1
|
Hassan AHE, Bae ES, Jeong Y, Ock CW, El-Sayed SM, Kim M, Radwan MF, Ibrahim TS, Cho JY, Park BY, Sim J, Lee SK, Lee YS. Design, synthesis and evaluation of acetylcholine-antitumor lipid hybrids led to identification of a potential anticancer agent disrupting the CDK4/6-Rb pathway in lung cancer. RSC Med Chem 2025:d4md01007h. [PMID: 40135145 PMCID: PMC11931566 DOI: 10.1039/d4md01007h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Hybridization of acetylcholine with antitumor lipids (ATLs) was explored to achieve novel potential anticancer agents. The combination with a 2-stearoxyphenyl moiety substantially enhanced the anticancer activity of the acetylcholine hybrids. Compounds 6, 8, 9 and 10 exhibited pronounced anticancer activities higher than edelfosine and stPEPC and NSC43067. Compounds 6, 8, 9 and 10 also showed broad-spectrum anticancer activity against diverse cancer cells including lung, ovarian, renal, prostate, leukaemia, colon, CNS, melanoma, and breast cancer cells. Compounds 6 and 8 were potent compounds eliciting single digit low micromolar GI50 values. Compound 6 was the most potent against non-small cell lung cancer, ovarian cancer, renal cancer, and prostate cancer. Meanwhile, compound 8 was the most potent against leukaemia, colon cancer, CNS cancer, melanoma, and breast cancer. Exploration of the mechanism of action of compound 6 in A549 non-small cell lung cancer cells showed that it triggers cell cycle arrest in the G0/G1 phase via disruption of the CDK4/6-Rb pathway and induces apoptosis via the activation of caspases, upregulation of BAX and cleavage of PARP. Overall, the results present acetylcholine-ATL hybrids 6 and 8 as potential anticancer agents for possible further development.
Collapse
Affiliation(s)
- Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
- Department of Pharmacy, College of Pharmacy, Kyung Hee University Seoul 02447 Republic of Korea
- Department of Regulatory Science, Graduate School, Kyung Hee University Seoul 02447 Republic of Korea
- Institute of Regulatory Innovation through Science, Kyung Hee University Seoul 02447 Republic of Korea
| | - Eun Seo Bae
- Natural Products Research Institute, College of Pharmacy, Seoul National University Seoul 08826 Republic of Korea
| | - Youngdo Jeong
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University Seoul 02447 Republic of Korea
| | - Chae Won Ock
- Natural Products Research Institute, College of Pharmacy, Seoul National University Seoul 08826 Republic of Korea
| | - Selwan M El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura National University Gamasa 7731168 Egypt
| | - Minji Kim
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University Seoul 02447 Republic of Korea
| | - Mohamed F Radwan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University Jeddah 21589 Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University Zagazig 44519 Egypt
| | - Jun-Young Cho
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University Seoul 02447 Republic of Korea
| | - Boyoung Y Park
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University Seoul 02447 Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University Seoul 02447 South Korea
| | - Jaehoon Sim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University Seoul 02447 Republic of Korea
- Department of Regulatory Science, Graduate School, Kyung Hee University Seoul 02447 Republic of Korea
- Institute of Regulatory Innovation through Science, Kyung Hee University Seoul 02447 Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University Seoul 08826 Republic of Korea
| | - Yong Sup Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University Seoul 02447 Republic of Korea
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University Seoul 02447 Republic of Korea
| |
Collapse
|
2
|
Hassan AHE, Choi Y, Kim R, Kim HJ, Almatary AM, El-Sayed SM, Lee Y, Lee JK, Park KD, Lee YS. Synthesis and biological evaluation of O 4'-benzyl-hispidol derivatives and analogs as dual monoamine oxidase-B inhibitors and anti-neuroinflammatory agents. Bioorg Med Chem 2024; 110:117826. [PMID: 39004050 DOI: 10.1016/j.bmc.2024.117826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Design, synthesis, and biological evaluation of two series of O4'-benzyl-hispidol derivatives and the analogous corresponding O3'-benzyl derivatives aiming to develop selective monoamine oxidase-B inhibitors endowed with anti-neuroinflammatory activity is reported herein. The first O4'-benzyl-hispidol derivatives series afforded several more potentially active and MAO-B inhibitors than the O3'-benzyl derivatives series. The most potential compound 2e of O4'-benzyl derivatives elicited sub-micromolar MAO-B IC50 of 0.38 µM with a selectivity index >264 whereas most potential compound 3b of O3'-benzyl derivatives showed only 0.95 MAO-B IC50 and a selectivity index >105. Advancement of the most active compounds showing sub-micromolar activities to further cellular evaluations of viability and induced production of pro-neuroinflammatory mediators confirmed compound 2e as a potential lead compound inhibiting the production of the neuroinflammatory mediator nitric oxide significantly by microglial BV2 cells at 3 µM concentration without significant cytotoxicity up to 30 µM. In silico molecular docking study predicted plausible binding modes with MAO enzymes and provided insights at the molecular level. Overall, this report presents compound 2e as a potential lead compound to develop potential multifunctional compounds.
