1
|
Kelley LP, Hu SH, Boswell SA, Sorger PK, Ringel AE, Haigis MC. Integrated analysis of transcriptional and metabolic responses to mitochondrial stress. CELL REPORTS METHODS 2025; 5:101027. [PMID: 40233762 DOI: 10.1016/j.crmeth.2025.101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/11/2024] [Accepted: 03/20/2025] [Indexed: 04/17/2025]
Abstract
Mitochondrial stress arises from a variety of sources, including mutations to mitochondrial DNA, the generation of reactive oxygen species, and an insufficient supply of oxygen or fuel. Mitochondrial stress induces a range of dedicated responses that repair damage and restore mitochondrial health. However, a systematic characterization of transcriptional and metabolic signatures induced by distinct types of mitochondrial stress is lacking. Here, we defined how primary human fibroblasts respond to a panel of mitochondrial inhibitors to trigger adaptive stress responses. Using metabolomic and transcriptomic analyses, we established integrated signatures of mitochondrial stress. We developed a tool, stress quantification using integrated datasets (SQUID), to deconvolute mitochondrial stress signatures from existing datasets. Using SQUID, we profiled mitochondrial stress in The Cancer Genome Atlas (TCGA) PanCancer Atlas, identifying a signature of pyruvate import deficiency in IDH1-mutant glioma. Thus, this study defines a tool to identify specific mitochondrial stress signatures, which may be applied to a range of systems.
Collapse
Affiliation(s)
- Liam P Kelley
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Song-Hua Hu
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah A Boswell
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA 02115, USA; Ginkgo Bioworks, Inc., Boston, MA 02210, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA 02115, USA
| | - Alison E Ringel
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA.
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Choate KA, Pratt EPS, Jennings MJ, Winn RJ, Mann PB. IDH Mutations in Glioma: Molecular, Cellular, Diagnostic, and Clinical Implications. BIOLOGY 2024; 13:885. [PMID: 39596840 PMCID: PMC11592129 DOI: 10.3390/biology13110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
In 2021, the World Health Organization classified isocitrate dehydrogenase (IDH) mutant gliomas as a distinct subgroup of tumors with genetic changes sufficient to enable a complete diagnosis. Patients with an IDH mutant glioma have improved survival which has been further enhanced by the advent of targeted therapies. IDH enzymes contribute to cellular metabolism, and mutations to specific catalytic residues result in the neomorphic production of D-2-hydroxyglutarate (D-2-HG). The accumulation of D-2-HG results in epigenetic alterations, oncogenesis and impacts the tumor microenvironment via immunological modulations. Here, we summarize the molecular, cellular, and clinical implications of IDH mutations in gliomas as well as current diagnostic techniques.
Collapse
Affiliation(s)
- Kristian A. Choate
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
| | - Evan P. S. Pratt
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- Department of Chemistry, Northern Michigan University, Marquette, MI 49855, USA
| | - Matthew J. Jennings
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- School of Clinical Sciences, Northern Michigan University, Marquette, MI 49855, USA
| | - Robert J. Winn
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- Department of Biology, Northern Michigan University, Marquette, MI 49855, USA
| | - Paul B. Mann
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- School of Clinical Sciences, Northern Michigan University, Marquette, MI 49855, USA
| |
Collapse
|
3
|
Saville KM, Al-Rahahleh RQ, Siddiqui AH, Andrews ME, Roos WP, Koczor CA, Andrews JF, Hayat F, Migaud ME, Sobol RW. Oncometabolite 2-hydroxyglutarate suppresses basal protein levels of DNA polymerase beta that enhances alkylating agent and PARG inhibition induced cytotoxicity. DNA Repair (Amst) 2024; 140:103700. [PMID: 38897003 PMCID: PMC11239280 DOI: 10.1016/j.dnarep.2024.103700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Mutations in isocitrate dehydrogenase isoform 1 (IDH1) are primarily found in secondary glioblastoma (GBM) and low-grade glioma but are rare in primary GBM. The standard treatment for GBM includes radiation combined with temozolomide, an alkylating agent. Fortunately, IDH1 mutant gliomas are sensitive to this treatment, resulting in a more favorable prognosis. However, it's estimated that up to 75 % of IDH1 mutant gliomas will progress to WHO grade IV over time and develop resistance to alkylating agents. Therefore, understanding the mechanism(s) by which IDH1 mutant gliomas confer sensitivity to alkylating agents is crucial for developing targeted chemotherapeutic approaches. The base excision repair (BER) pathway is responsible for repairing most base damage induced by alkylating agents. Defects in this pathway can lead to hypersensitivity to these agents due to unresolved DNA damage. The coordinated assembly and disassembly of BER protein complexes are essential for cell survival and for maintaining genomic integrity following alkylating agent exposure. These complexes rely on poly-ADP-ribose formation, an NAD+-dependent post-translational modification synthesized by PARP1 and PARP2 during the BER process. At the lesion site, poly-ADP-ribose facilitates the recruitment of XRCC1. This scaffold protein helps assemble BER proteins like DNA polymerase beta (Polβ), a bifunctional DNA polymerase containing both DNA synthesis and 5'-deoxyribose-phosphate lyase (5'dRP lyase) activity. Here, we confirm that IDH1 mutant glioma cells have defective NAD+ metabolism, but still produce sufficient nuclear NAD+ for robust PARP1 activation and BER complex formation in response to DNA damage. However, the overproduction of 2-hydroxyglutarate, an oncometabolite produced by the IDH1 R132H mutant protein, suppresses BER capacity by reducing Polβ protein levels. This defines a novel mechanism by which the IDH1 mutation in gliomas confers cellular sensitivity to alkylating agents and to inhibitors of the poly-ADP-ribose glycohydrolase, PARG.
