdeshmukh
- Institute of Bioinformatics, Bengaluru, India.,Manipal Academy of Higher Education, Manipal, India
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Taruna Madan
- Department of Innate Immunity, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| |
Collapse
|
30
|
Chen Z, Wang H, Zhang Z, Xu J, Qi Y, Xue H, Gao Z, Zhao R, Wang S, Zhang S, Qiu W, Guo X, Li G. Cell surface GRP78 regulates BACE2 via lysosome-dependent manner to maintain mesenchymal phenotype of glioma stem cells. J Exp Clin Cancer Res 2021; 40:20. [PMID: 33413577 PMCID: PMC7791784 DOI: 10.1186/s13046-020-01807-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/09/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Glioma stem cells (GSCs) are considered the initial cells of gliomas, contributing to therapeutic resistance. Patient-derived GSCs well recapitulate the heterogeneity of their parent glioma tissues, which can be classified into different subtypes. Likewise, previous works identified GSCs as two distinct subtypes, mesenchymal (MES) and proneural (PN) subtypes, and with general recognition, the MES subtype is considered a more malignant phenotype characterized by high invasion and radioresistance. Therefore, understanding the mechanisms involved in the MES phenotype is necessary for glioblastoma treatment. METHODS Data for bioinformatic analysis were obtained from The Cancer Genome Atlas (TCGA) and The Gene Expression Omnibus (GEO) database. An antibody was used to block cell surface glucose-regulated protein 78 (csGRP78). Apoptosis and cell cycle analyses were performed to evaluate radiation damage. Immunofluorescence staining was applied to assess protein expression and distribution. Mass spectrometry combined with bioinformatic analysis was used to screen downstream molecules. Intracranial GSC-derived xenografts were established for in vivo experiments. RESULTS Total GRP78 expression was associated with MES GSC stemness, and csGRP78 was highly expressed in MES GSCs. Targeting csGRP78 suppressed the self-renewal and radioresistance of MES GSCs in vitro and in vivo, accompanied by downregulation of the STAT3, NF-κB and C/EBPβ pathways. Mass spectrometry revealed the potential downstream β-site APP-cleaving enzyme 2 (BACE2), which was regulated by csGRP78 via lysosomal degradation. Knockdown of BACE2 inactivated NF-κB and C/EBPβ and significantly suppressed the tumorigenesis and radioresistance of MES GSCs in vitro and in vivo. CONCLUSIONS Cell surface GRP78 was preferentially expressed in MES GSCs and played a pivotal role in MES phenotype maintenance. Thus, blocking csGRP78 in MES GSCs with a high-specificity antibody might be a promising novel therapeutic strategy.
Collapse
Affiliation(s)
- Zihang Chen
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Huizhi Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Zongpu Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Jianye Xu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Yanhua Qi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Zijie Gao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Shaobo Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Shouji Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Wei Qiu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Xing Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China.
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China.
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China.
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China.
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China.
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
31
|
Liu Y, Tan Z, Yang Y. Negative feedback and modern anti-cancer strategies targeting the ER stress response. FEBS Lett 2020; 594:4247-4265. [PMID: 33206409 DOI: 10.1002/1873-3468.14000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/18/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum (ER) stress is a cell state in which misfolded or unfolded proteins are aberrantly accumulated in the ER. ER stress induces an evolutionarily conserved adaptive response, named the ER stress response, that deploys a self-regulated machinery to maintain cellular proteostasis. However, compared to its well-established canonical activation mechanism, the negative feedback mechanisms regulating the ER stress response remain unclear and no accepted methods or markers have been established. Several studies have documented that both endogenous and exogenous insults can induce ER stress in cancer. Based on this evidence, small molecule inhibitors targeting ER stress response have been designed to kill cancer cells, with some of them showing excellent curative effects. Here, we review recent advances in our understanding of negative feedback of the ER stress response and compare the markers used to date. We also summarize therapeutic inhibitors targeting ER stress response and highlight the promises and challenges ahead.