Collapse
Affiliation(s)
- Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Yeonwoo Choi
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Rium Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyeon Jeong Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Aya M Almatary
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Selwan M El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura National University, Gamasa 7731168, Egypt
| | - Yeongae Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ki Duk Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea; Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
3
|
Hassan AHE, Wang CY, Oh T, Ham G, Lee SK, Lee YS. Discovery of a stilbenoid-flavanone hybrid as an antitumor Wnt/β-catenin signaling pathway inhibitor. Bioorg Chem 2024; 145:107178. [PMID: 38359708 DOI: 10.1016/j.bioorg.2024.107178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
A series of designed stilbenoid-flavanone hybrids featuring sp3-hybridized C2 and C3 atoms of C-ring was evaluated against colorectal cancers presented compounds 4, 17, and 20 as the most potential compounds among explored compounds. Evaluation of the anticancer activity spectrum of compounds 4, 17, and 20 against diverse solid tumors presented compounds 17 and 20 with interesting anticancer spectrum. The potencies of compounds 17 and 20 were assessed in comparison with FDA-approved anticancer drugs. Compound 17 was the, in general, the most potent showing low micromolar GI50 values that were more potent than the standard FDA-approved drugs against several solid tumors including colon, brain, skin, renal, prostate and breast tumors. Compound 17 was subjected for evaluation against normal cell lines and was subjected to a mechanism study in HCT116 colon cancer cells which presented it as an inhibitor of Wnt signaling pathway triggering G2/M cell cycle arrest though activation of p53-p21 pathway as well as intrinsic and extrinsic apoptotic death of colon cancer cells. Compound 17 might be a candidate for further development against diverse solid tumors including colon cancer.
Collapse
Affiliation(s)
- Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Cai Yi Wang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Taegeun Oh
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Gyeongpyo Ham
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea.
| |
Collapse
|
4
|
Hassan AHE, Wang CY, Lee CJ, Jeon HR, Choi Y, Moon S, Lee CH, Kim YJ, Cho SB, Mahmoud K, El-Sayed SM, Lee SK, Lee YS. Repurposing Synthetic Congeners of a Natural Product Aurone Unveils a Lead Antitumor Agent Inhibiting Folded P-Loop Conformation of MET Receptor Tyrosine Kinase. Pharmaceuticals (Basel) 2023; 16:1597. [PMID: 38004462 PMCID: PMC10675456 DOI: 10.3390/ph16111597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
A library of 24 congeners of the natural product sulfuretin were evaluated against nine panels representing nine cancer diseases. While sulfuretin elicited very weak activities at 10 µM concentration, congener 1t was identified as a potential compound triggering growth inhibition of diverse cell lines. Mechanistic studies in HCT116 colon cancer cells revealed that congener 1t dose-dependently increased levels of cleaved-caspases 8 and 9 and cleaved-PARP, while it concentration-dependently decreased levels of CDK4, CDK6, Cdc25A, and Cyclin D and E resulting in induction of cell cycle arrest and apoptosis in colon cancer HCT116 cells. Mechanistic study also presented MET receptor tyrosine kinase as the molecular target mediating the anticancer activity of compound 1t in HCT116 cells. In silico study predicted folded p-loop conformation as the form of MET receptor tyrosine kinase responsible for binding of compound 1t. Together, the current study presents compound 1t as an interesting anticancer lead for further development.