Collapse
Affiliation(s)
- Kate M Saville
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Rasha Q Al-Rahahleh
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States
| | - Aisha H Siddiqui
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States
| | - Morgan E Andrews
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States
| | - Wynand P Roos
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States
| | - Christopher A Koczor
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Joel F Andrews
- Department Biochemistry and Molecular Biology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Faisal Hayat
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Marie E Migaud
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Robert W Sobol
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
4
|
Núñez FJ, Banerjee K, Mujeeb AA, Mauser A, Tronrud CE, Zhu Z, Taher A, Kadiyala P, Carney SV, Garcia-Fabiani MB, Comba A, Alghamri MS, McClellan BL, Faisal SM, Nwosu ZC, Hong HS, Qin T, Sartor MA, Ljungman M, Cheng SY, Appelman HD, Lowenstein PR, Lahann J, Lyssiotis CA, Castro MG. Epigenetic Reprogramming of Autophagy Drives Mutant IDH1 Glioma Progression and Response to Radiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584091. [PMID: 38559270 PMCID: PMC10979892 DOI: 10.1101/2024.03.08.584091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Mutant isocitrate dehydrogenase 1 (mIDH1; IDH1 R132H ) exhibits a gain of function mutation enabling 2-hydroxyglutarate (2HG) production. 2HG inhibits DNA and histone demethylases, inducing epigenetic reprogramming and corresponding changes to the transcriptome. We previously demonstrated 2HG-mediated epigenetic reprogramming enhances DNA-damage response and confers radioresistance in mIDH1 gliomas harboring p53 and ATRX loss of function mutations. In this study, RNA-seq and ChIP-seq data revealed human and mouse mIDH1 glioma neurospheres have downregulated gene ontologies related to mitochondrial metabolism and upregulated autophagy. Further analysis revealed that the decreased mitochondrial metabolism was paralleled by a decrease in glycolysis, rendering autophagy as a source of energy in mIDH1 glioma cells. Analysis of autophagy pathways showed that mIDH1 glioma cells exhibited increased expression of pULK1-S555 and enhanced LC3 I/II conversion, indicating augmented autophagy activity. This dependence is reflected by increased sensitivity of mIDH1 glioma cells to autophagy inhibition. Blocking autophagy selectively impairs the growth of cultured mIDH1 glioma cells but not wild-type IDH1 (wtIDH1) glioma cells. Targeting autophagy by systemic administration of synthetic protein nanoparticles packaged with siRNA targeting Atg7 (SPNP-siRNA-Atg7) sensitized mIDH1 glioma cells to radiation-induced cell death, resulting in tumor regression, long-term survival, and immunological memory, when used in combination with IR. Our results indicate autophagy as a critical pathway for survival and maintenance of mIDH1 glioma cells, a strategy that has significant potential for future clinical translation. One Sentence Summary The inhibition of autophagy sensitizes mIDH1 glioma cells to radiation, thus creating a promising therapeutic strategy for mIDH1 glioma patients. Graphical abstract Our genetically engineered mIDH1 mouse glioma model harbors IDH1 R132H in the context of ATRX and TP53 knockdown. The production of 2-HG elicited an epigenetic reprogramming associated with a disruption in mitochondrial activity and an enhancement of autophagy in mIDH1 glioma cells. Autophagy is a mechanism involved in cell homeostasis related with cell survival under energetic stress and DNA damage protection. Autophagy has been associated with radio resistance. The inhibition of autophagy thus radio sensitizes mIDH1 glioma cells and enhances survival of mIDH1 glioma-bearing mice, representing a novel therapeutic target for this glioma subtype with potential applicability in combined clinical strategies.
Collapse
|
5
|
Guo Z, Gu J, Zhang M, Su F, Su W, Xie Y. NMR-Based Metabolomics to Analyze the Effects of a Series of Monoamine Oxidases-B Inhibitors on U251 Cells. Biomolecules 2023; 13:biom13040600. [PMID: 37189348 DOI: 10.3390/biom13040600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Alzheimer’s disease (AD) is a typical progressive neurodegenerative disorder, and with multiple possible pathogenesis. Among them, coumarin derivatives could be used as potential drugs as monoamine oxidase-B (MAO-B) inhibitors. Our lab has designed and synthesized coumarin derivatives based on MAO-B. In this study, we used nuclear magnetic resonance (NMR)-based metabolomics to accelerate the pharmacodynamic evaluation of candidate drugs for coumarin derivative research and development. We detailed alterations in the metabolic profiles of nerve cells with various coumarin derivatives. In total, we identified 58 metabolites and calculated their relative concentrations in U251 cells. In the meantime, the outcomes of multivariate statistical analysis showed that when twelve coumarin compounds were treated with U251cells, the metabolic phenotypes were distinct. In the treatment of different coumarin derivatives, there several metabolic pathways changed, including aminoacyl-tRNA biosynthesis, D-glutamine and D-glutamate metabolism, glycine, serine and threonine metabolism, taurine and hypotaurine metabolism, arginine biosynthesis, alanine, aspartate and glutamate metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, glutathione metabolism and valine, leucine and isoleucine biosynthesis. Our work documented how our coumarin derivatives affected the metabolic phenotype of nerve cells in vitro. We believe that these NMR-based metabolomics might accelerate the process of drug research in vitro and in vivo.