Collapse
Affiliation(s)
- Yaofu Liu
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Zhenzhi Tan
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Yili Yang
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| |
Collapse
|
32
|
Elfiky AA, Baghdady AM, Ali SA, Ahmed MI. GRP78 targeting: Hitting two birds with a stone. Life Sci 2020; 260:118317. [PMID: 32841659 PMCID: PMC7442953 DOI: 10.1016/j.lfs.2020.118317] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/22/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Glucose regulating protein 78 (GRP78) is one member of the Heat Shock Protein family of chaperone proteins (HSPA5) found in eukaryotes. It acts as the master of the Unfolded Protein Response (UPR) process in the lumen of the Endoplasmic Reticulum (ER). SCOPE Under the stress of unfolded proteins, GRP78 binds to the unfolded proteins to prevent misfolding, while under the load of the unfolded protein, it drives the cell to autophagy or apoptosis. Several attempts reported the overexpression of GRP78 on the cell membrane of cancer cells and cells infected with viruses or fungi. MAJOR CONCLUSIONS Cell-surface GRP78 is used as a cancer cell target in previous studies. Additionally, GRP78 is used as a drug target to stop the progression of cancer cells by different compounds, including peptides, antibodies, and some natural compounds. Additionally, it can be used as a protein target to reduce the infectivity of different viruses, including the pandemic SARS-CoV-2. Besides, GRP78 targeting is used in diagnosis and imaging modalities using radionuclides. GENERAL SIGNIFICANCE This review summarizes the various attempts that used GRP78 both in therapy (fighting cancer, viral and fungal infections) and diagnosis (imaging).
Collapse
|
33
|
Chen L, Zheng H, Yu X, Liu L, Li H, Zhu H, Zhang Z, Lei P, Shen G. Tumor-Secreted GRP78 Promotes the Establishment of a Pre-metastatic Niche in the Liver Microenvironment. Front Immunol 2020; 11:584458. [PMID: 33133103 PMCID: PMC7550426 DOI: 10.3389/fimmu.2020.584458] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
The liver is an immunologically tolerant organ and a common site of distant metastasis for various cancers. The expression levels of glucose-regulated protein 78 (GRP78) have been associated with tumor malignancy. Secretory GRP78 (sGRP78) released from tumor cells contributes to the establishment of an immunosuppressive tumor microenvironment by regulating cytokine production in macrophages and dendritic cells (DCs). However, the role of sGRP78 on tumor cell colonization and metastasis in the liver remains unclear. Herein, we found that GRP78 was expressed at higher levels in the liver compared to other tissues and organs. We performed intravital imaging using a sGRP78-overexpressing breast cancer cell line (E0771) and found that sGRP78 interacted with dendritic cells (DCs) and F4/80+ macrophages in the liver. Importantly, sGRP78 overexpression inhibited DC activation and induced M2-like polarization in F4/80+ macrophages. Moreover, sGRP78 overexpression enhanced TGF-β production in the liver. In conclusion, sGRP78 promotes tumor cell colonization in the liver by remodeling the tumor microenvironment and promoting immune tolerance. The ability of sGRP78-targeting strategies to prevent or treat liver metastasis should be further examined.
Collapse
Affiliation(s)
- Lu Chen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zheng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Heli Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huifen Zhu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihong Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanxin Shen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Rangel HR, Ortega JT, Maksoud S, Pujol FH, Serrano ML. SARS-CoV-2 host tropism: An in silico analysis of the main cellular factors. Virus Res 2020; 289:198154. [PMID: 32918944 PMCID: PMC7480320 DOI: 10.1016/j.virusres.2020.198154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
The role in host selectivity of ACE2, Tmprss2 and GPR78 in SARS-CoV-2 was explored. Differences in the SARS-CoV-2 RBD binding mode with ACE2 of secondary hosts could be associated with host permissiveness. Nafamostat could be considered a good inhibitor of mammalian hosts TMPRSS2 proteins. In silico studies confirm that the spike protein could interact with GRP78 in studied mammalian hosts. TMPRSS2 and GRP78 do not seem to play a role in host selectivity.