Collapse
Affiliation(s)
- Ahmed H. E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Cai Yi Wang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheol Jung Lee
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hye Rim Jeon
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yeonwoo Choi
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Suyeon Moon
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chae Hyeon Lee
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yeon Ju Kim
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Soo Bin Cho
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kazem Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt
| | - Selwan M. El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
5
|
Hassan AHE, Kim HJ, Jung SJ, Jang SY, El-Sayed SM, Lee KT, Lee YS. Design, synthesis, and evaluation of new anti-inflammatory natural products amide derivatives endowed with anti-blood cancer activity towards development of potential multifunctional agents against hematological cancers. Eur J Med Chem 2023; 258:115566. [PMID: 37354740 DOI: 10.1016/j.ejmech.2023.115566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
New amide derivatives of the natural product 5,6,7-trimethoxyflavanone were designed as multifunctional antiproliferative molecules against blood cancer and the associated inflammatory conditions. The targeted compounds were synthesized efficiently in three linear steps employing known chalcone starting materials. Compounds 2h, 2i, 2l, 2t, 2v and 2x having bromo or nitro substituted-phenyl rings elicited potential inhibitory effects on macrophages production of nitric oxide, PGE2 and TNF-α which are proinflammatory mediators involved in tumorigenesis and progression of blood cancer. Additionally, evaluation of direct inhibitory effects on the growth of diverse blood cancers including leukemia, lymphoma, and myeloma cell lines unveiled compound 2v as the most potential molecules eliciting at least five-folds the potency of the standard imatinib drug over the used diverse blood cancers. Furthermore, compound 2v showed good selectivity to blood cancer cells rather than normal MRC5 cells. Moreover, compound 2v triggered death of HL60 leukemia cells via apoptosis induction. In conclusion, the natural product-derived compound 2v might serve as a multifunctional lead compound for further development of agents for treatment of blood cancers.
Collapse
Affiliation(s)
- Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea.
| | - Hye Jin Kim
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Su Jin Jung
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Seo-Yun Jang
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Selwan M El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea.
| |
Collapse
|
6
|
Hassan AHE, Wang CY, Lee HJ, Jung SJ, Kim YJ, Cho SB, Lee CH, Ham G, Oh T, Lee SK, Lee YS. Scaffold hopping of N-benzyl-3,4,5-trimethoxyaniline: 5,6,7-Trimethoxyflavan derivatives as novel potential anticancer agents modulating hippo signaling pathway. Eur J Med Chem 2023; 256:115421. [PMID: 37163949 DOI: 10.1016/j.ejmech.2023.115421] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
Scaffold hopping of N-benzyl-3,4,5-trimethoxyaniline afforded 5,6,7-trimethoxyflavan derivatives that were efficiently synthesized in four linear steps. As lung cancer is the most lethal cancer, twenty-three synthesized compounds were evaluated against a panel of lung cancer cells. Amongst, compounds 8q and 8e showed interesting activity. Hence, compounds 8q and 8e were evaluated against panels of diverse cancers. Compounds 8q and 8e showed broad spectrum anticancer activity. However, compound 8q was more effective and, hence, was advanced for potency evaluation and characterization. Compound 8q showed comparable potencies to gefitinib, and oxaliplatin against lung and colorectal cancers, respectively, and superior potencies to temozolomide, dacarbazine, cisplatin, enzalutamide, methotrexate, imatinib against brain, skin, ovary, prostate, breast, and blood cancers, respectively. Compound 8q increased cleaved PARP, caspase 3, and 7 inducing apoptosis. In addition, it inhibited cyclins A, B1, H and cdc25c, and increased p53 triggering cell cycle arrest in G2/M phase. Moreover, it decreased YAP and increased LATS1 and p-mob1/mob1 activating hippo signaling. Furthermore, it decreased p-PI3K/PI3k, p-mTOR/mTOR and p-P70S6K/P70S6K inhibiting PI3k pathway. Together, these findings present compound 8q as a potential anticancer lead compound for further development of potential agents.