Collapse
|
6
|
Duarte-Pereira S, Matos S, Oliveira JL, Silva RM. Study of NAD-interacting proteins highlights the extent of NAD regulatory roles in the cell and its potential as a therapeutic target. J Integr Bioinform 2023:jib-2022-0049. [PMID: 36880517 PMCID: PMC10389049 DOI: 10.1515/jib-2022-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) levels are essential for the normal physiology of the cell and are strictly regulated to prevent pathological conditions. NAD functions as a coenzyme in redox reactions, as a substrate of regulatory proteins, and as a mediator of protein-protein interactions. The main objectives of this study were to identify the NAD-binding and NAD-interacting proteins, and to uncover novel proteins and functions that could be regulated by this metabolite. It was considered if cancer-associated proteins were potential therapeutic targets. Using multiple experimental databases, we defined datasets of proteins that directly interact with NAD - the NAD-binding proteins (NADBPs) dataset - and of proteins that interact with NADBPs - the NAD-protein-protein interactions (NAD-PPIs) dataset. Pathway enrichment analysis revealed that NADBPs participate in several metabolic pathways, while NAD-PPIs are mostly involved in signalling pathways. These include disease-related pathways, namely, three major neurodegenerative disorders: Alzheimer's disease, Huntington's disease, and Parkinson's disease. Then, the complete human proteome was further analysed to select potential NADBPs. TRPC3 and isoforms of diacylglycerol (DAG) kinases, which are involved in calcium signalling, were identified as new NADBPs. Potential therapeutic targets that interact with NAD were identified, that have regulatory and signalling functions in cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Sara Duarte-Pereira
- IEETA/DETI, University of Aveiro, Aveiro, Portugal.,Department of Medical Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Sérgio Matos
- IEETA/DETI, University of Aveiro, Aveiro, Portugal.,LASI - Intelligent Systems Associate Laboratory, Guimarães, Portugal
| | - José Luís Oliveira
- IEETA/DETI, University of Aveiro, Aveiro, Portugal.,LASI - Intelligent Systems Associate Laboratory, Guimarães, Portugal
| | - Raquel M Silva
- Department of Medical Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, Aveiro, Portugal.,Universidade Católica Portuguesa, Faculty of Dental Medicine, Center for Interdisciplinary Research in Health (CIIS), Viseu, Portugal
| |
Collapse
|
7
|
Nanomechanical Signatures in Glioma Cells Depend on CD44 Distribution in IDH1 Wild-Type but Not in IDH1R132H Mutant Early-Passage Cultures. Int J Mol Sci 2023; 24:ijms24044056. [PMID: 36835465 PMCID: PMC9959176 DOI: 10.3390/ijms24044056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Atomic force microscopy (AFM) recently burst into biomedicine, providing morphological and functional characteristics of cancer cells and their microenvironment responsible for tumor invasion and progression, although the novelty of this assay needs to coordinate the malignant profiles of patients' specimens to diagnostically valuable criteria. Applying high-resolution semi-contact AFM mapping on an extended number of cells, we analyzed the nanomechanical properties of glioma early-passage cell cultures with a different IDH1 R132H mutation status. Each cell culture was additionally clustered on CD44+/- cells to find possible nanomechanical signatures that differentiate cell phenotypes varying in proliferative activity and the characteristic surface marker. IDH1 R132H mutant cells compared to IDH1 wild-type ones (IDH1wt) characterized by two-fold increased stiffness and 1.5-fold elasticity modulus. CD44+/IDH1wt cells were two-fold more rigid and much stiffer than CD44-/IDH1wt ones. In contrast to IDH1 wild-type cells, CD44+/IDH1 R132H and CD44-/IDH1 R132H did not exhibit nanomechanical signatures providing statistically valuable differentiation of these subpopulations. The median stiffness depends on glioma cell types and decreases according to the following manner: IDH1 R132H mt (4.7 mN/m), CD44+/IDH1wt (3.7 mN/m), CD44-/IDH1wt (2.5 mN/m). This indicates that the quantitative nanomechanical mapping would be a promising assay for the quick cell population analysis suitable for detailed diagnostics and personalized treatment of glioma forms.