Recent reports have shown that small and big felines could be infected by SARS-CoV-2, while other animals, like swines and mice, are apparently not susceptible to this infection. These findings raise the question of the role of cell factors associated with early stages of the viral infection in host selectivity. The cellular receptor for SARS-CoV-2 is the Angiotensin Converting Enzyme (ACE2). Transmembrane protease serine 2 (TMPRSS2) has been shown to prime the viral spike for its interaction with its receptor. GRP78 has also been proposed as a possible co-receptor. In this study, we used several bioinformatics approaches to bring clues in the interaction of ACE2, TMPRSS2, and GRP78 with SARS-CoV-2. We selected several mammalian hosts that could play a key role in viral spread by acting as secondary hosts (cats, dogs, pigs, mice, and ferrets) and evaluated their predicted permissiveness by in silico analysis. Results showed that ionic pairs (salt bridges, N–O pair, and long-range interactions) produced between ACE2 and the viral spike has an essential function in the host interaction. On the other hand, TMPRSS2 and GRP78 are proteins with high homology in all the evaluated hosts. Thus, these proteins do not seem to play a role in host selectivity, suggesting that other factors may play a role in the non-permissivity in some of these hosts. These proteins represent however interesting cell targets that could be explored in order to control the virus replication in humans and in the intermediary hosts.
Collapse
Affiliation(s)
- H R Rangel
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - J T Ortega
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - S Maksoud
- Department of Neurology and Experimental Therapeutics and Molecular Imaging Laboratory, Massachusetts General Hospital, MA 02129, USA
| | - F H Pujol
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - M L Serrano
- Unidad de Química Medicinal, Facultad de Farmacia, Universidad Central de Venezuela, Caracas 1041-A, Venezuela.
| |
Collapse
|
35
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Hashemi F, Samarghandian S, Najafi M. MicroRNAs in cancer therapy: Their involvement in oxaliplatin sensitivity/resistance of cancer cells with a focus on colorectal cancer. Life Sci 2020; 256:117973. [PMID: 32569779 DOI: 10.1016/j.lfs.2020.117973] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 02/08/2023]
Abstract
The resistance of cancer cells into chemotherapy has restricted the efficiency of anti-tumor drugs. Oxaliplatin (OX) being an anti-tumor agent/drug is extensively used in the treatment of various cancer diseases. However, its frequent application has led to chemoresistance. As a consequence, studies have focused in finding underlying molecular pathways involved in OX resistance. MicroRNAs (miRs) are short endogenous non-coding RNAs that are able to regulate vital biological mechanisms such as cell proliferation and cell growth. The abnormal expression of miRs occurs in pathological events, particularly cancer. In the present review, we describe the involvement of miRs in OX resistance and sensitivity. The miRs are able to induce the oncogene factors and mechanisms, resulting in stimulation OX chemoresistance. Also, onco-suppressor miRs can enhance the sensitivity of cancer cells into OX chemotherapy and trigger apoptosis and cell cycle arrest, leading to reduced viability and progression of cancer cells. MiRs can also enhance the efficacy of OX chemotherapy. It is worth mentioning that miRs affect various down-stream targets in OX resistance/sensitivity such as STAT3, TGF-β, ATG4B, FOXO1, LATS2, NF-κB and so on. By identification of these miRs and their upstream and down-stream mediators, further studies can focus on targeting them to sensitize cancer cells into OX chemotherapy and induce apoptotic cell death.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | | | - Farid Hashemi
- DVM. Graduated, Young Researcher and Elite Club, Kazerun Branch, Islamic Azad University, Kazeroon, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|