Collapse
Affiliation(s)
- Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Cai Yi Wang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyo Jong Lee
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Su Jin Jung
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Yeon Ju Kim
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Soo Bin Cho
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Chae Hyeon Lee
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Gyeongpyo Ham
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Taegeun Oh
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea.
| |
Collapse
|
7
|
Gulia K, Hassan AHE, Lenhard JR, Farahat AA. Escaping ESKAPE resistance: in vitro and in silico studies of multifunctional carbamimidoyl-tethered indoles against antibiotic-resistant bacteria. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230020. [PMID: 37090961 PMCID: PMC10113819 DOI: 10.1098/rsos.230020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Combining the hybridization and repurposing strategies, six compounds from our in-house library and having a designed hybrid structure of MBX-1162, pentamidine and MMV688271 were repurposed as potential antibacterial agents. Among, compounds 1a and 1d elicited potential sub-µg ml-1 activity against the high-priority antibiotic-resistant Gram-positive members of ESKAPE bacteria as well as antibiotic-susceptible Gram-positive bacteria. Furthermore, they showed potential low µg ml-1 activity against the explored critical-priority antibiotic-resistant Gram-negative members of ESKAPE bacteria. In time-kill assay, compound 1a has effective 0.5 and 0.25 µg ml-1 antibacterial lethal concentrations against MRSA in exponential growth phase. In silico investigations predicted compounds 1a and 1d as inhibitors of the open conformation of undecaprenyl diphosphate synthase involved in bacterial isoprenoid synthesis. In addition, compounds 1a and 1d were predicted as inhibitors of NADPH-free but not NADPH-bound form of ketol-acid reductoisomerase and may also serve as potential B-DNA minor groove binders with possible differences in the molecular sequence recognition. Overall, compounds 1a and 1d are presented as multifunctional potential antibacterial agents for further development against high- and critical-priority Gram-positive and Gram-negative antibiotic-resistant ESKAPE bacterial pathogens as well as antibiotic-susceptible Gram-positive bacterial pathogens.
Collapse
Affiliation(s)
- Kanika Gulia
- Master of Pharmaceutical Sciences Program, California Northstate University, 9700 W Taron Dr., Elk Grove, CA 95757, USA
- College of Medicine, California Northstate University, 9700 W Taron Dr., Elk Grove, CA 95757, USA
| | - Ahmed H. E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Justin R. Lenhard
- Department of Clinical and Administrative Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Abdelbasset A. Farahat
- Master of Pharmaceutical Sciences Program, California Northstate University, 9700 W Taron Dr., Elk Grove, CA 95757, USA
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
8
|
Hassan AHE, Mahmoud K, Phan TN, Shaldam MA, Lee CH, Kim YJ, Cho SB, Bayoumi WA, El-Sayed SM, Choi Y, Moon S, No JH, Lee YS. Bestatin analogs-4-quinolinone hybrids as antileishmanial hits: Design, repurposing rational, synthesis, in vitro and in silico studies. Eur J Med Chem 2023; 250:115211. [PMID: 36827952 DOI: 10.1016/j.ejmech.2023.115211] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
Amongst different forms of leishmaniasis, visceral leishmaniasis caused by L. donovani is highly mortal. Identification of new hit compounds might afford new starting points to develop novel therapeutics. In this lieu, a rationally designed small library of bestatin analogs-4-quinolone hybrids were prepared and evaluated. Analysis of SAR unveiled distinct profiles for hybrids type 1 and type 2, which might arise from their different molecular targets. Amongst type 1 bestatin analog-4-quinolone hybrids, hybrid 1e was identified as potential hit inhibiting growth of L. donovani promastigotes by 91 and 53% at 50 and 25 μM concentrations, respectively. Meanwhile, hybrid 2j was identified amongst type 2 bestatin analog-4-quinolone hybrids as potential hit compound inhibiting growth of L. donovani promastigotes by 50 and 38% at 50 and 25 μM concentrations, respectively. Preliminary safety evaluation of the promising hit compounds showed that they are 50-100 folds safer against human derived monocytic THP-1 cells relative to the drug erufosine. In silico study was conducted to predict the possible binding of hybrid 1e with methionine aminopeptidases 1 and 2 of L. donovani. Molecular dynamic simulations verified the predicted binding modes and provide more in depth understanding of the impact of hybrid 1e on LdMetAP-1 and LdMetAP-2.