Collapse
|
8
|
Thomas D, Wu M, Nakauchi Y, Zheng M, Thompson-Peach CA, Lim K, Landberg N, Köhnke T, Robinson N, Kaur S, Kutyna M, Stafford M, Hiwase D, Reinisch A, Peltz G, Majeti R. Dysregulated Lipid Synthesis by Oncogenic IDH1 Mutation Is a Targetable Synthetic Lethal Vulnerability. Cancer Discov 2023; 13:496-515. [PMID: 36355448 PMCID: PMC9900324 DOI: 10.1158/2159-8290.cd-21-0218] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/18/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
Isocitrate dehydrogenase 1 and 2 (IDH) are mutated in multiple cancers and drive production of (R)-2-hydroxyglutarate (2HG). We identified a lipid synthesis enzyme [acetyl CoA carboxylase 1 (ACC1)] as a synthetic lethal target in mutant IDH1 (mIDH1), but not mIDH2, cancers. Here, we analyzed the metabolome of primary acute myeloid leukemia (AML) blasts and identified an mIDH1-specific reduction in fatty acids. mIDH1 also induced a switch to b-oxidation indicating reprogramming of metabolism toward a reliance on fatty acids. Compared with mIDH2, mIDH1 AML displayed depletion of NADPH with defective reductive carboxylation that was not rescued by the mIDH1-specific inhibitor ivosidenib. In xenograft models, a lipid-free diet markedly slowed the growth of mIDH1 AML, but not healthy CD34+ hematopoietic stem/progenitor cells or mIDH2 AML. Genetic and pharmacologic targeting of ACC1 resulted in the growth inhibition of mIDH1 cancers not reversible by ivosidenib. Critically, the pharmacologic targeting of ACC1 improved the sensitivity of mIDH1 AML to venetoclax. SIGNIFICANCE Oncogenic mutations in both IDH1 and IDH2 produce 2-hydroxyglutarate and are generally considered equivalent in terms of pathogenesis and targeting. Using comprehensive metabolomic analysis, we demonstrate unexpected metabolic differences in fatty acid metabolism between mutant IDH1 and IDH2 in patient samples with targetable metabolic interventions. See related commentary by Robinson and Levine, p. 266. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Daniel Thomas
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
- Adelaide Medical School, University of Adelaide, South Australia and Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Manhong Wu
- Department of Anesthesiology, Pain and Perioperative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Yusuke Nakauchi
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Ming Zheng
- Department of Anesthesiology, Pain and Perioperative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Chloe A.L. Thompson-Peach
- Adelaide Medical School, University of Adelaide, South Australia and Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Kelly Lim
- Adelaide Medical School, University of Adelaide, South Australia and Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Niklas Landberg
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Thomas Köhnke
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia, South Australia, Australia
| | - Satinder Kaur
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Monika Kutyna
- Adelaide Medical School, University of Adelaide, South Australia and Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Melissa Stafford
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Devendra Hiwase
- Adelaide Medical School, University of Adelaide, South Australia and Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andreas Reinisch
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
- Division of Hematology and Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Gary Peltz
- Department of Anesthesiology, Pain and Perioperative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
- Corresponding Author: Ravindra Majeti, Department of Medicine, Division of Hematology, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Lokey Stem Cell Building, 265 Campus Drive, Stanford, CA 94305. Phone: 650-721-6376; Fax: 650-736-2961; E-mail:
| |
Collapse
|
9
|
Atalay EB, Senturk S, Kayali HA. Wild-type IDH1 Knockout Leads to G0/G1 Arrest, Impairs Cancer Cell Proliferation, Altering Glycolysis, and the TCA Cycle in Colon Cancer. Biochem Genet 2023:10.1007/s10528-022-10325-1. [PMID: 36633771 DOI: 10.1007/s10528-022-10325-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023]
Abstract
The isocitrate dehydrogenase (IDH), which participates in the TCA cycle, is an important key enzyme in regulating cell metabolism. The effect of the metabolic IDH enzyme on cancer pathogenesis has recently been shown in different types of cancer. However, the role of wild-type (wt) IDH1 in the development of colon cancer is still unknown. Our study investigated the role of the IDH1 enzyme in key hallmarks of colon cancer using various methods such as wound healing, cell cycle, colony formation ability, invasion, and apoptosis analysis. Furthermore, cell metabolism was investigated by pyruvate analysis, dinitrosalicylic acid, and HPLC methods. In addition, CRISPR/Cas9 tool was utilized to knockout the IDH1 gene in colon adenocarcinoma cells (SW620). Further studies were performed in two isogenic IDH1 KO clones. Our findings in both clones suggest that IDH1 KO results in G0/G1 arrest, and reduces proliferation by approximately twofold compared to IDH1 WT cells. In addition, the invasion, migration, and colony formation abilities of IDH1 KO clones were significantly decreased accompanied by significant morphological changes. In the context of metabolism, intracellular glucose, pyruvate, αKG, and malate levels were decreased, while the intracellular citrate level was increased in IDH1 KO clones as compared to IDH1 WT cells. Our results reveal that wt IDH1 knockout leads to a decrease in the aggressive features of colon cancer cells. In conclusion, we reported that wt IDH1 has an effective role in colon cancer progression and could be a potential therapeutic target.
Collapse
Affiliation(s)
- Esra Bulut Atalay
- Izmir Biomedicine and Genome Center, Izmir, 35340, Turkey
- Izmir International Biomedicine and Genome Institute (IBG), Dokuz Eylül University, Mithatpasa St. No: 58/5, Balcova, 35340, Izmir, Turkey
| | - Serif Senturk
- Izmir Biomedicine and Genome Center, Izmir, 35340, Turkey
- Izmir International Biomedicine and Genome Institute (IBG), Dokuz Eylül University, Mithatpasa St. No: 58/5, Balcova, 35340, Izmir, Turkey
| | - Hulya Ayar Kayali
- Izmir Biomedicine and Genome Center, Izmir, 35340, Turkey.
- Izmir International Biomedicine and Genome Institute (IBG), Dokuz Eylül University, Mithatpasa St. No: 58/5, Balcova, 35340, Izmir, Turkey.