Collapse
Affiliation(s)
- Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Kazem Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Trong-Nhat Phan
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Chae Hyeon Lee
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yeon Ju Kim
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Soo Bin Cho
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Waleed A Bayoumi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Selwan M El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Yeonwoo Choi
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Suyeon Moon
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Joo Hwan No
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
9
|
Gil HS, Lee JH, Farag AK, Hassan AHE, Chung KS, Choi JH, Roh EJ, Lee KT. AKF-D52, a Synthetic Phenoxypyrimidine-Urea Derivative, Triggers Extrinsic/Intrinsic Apoptosis and Cytoprotective Autophagy in Human Non-Small Cell Lung Cancer Cells. Cancers (Basel) 2021; 13:cancers13225849. [PMID: 34831003 PMCID: PMC8616202 DOI: 10.3390/cancers13225849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 01/24/2023] Open
Abstract
Simple Summary We previously reported the antiproliferative effects of a phenoxypyridine urea derivative. In this study, we aimed to investigate the antiproliferative effects of 1-(3,5-dimethoxyphenyl)-3-(4-(3-methoxyphenoxy)-2-((4-morpholinophenyl)amino)pyrimidin-5-yl)urea (AKF-D52) in non-small cell lung cancer cells. We found that (i) AKF-D52 induces apoptosis in caspase-dependent and caspase-independent pathways; (ii) AKF-D52-induced apoptosis is caused by the clustering of a death-inducing signaling complex and mitochondrial-dependent signaling; (iii) AKF-D52 induces cytoprotective autophagy, and pre-treatment with an autophagy inhibitor enhances the apoptotic effect of AKF-D52; and (iv) AKF-D52-induced apoptosis and autophagy are attenuated by the reactive oxygen species (ROS) scavenger α-tocopherol. Furthermore, AKF-D52 suppressed tumor growth in a xenograft mouse model. Collectively, our findings regarding the efficacy and molecular mechanisms of AKF-D52 identify this compound as a potential therapeutic agent for the treatment of lung cancer. Abstract Previously, we discovered that 1-(3,5-dimethoxyphenyl)-3-(4-(3-methoxyphenoxy)-2-((4-morpholinophenyl)amino)pyrimidin-5-yl)urea (AKF-D52), a synthetic phenoxypyrimidine urea derivative, acts as a growth inhibitor of various cancer cell types. In this study, we elucidated the antiproliferative properties of AFK-D52 and underlying mechanisms in non-small cell lung cancer (NSCLC) cells and an A549 xenograft animal model. AKF-D52 was found to induce both caspase-dependent and -independent apoptotic cell death. Furthermore, the mitochondrial component of the AKF-D52-induced apoptosis mechanism involves a reduction in mitochondrial membrane potential and regulation in B cell lymphoma-2 family protein expression. Moreover, AKF-D52 activates the extrinsic pathway through up-regulated expression of death receptor 3 and Fas and then the formation of a death-inducing signaling complex. AKF-D52 also induced autophagy by increasing acidic vesicular organelle formation and microtubule-associated protein 1A/1B-light chain 3-II levels and reducing p62 levels. Notably, pretreatment with autophagy inhibitors enhanced AKF-D52-induced cell death, indicating that the induced autophagy is cytoprotective. AKF-D52 treatment also triggered reactive oxygen species (ROS) production in NSCLC cells, whereas the antioxidant α-tocopherol abolished AKF-D52-induced cell death. In a xenograft lung cancer mouse model, AKF-D52 administration attenuated tumor growth by inducing apoptosis and autophagy in tumor tissues. Collectively, our data indicate that AKF-D52-induced ROS production plays a role in mediating apoptosis and cytoprotective autophagy in NSCLC.
Collapse
Affiliation(s)
- Hyo-Sun Gil
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (H.-S.G.); (J.-H.L.); (K.-S.C.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea;
| | - Jeong-Hun Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (H.-S.G.); (J.-H.L.); (K.-S.C.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea;
| | - Ahmed K. Farag
- Manufacturing Department, Curachem, Inc., Cheongju-si 28161, Chungcheongbuk-do, Korea;
| | - Ahmed H. E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (H.-S.G.); (J.-H.L.); (K.-S.C.)
| | - Jung-Hye Choi
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea;
- Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea
| | - Eun-Joo Roh
- Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology, Seoul 02792, Korea;
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (H.-S.G.); (J.-H.L.); (K.-S.C.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea;
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-9610860; Fax: +82-2-9619580
| |
Collapse
|
10
|
Chung KS, Yoo CB, Lee JH, Lee HH, Park SE, Han HS, Lee SY, Kwon BM, Choi JH, Lee KT. Regulation of ROS-Dependent JNK Pathway by 2'-Hydroxycinnamaldehyde Inducing Apoptosis in Human Promyelocytic HL-60 Leukemia Cells. Pharmaceutics 2021; 13:pharmaceutics13111794. [PMID: 34834209 PMCID: PMC8618870 DOI: 10.3390/pharmaceutics13111794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022] Open
Abstract
The present study demonstrated that 2'-hydroxycinnamaldehyde (2'-HCA) induced apoptosis in human promyelocytic leukemia HL-60 cells through the activation of mitochondrial pathways including (1) translocation of Bim and Bax from the cytosol to mitochondria, (2) downregulation of Bcl-2 protein expression, (3) cytochrome c release into the cytosol, (4) loss of mitochondrial membrane potential (ΔΨm), and (5) caspase activation. 2'-HCA also induced the activation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase1/2 (ERK1/2) in HL-60 cells. The pharmacological and genetic inhibition of JNK effectively prevented 2'-HCA-induced apoptosis and activator protein-1 (AP-1)-DNA binding. In addition, 2'-HCA resulted in the accumulation of reactive oxygen species (ROS) and depletion of intracellular glutathione (GSH) and protein thiols (PSH) in HL-60 cells. NAC treatment abrogated 2'-HCA-induced JNK phosphorylation, AP-1-DNA binding, and Bim mitochondrial translocation, suggesting that oxidative stress may be required for 2'-HCA-induced intrinsic apoptosis. Xenograft mice inoculated with HL-60 leukemia cells demonstrated that the intraperitoneal administration of 2'-HCA inhibited tumor growth by increasing of TUNEL staining, the expression levels of nitrotyrosine and pro-apoptotic proteins, but reducing of PCNA protein expression. Taken together, our findings suggest that 2'-HCA induces apoptosis via the ROS-dependent JNK pathway and could be considered as a potential therapeutic agent for leukemia.
Collapse
Affiliation(s)
- Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
| | - Chae-Bin Yoo
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
| | - Jeong-Hun Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea;
| | - Hwi-Ho Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
| | - Sang-Eun Park
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmarcy, Kyung Hee University, Seoul 02447, Korea
| | - Hee-Soo Han
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea;
| | - Su-Yeon Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmarcy, Kyung Hee University, Seoul 02447, Korea
| | - Byoung-Mok Kwon
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Jung-Hye Choi
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea;
- Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea;
- Correspondence: ; Tel.: +82-2-961-0860
| |
Collapse
|
11
|
Fu B, Lin X, Tan S, Zhang R, Xue W, Zhang H, Zhang S, Zhao Q, Wang Y, Feldman K, Shi L, Zhang S, Nian W, Chaitanya Pavani K, Li Z, Wang X, Wu H. MiR-342 controls Mycobacterium tuberculosis susceptibility by modulating inflammation and cell death. EMBO Rep 2021; 22:e52252. [PMID: 34288348 PMCID: PMC8419689 DOI: 10.15252/embr.202052252] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/31/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) that places a heavy strain on public health. Host susceptibility to Mtb is modulated by macrophages, which regulate the balance between cell apoptosis and necrosis. However, the role of molecular switches that modulate apoptosis and necrosis during Mtb infection remains unclear. Here, we show that Mtb-susceptible mice and TB patients have relatively low miR-342-3p expression, while mice with miR-342-3p overexpression are more resistant to Mtb. We demonstrate that the miR-342-3p/SOCS6 axis regulates anti-Mtb immunity by increasing the production of inflammatory cytokines and chemokines. Most importantly, the miR-342-3p/SOCS6 axis participates in the switching between Mtb-induced apoptosis and necrosis through A20-mediated K48-linked ubiquitination and RIPK3 degradation. Our findings reveal several strategies by which the host innate immune system controls intracellular Mtb growth via the miRNA-mRNA network and pave the way for host-directed therapies targeting these pathways.