- Department of Chemistry, Division of Biochemistry, Faculty of Science, Dokuz Eylul University, 35160, İzmir, Turkey.
| |
Collapse
|
10
|
Yang H, Zhao X, Liu J, Jin M, Liu X, Yan J, Yao X, Mao X, Li N, Liang B, Xie W, Zhang K, Zhao J, Liu L, Huang G. TNFα-induced IDH1 hyperacetylation reprograms redox homeostasis and promotes the chemotherapeutic sensitivity. Oncogene 2023; 42:35-48. [PMID: 36352097 DOI: 10.1038/s41388-022-02528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
The heterogeneity and drug resistance of colorectal cancer (CRC) often lead to treatment failure. Isocitrate dehydrogenase 1 (IDH1), a rate-limiting enzyme in the tricarboxylic acid cycle, regulates the intracellular redox environment and mediates tumor cell resistance to chemotherapeutic drugs. The aim of this study was to elucidate the mechanism underlying the involvement of IDH1 acetylation in the development of CRC drug resistance under induction of TNFα. We found TNFα disrupted the interaction between SIRT1 and IDH1 and increased the level of acetylation at K115 of IDH1. Hyperacetylation of K115 was accompanied by protein ubiquitination, which increased its susceptibility to degradation compared to IDH1 K115R. TNFα-mediated hyperacetylation of K115 sensitized the CRC cells to 5FU and reduced the NADPH/NADP ratio to that of intracellular ROS. Furthermore, TNFα and 5FU inhibited CRC tumor growth in vivo, while the K115R-expressing tumor tissues developed 5FU resistance. In human CRC tissues, K115 acetylation was positively correlated with TNFα infiltration, and K115 hyperacetylation was associated with favorable prognosis compared to chemotherapy-induced deacetylation. Therefore, TNFα-induced hyperacetylation at the K115 site of IDH1 promotes antitumor redox homeostasis in CRC cells, and can be used as a marker to predict the response of CRC patients to chemotherapy.
Collapse
Affiliation(s)
- Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xiyu Liu
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jun Yan
- Department of Oncology, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201800, China
| | - Xufeng Yao
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xinyi Mao
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Nan Li
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Beibei Liang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Wei Xie
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Kunchi Zhang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jian Zhao
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China. .,Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
11
|
El Khayari A, Bouchmaa N, Taib B, Wei Z, Zeng A, El Fatimy R. Metabolic Rewiring in Glioblastoma Cancer: EGFR, IDH and Beyond. Front Oncol 2022; 12:901951. [PMID: 35912242 PMCID: PMC9329787 DOI: 10.3389/fonc.2022.901951] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM), a highly invasive and incurable tumor, is the humans’ foremost, commonest, and deadliest brain cancer. As in other cancers, distinct combinations of genetic alterations (GA) in GBM induce a diversity of metabolic phenotypes resulting in enhanced malignancy and altered sensitivity to current therapies. Furthermore, GA as a hallmark of cancer, dysregulated cell metabolism in GBM has been recently linked to the acquired GA. Indeed, Numerous point mutations and copy number variations have been shown to drive glioma cells’ metabolic state, affecting tumor growth and patient outcomes. Among the most common, IDH mutations, EGFR amplification, mutation, PTEN loss, and MGMT promoter mutation have emerged as key patterns associated with upregulated glycolysis and OXPHOS glutamine addiction and altered lipid metabolism in GBM. Therefore, current Advances in cancer genetic and metabolic profiling have yielded mechanistic insights into the metabolism rewiring of GBM and provided potential avenues for improved therapeutic modalities. Accordingly, actionable metabolic dependencies are currently used to design new treatments for patients with glioblastoma. Herein, we capture the current knowledge of genetic alterations in GBM, provide a detailed understanding of the alterations in metabolic pathways, and discuss their relevance in GBM therapy.
Collapse
Affiliation(s)
- Abdellatif El Khayari
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
| | - Najat Bouchmaa
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
| | - Bouchra Taib
- Institute of Sport Professions (IMS), Ibn Tofail University, Avenida de l’Université, Kenitra, Morocco
- Research Unit on Metabolism, Physiology and Nutrition, Department of Biology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Zhiyun Wei
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ailiang Zeng
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
- *Correspondence: Rachid El Fatimy,
| |
Collapse
|
12
|
Different Effects of RNAi-Mediated Downregulation or Chemical Inhibition of NAMPT in an Isogenic IDH Mutant and Wild-Type Glioma Cell Model. Int J Mol Sci 2022; 23:ijms23105787. [PMID: 35628596 PMCID: PMC9143996 DOI: 10.3390/ijms23105787] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
The IDH1R132H mutation in glioma results in the neoenzymatic function of IDH1, leading to the production of the oncometabolite 2-hydroxyglutarate (2-HG), alterations in energy metabolism and changes in the cellular redox household. Although shifts in the redox ratio NADPH/NADP+ were described, the consequences for the NAD+ synthesis pathways and potential therapeutic interventions were largely unexplored. Here, we describe the effects of heterozygous IDH1R132H on the redox system in a CRISPR/Cas edited glioblastoma model and compare them with IDH1 wild-type (IDH1wt) cells. Besides an increase in 2-HG and decrease in NADPH, we observed an increase in NAD+ in IDH1R132H glioblastoma cells. RT-qPCR analysis revealed the upregulation of the expression of the NAD+ synthesis enzyme nicotinamide phosphoribosyltransferase (NAMPT). Knockdown of NAMPT resulted in significantly reduced viability in IDH1R132H glioblastoma cells. Given this dependence of IDH1R132H cells on NAMPT expression, we explored the effects of the NAMPT inhibitors FK866, GMX1778 and GNE-617. Surprisingly, these agents were equally cytotoxic to IDH1R132H and IDH1wt cells. Altogether, our results indicate that targeting the NAD+ synthesis pathway is a promising therapeutic strategy in IDH mutant gliomas; however, the agent should be carefully considered since three small-molecule inhibitors of NAMPT tested in this study were not suitable for this purpose.