Collapse
Affiliation(s)
- Beibei Fu
- School of Life SciencesChongqing UniversityChongqingChina
| | - Xiaoyuan Lin
- School of Life SciencesChongqing UniversityChongqingChina
| | - Shun Tan
- Chongqing Public Health Medical CenterChongqingChina
| | - Rui Zhang
- Department of Respiratory MedicineFirst Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Weiwei Xue
- School of Pharmaceutical SciencesChongqing UniversityChongqingChina
| | - Haiwei Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized TreatmentChongqing University Cancer HospitalChongqingChina
| | - Shanfu Zhang
- School of Life SciencesChongqing UniversityChongqingChina
| | - Qingting Zhao
- School of Life SciencesChongqing UniversityChongqingChina
| | - Yu Wang
- Technical Center of Chongqing CustomsChongqingChina
| | - Kelly Feldman
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCAUSA
| | - Lei Shi
- School of Life SciencesChongqing UniversityChongqingChina
| | - Shaolin Zhang
- School of Pharmaceutical SciencesChongqing UniversityChongqingChina
| | - Weiqi Nian
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized TreatmentChongqing University Cancer HospitalChongqingChina
| | | | - Zhifeng Li
- School of Life SciencesChongqing UniversityChongqingChina
- Chongqing Center for Disease Control and PreventionChongqingChina
| | - Xingsheng Wang
- Department of Respiratory MedicineChongqing Emergency Medical CenterAffiliated Central Hospital of Chongqing UniversityChongqingChina
| | - Haibo Wu
- School of Life SciencesChongqing UniversityChongqingChina
| |
Collapse
|
12
|
Donarska B, Świtalska M, Płaziński W, Wietrzyk J, Łączkowski KZ. Effect of the dichloro-substitution on antiproliferative activity of phthalimide-thiazole derivatives. Rational design, synthesis, elastase, caspase 3/7, and EGFR tyrosine kinase activity and molecular modeling study. Bioorg Chem 2021; 110:104819. [PMID: 33752144 DOI: 10.1016/j.bioorg.2021.104819] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 02/20/2021] [Accepted: 03/06/2021] [Indexed: 02/06/2023]
Abstract
Phthalimide derivatives are a promising group of anticancer drugs, while aminothiazoles have great potential as elastase inhibitors. In these context fourteen phthalimido-thiazoles containing a dichloro-substituted phenyl ring with high antiproliferative activity against various cancer cell lines were designed and synthesized. Among the screened derivatives, compounds 5a-5e and 6a-6f showed high activity against human leukemia (MV4-11) cells with IC50 values in the range of 5.56-16.10 µM. The phthalimide-thiazoles 5a, 5b and 5d showed the highest selectivity index (SI) relative to MV4-11 with 11.92, 10.80 and 8.21 values, respectively. The antiproliferative activity of compounds 5e, 5f and 6e, 6f against human lung carcinoma (A549) cells is also very high, with IC50 values in the range of 6.69-10.41 µM. Lead compounds 6e and 6f showed elastase inhibition effect, with IC50 values about 32 μM with mixed mechanism of action. The molecular modeling studies showed that the binding energies calculated for all set of compounds are strongly correlated with the experimentally determined values of IC50. The lead compound 6e also increases almost 16 times caspase 3/7 activity in A549 cells compared to control. We have also demonstrated that compound 6f reduced EGFR tyrosine kinase levels in A549 cells by approximately 31%. These results clearly suggest that 3,4-dichloro-derivative 6e and 3,5-dichloro-derivative 6f could constitute lead dual-targeted anticancer drug candidates.
Collapse
Affiliation(s)
- Beata Donarska
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Marta Świtalska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Wojciech Płaziński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland
| | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Krzysztof Z Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland.
| |
Collapse
|
13
|
Farag AK, Hassan AH, Chung KS, Lee JH, Gil HS, Lee KT, Roh EJ. Diarylurea derivatives comprising 2,4-diarylpyrimidines: Discovery of novel potential anticancer agents via combined failed-ligands repurposing and molecular hybridization approaches. Bioorg Chem 2020; 103:104121. [DOI: 10.1016/j.bioorg.2020.104121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/19/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
|
14
|
Design and synthesis of novel Flavone-based histone deacetylase inhibitors antagonizing activation of STAT3 in breast cancer. Eur J Med Chem 2020; 206:112677. [PMID: 32823005 DOI: 10.1016/j.ejmech.2020.112677] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/22/2022]
Abstract
Histone deacetylases (HDACs) inhibitors have demonstrated a great clinical achievement in hematological malignancies. However, the efficacy of HDACs inhibitors in treating solid tumors remains limited due to the complicated tumor microenvironment. In this study, we designed and synthesized a class of novel HDACs inhibitors based on the structure of flavones and isoflavones, followed by biological evaluation. To be specific, a lead compound 15a was discovered with strong anti-proliferative effects on a variety of solid tumor cells, especially for breast cancer cells with resistance to SAHA. Studies demonstrated that 15a could significantly inhibit the activity of HDAC 1, 2, 3 (class I) and 6 (class IIB), leading to a dose-dependent accumulation of acetylated histones and α-Tubulin, cell cycle arrest (G1/S phase) and apoptosis in breast cancer cells. Furthermore, the lead compound 15a could also antagonize the activation of STAT3 induced by HDACs inhibition in some breast cancer cells, which further reduced the level of pro-survive proteins in tumor cells and enhanced anti-tumor activity regulated by STAT3 signaling in vivo. Overall, our findings demonstrated that the novel compound 15a might be a HDACs inhibitor candidate, which could be used as promising chemotherapeutic agent for breast cancer.
Collapse
|
15
|
KCP10043F Represses the Proliferation of Human Non-Small Cell Lung Cancer Cells by Caspase-Mediated Apoptosis via STAT3 Inactivation. J Clin Med 2020; 9:jcm9030704. [PMID: 32150979 PMCID: PMC7141374 DOI: 10.3390/jcm9030704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 12/19/2022] Open
Abstract
We previously reported that 4-(4-fluorobenzylcarbamoylmethyl)-3-(4-cyclohexylphenyl)-2-[3-(N,N-dimethylureido)-N'-methylpropylamino]-3,4-dihydroquinazoline (KCP10043F) can induce G1-phase arrest and synergistic cell death in combination with etoposide in lung cancer cells. Here, we investigated the underlying mechanism by which KCP10043F induces cell death in non-small cell lung cancer (NSCLC). Propidium iodide (PI) and annexin V staining revealed that KCP10043F-induced cytotoxicity was caused by apoptosis. KCP10043F induced a series of intracellular events: (1) downregulation of Bcl-2 and Bcl-xL and upregulation of Bax and cleaved Bid; (2) loss of mitochondrial membrane potential; (3) increase of cytochrome c release; (4) cleavage of procaspase-8, procaspase-9, procaspase-3, and poly (ADP-ribose) polymerase (PARP). In addition, KCP10043F exhibited potent inhibitory effects on constitutive or interleukin-6 (IL-6)-induced signal transducer and activator of transcription (STAT3) phosphorylation and STAT3-regulated genes including survivin, Mcl-1, and cyclin D1. Furthermore, STAT3 overexpression attenuated KCP10043F-induced apoptosis and the cleavage of caspase-9, caspase-3, and PARP. Docking analysis disclosed that KCP10043F could bind to a pocket in the SH2 domain of STAT3 and prevent STAT3 phosphorylation. The oral administration of KCP10043F decreased tumor growth in an A549 xenograft mouse model, as associated with the reduced phosphorylated STAT3, survivin, Mcl-1, and Bcl-2 expression and increased TUNEL staining and PARP cleavage in tumor tissues. Collectively, our data suggest that KCP10043F suppresses NSCLC cell growth through apoptosis induction via STAT3 inactivation.
Collapse
|
16
|
Flavone-based arylamides as potential anticancers: Design, synthesis and in vitro cell-based/cell-free evaluations. Eur J Med Chem 2020; 187:111965. [DOI: 10.1016/j.ejmech.2019.111965] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/24/2022]
|