Collapse
|
13
|
Germline mutations in mitochondrial complex I reveal genetic and targetable vulnerability in IDH1-mutant acute myeloid leukaemia. Nat Commun 2022; 13:2614. [PMID: 35551192 PMCID: PMC9098909 DOI: 10.1038/s41467-022-30223-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
The interaction of germline variation and somatic cancer driver mutations is under-investigated. Here we describe the genomic mitochondrial landscape in adult acute myeloid leukaemia (AML) and show that rare variants affecting the nuclear- and mitochondrially-encoded complex I genes show near-mutual exclusivity with somatic driver mutations affecting isocitrate dehydrogenase 1 (IDH1), but not IDH2 suggesting a unique epistatic relationship. Whereas AML cells with rare complex I variants or mutations in IDH1 or IDH2 all display attenuated mitochondrial respiration, heightened sensitivity to complex I inhibitors including the clinical-grade inhibitor, IACS-010759, is observed only for IDH1-mutant AML. Furthermore, IDH1 mutant blasts that are resistant to the IDH1-mutant inhibitor, ivosidenib, retain sensitivity to complex I inhibition. We propose that the IDH1 mutation limits the flexibility for citrate utilization in the presence of impaired complex I activity to a degree that is not apparent in IDH2 mutant cells, exposing a mutation-specific metabolic vulnerability. This reduced metabolic plasticity explains the epistatic relationship between the germline complex I variants and oncogenic IDH1 mutation underscoring the utility of genomic data in revealing metabolic vulnerabilities with implications for therapy. Mitochondrial metabolism has been associated with tumourigenesis in acute myeloid leukaemia (AML) and currently considered as a potential therapeutic target. Here, the authors show, in patients with AML, that germline mutations in mitochondrial complex I are mutually exclusive with somatic mutations in the metabolic enzyme IDH1, and find IDH1 mutant cells have increased sensitivity to complex I inhibitors.
Collapse
|
14
|
The efficacy of an unrestricted cycling ketogenic diet in preclinical models of IDH wild-type and IDH mutant glioma. PLoS One 2022; 17:e0257725. [PMID: 35134075 PMCID: PMC8824343 DOI: 10.1371/journal.pone.0257725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
Infiltrative gliomas are the most common neoplasms arising in the brain, and remain largely incurable despite decades of research. A subset of these gliomas contains mutations in isocitrate dehydrogenase 1 (IDH1mut) or, less commonly, IDH2 (together called “IDHmut”). These mutations alter cellular biochemistry, and IDHmut gliomas are generally less aggressive than IDH wild-type (IDHwt) gliomas. Some preclinical studies and clinical trials have suggested that various forms of a ketogenic diet (KD), characterized by low-carbohydrate and high-fat content, may be beneficial in slowing glioma progression. However, adherence to a strict KD is difficult, and not all studies have shown promising results. Furthermore, no study has yet addressed whether IDHmut gliomas might be more sensitive to KD. The aim of the current study was to compare the effects of a unrestricted, cycling KD (weekly alternating between KD and standard diet) in preclinical models of IDHwt versus IDHmut gliomas. In vitro, simulating KD by treatment with the ketone body β-hydroxybutyrate had no effect on the proliferation of patient-derived IDHwt or IDHmut glioma cells, either in low or normal glucose conditions. Likewise, an unrestricted, cycling KD had no effect on the in vivo growth of patient-derived IDHwt or IDHmut gliomas, even though the cycling KD did result in persistently elevated circulating ketones. Furthermore, this KD conferred no survival benefit in mice engrafted with Sleeping-Beauty transposase-engineered IDHmut or IDHwt glioma. These data suggest that neither IDHwt nor IDHmut gliomas are particularly responsive to an unrestricted, cycling form of KD.
Collapse
|
15
|
Hvinden IC, Cadoux-Hudson T, Schofield CJ, McCullagh JS. Metabolic adaptations in cancers expressing isocitrate dehydrogenase mutations. Cell Rep Med 2021; 2:100469. [PMID: 35028610 PMCID: PMC8714851 DOI: 10.1016/j.xcrm.2021.100469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The most frequently mutated metabolic genes in human cancer are those encoding the enzymes isocitrate dehydrogenase 1 (IDH1) and IDH2; these mutations have so far been identified in more than 20 tumor types. Since IDH mutations were first reported in glioma over a decade ago, extensive research has revealed their association with altered cellular processes. Mutations in IDH lead to a change in enzyme function, enabling efficient conversion of 2-oxoglutarate to R-2-hydroxyglutarate (R-2-HG). It is proposed that elevated cellular R-2-HG inhibits enzymes that regulate transcription and metabolism, subsequently affecting nuclear, cytoplasmic, and mitochondrial biochemistry. The significance of these biochemical changes for tumorigenesis and potential for therapeutic exploitation remains unclear. Here we comprehensively review reported direct and indirect metabolic changes linked to IDH mutations and discuss their clinical significance. We also review the metabolic effects of first-generation mutant IDH inhibitors and highlight the potential for combination treatment strategies and new metabolic targets.
Collapse
Affiliation(s)
- Ingvild Comfort Hvinden
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Tom Cadoux-Hudson
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Christopher J. Schofield
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
- Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - James S.O. McCullagh
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| |
Collapse
|
16
|
Chou FJ, Liu Y, Lang F, Yang C. D-2-Hydroxyglutarate in Glioma Biology. Cells 2021; 10:cells10092345. [PMID: 34571995 PMCID: PMC8464856 DOI: 10.3390/cells10092345] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Isocitrate dehydrogenase (IDH) mutations are common genetic abnormalities in glioma, which result in the accumulation of an "oncometabolite", D-2-hydroxyglutarate (D-2-HG). Abnormally elevated D-2-HG levels result in a distinctive pattern in cancer biology, through competitively inhibiting α-ketoglutarate (α-KG)/Fe(II)-dependent dioxgenases (α-KGDDs). Recent studies have revealed that D-2-HG affects DNA/histone methylation, hypoxia signaling, DNA repair, and redox homeostasis, which impacts the oncogenesis of IDH-mutated cancers. In this review, we will discuss the current understanding of D-2-HG in cancer biology, as well as the emerging opportunities in therapeutics in IDH-mutated glioma.
Collapse
|
17
|
Pirozzi CJ, Yan H. The implications of IDH mutations for cancer development and therapy. Nat Rev Clin Oncol 2021; 18:645-661. [PMID: 34131315 DOI: 10.1038/s41571-021-00521-0] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Mutations in the genes encoding the cytoplasmic and mitochondrial forms of isocitrate dehydrogenase (IDH1 and IDH2, respectively; collectively referred to as IDH) are frequently detected in cancers of various origins, including but not limited to acute myeloid leukaemia (20%), cholangiocarcinoma (20%), chondrosarcoma (80%) and glioma (80%). In all cases, neomorphic activity of the mutated enzyme leads to production of the oncometabolite D-2-hydroxyglutarate, which has profound cell-autonomous and non-cell-autonomous effects. The broad effects of IDH mutations on epigenetic, differentiation and metabolic programmes, together with their high prevalence across a variety of cancer types, early presence in tumorigenesis and uniform expression in tumour cells, make mutant IDH an ideal therapeutic target. Herein, we describe the current biological understanding of IDH mutations and the roles of mutant IDH in the various associated cancers. We also present the available preclinical and clinical data on various methods of targeting IDH-mutant cancers and discuss, based on the underlying pathogenesis of different IDH-mutated cancer types, whether the treatment approaches will converge or be context dependent.
Collapse
Affiliation(s)
- Christopher J Pirozzi
- Department of Pathology, Duke University Medical Center, Durham, NC, USA. .,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.
| | - Hai Yan
- Department of Pathology, Duke University Medical Center, Durham, NC, USA. .,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
18
|
van Noorden CJ, Hira VV, van Dijck AJ, Novak M, Breznik B, Molenaar RJ. Energy Metabolism in IDH1 Wild-Type and IDH1-Mutated Glioblastoma Stem Cells: A Novel Target for Therapy? Cells 2021; 10:cells10030705. [PMID: 33810170 PMCID: PMC8005124 DOI: 10.3390/cells10030705] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is a redox disease. Low levels of reactive oxygen species (ROS) are beneficial for cells and have anti-cancer effects. ROS are produced in the mitochondria during ATP production by oxidative phosphorylation (OXPHOS). In the present review, we describe ATP production in primary brain tumors, glioblastoma, in relation to ROS production. Differentiated glioblastoma cells mainly use glycolysis for ATP production (aerobic glycolysis) without ROS production, whereas glioblastoma stem cells (GSCs) in hypoxic periarteriolar niches use OXPHOS for ATP and ROS production, which is modest because of the hypoxia and quiescence of GSCs. In a significant proportion of glioblastoma, isocitrate dehydrogenase 1 (IDH1) is mutated, causing metabolic rewiring, and all cancer cells use OXPHOS for ATP and ROS production. Systemic therapeutic inhibition of glycolysis is not an option as clinical trials have shown ineffectiveness or unwanted side effects. We argue that systemic therapeutic inhibition of OXPHOS is not an option either because the anti-cancer effects of ROS production in healthy cells is inhibited as well. Therefore, we advocate to remove GSCs out of their hypoxic niches by the inhibition of their binding to niches to enable their differentiation and thus increase their sensitivity to radiotherapy and/or chemotherapy.
Collapse
Affiliation(s)
- Cornelis J.F. van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia; (V.V.V.H.); (M.N.); (B.B.); (R.J.M.)
- Department of Medical Biology, Amsterdam UMC Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Correspondence: ; Tel.: +31-638-639-561
| | - Vashendriya V.V. Hira
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia; (V.V.V.H.); (M.N.); (B.B.); (R.J.M.)
| | - Amber J. van Dijck
- Department of Medical Biology, Amsterdam UMC Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia; (V.V.V.H.); (M.N.); (B.B.); (R.J.M.)
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia; (V.V.V.H.); (M.N.); (B.B.); (R.J.M.)
| | - Remco J. Molenaar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia; (V.V.V.H.); (M.N.); (B.B.); (R.J.M.)
- Department of Medical Oncology, Amsterdam UMC Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
19
|
Transcriptome Analysis of Porcine Granulosa Cells in Healthy and Atretic Follicles: Role of Steroidogenesis and Oxidative Stress. Antioxidants (Basel) 2020; 10:antiox10010022. [PMID: 33379347 PMCID: PMC7824097 DOI: 10.3390/antiox10010022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
One of the main causes of female infertility is a deregulated antral follicular atresia, a process of which the underlying molecular mechanisms are largely unknown. Our objective was therefore to characterize the complex transcriptome changes in porcine granulosa cells of healthy antral (HA) and advanced antral atretic (AA) follicles, using ELISA and RNA-Seq followed by qRT-PCR and immunohistochemistry. Granulosa cell RNA-Seq data revealed 2160 differentially expressed genes, 1483 with higher and 677 with lower mRNA concentrations in AA follicles. Bioinformatic analysis showed that the upregulated genes in AA follicles were highly enriched in inflammation and apoptosis processes, while the downregulated transcripts were mainly highlighted in the steroid biosynthesis pathway and response to oxidative stress processes including antioxidant genes (e.g., GSTA1, GCLC, GCLM, IDH1, GPX8) involved in the glutathione metabolism pathway and other redox-related genes (e.g., RRM2B, NDUFS4). These observations were confirmed by RT-qPCR and immunohistochemistry. Additionally, the granulosa cells of AA follicles express significantly stronger 8-OHdG immunostaining, a marker of oxidative DNA damage, implicating that oxidative stress may participate in follicular atresia. We hypothesize that the decrease in anti-apoptotic factors and steroid hormones coincides with increased oxidative stress markers and the expression of pro-apoptotic factors, all contributing to antral follicular atresia.
Collapse
|
20
|
Lucarelli G, Ferro M, Loizzo D, Bianchi C, Terracciano D, Cantiello F, Bell LN, Battaglia S, Porta C, Gernone A, Perego RA, Maiorano E, de Cobelli O, Castellano G, Vincenti L, Ditonno P, Battaglia M. Integration of Lipidomics and Transcriptomics Reveals Reprogramming of the Lipid Metabolism and Composition in Clear Cell Renal Cell Carcinoma. Metabolites 2020; 10:metabo10120509. [PMID: 33322148 PMCID: PMC7763669 DOI: 10.3390/metabo10120509] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is fundamentally a metabolic disease. Given the importance of lipids in many cellular processes, in this study we delineated a lipidomic profile of human ccRCC and integrated it with transcriptomic data to connect the variations in cancer lipid metabolism with gene expression changes. Untargeted lipidomic analysis was performed on 20 ccRCC and 20 paired normal tissues, using LC-MS and GC-MS. Different lipid classes were altered in cancer compared to normal tissue. Among the long chain fatty acids (LCFAs), significant accumulations of polyunsaturated fatty acids (PUFAs) were found. Integrated lipidomic and transcriptomic analysis showed that fatty acid desaturation and elongation pathways were enriched in neoplastic tissue. Consistent with these findings, we observed increased expression of stearoyl-CoA desaturase(SCD1) and FA elongase 2 and 5 in ccRCC. Primary renal cancer cells treated with a small molecule SCD1 inhibitor (A939572) proliferated at a slower rate than untreated cancer cells. In addition, after cisplatin treatment, the death rate of tumor cells treated with A939572 was significantly greater than that of untreated cancer cells. In conclusion, our findings delineate a ccRCC lipidomic signature and showed that SCD1 inhibition significantly reduced cancer cell proliferation and increased cisplatin sensitivity, suggesting that this pathway can be involved in ccRCC chemotherapy resistance.
Collapse
Affiliation(s)
- Giuseppe Lucarelli
- Department of Emergency and Organ Transplantation-Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (D.L.); (P.D.); (M.B.)
- Correspondence:
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology (IEO)-IRCCS, 20141 Milan, Italy; (M.F.); (O.d.C.)
| | - Davide Loizzo
- Department of Emergency and Organ Transplantation-Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (D.L.); (P.D.); (M.B.)
| | - Cristina Bianchi
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy; (C.B.); (R.A.P.)
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Francesco Cantiello
- Department of Urology, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Lauren N. Bell
- Metabolon, Inc., Research Triangle Park, Morrisville, NC 27519, USA;
| | - Stefano Battaglia
- Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy;
| | - Camillo Porta
- Department of Biomedical Sciences and Clinical Oncology (DIMO), Medical Oncology Unit, University of Bari, 70124 Bari, Italy; (C.P.); (A.G.)
| | - Angela Gernone
- Department of Biomedical Sciences and Clinical Oncology (DIMO), Medical Oncology Unit, University of Bari, 70124 Bari, Italy; (C.P.); (A.G.)
| | - Roberto A. Perego
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy; (C.B.); (R.A.P.)
| | - Eugenio Maiorano
- Department of Emergency and Organ Transplantation-Pathology Unit, University of Bari, 70124 Bari, Italy;
| | - Ottavio de Cobelli
- Division of Urology, European Institute of Oncology (IEO)-IRCCS, 20141 Milan, Italy; (M.F.); (O.d.C.)
| | - Giuseppe Castellano
- Department of Medical and Surgical Sciences, Nephrology Dialysis and Transplantation Unit, University of Foggia, 71122 Foggia, Italy;
| | - Leonardo Vincenti
- Division of General Surgery, Polyclinic Hospital, 70124 Bari, Italy;
| | - Pasquale Ditonno
- Department of Emergency and Organ Transplantation-Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (D.L.); (P.D.); (M.B.)
- Department of Urology, National Cancer Institute “Giovanni Paolo II”, 70124 Bari, Italy
| | - Michele Battaglia
- Department of Emergency and Organ Transplantation-Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (D.L.); (P.D.); (M.B.)
| |
Collapse
|
21
|
Braun Y, Filipski K, Bernatz S, Baumgarten P, Roller B, Zinke J, Zeiner PS, Ilina E, Senft C, Ronellenfitsch MW, Plate KH, Bähr O, Hattingen E, Steinbach JP, Mittelbronn M, Harter PN. Linking epigenetic signature and metabolic phenotype in IDH mutant and IDH wildtype diffuse glioma. Neuropathol Appl Neurobiol 2020; 47:379-393. [PMID: 33080075 DOI: 10.1111/nan.12669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/23/2020] [Accepted: 10/14/2020] [Indexed: 01/17/2023]
Abstract
AIMS Changes in metabolism are known to contribute to tumour phenotypes. If and how metabolic alterations in brain tumours contribute to patient outcome is still poorly understood. Epigenetics impact metabolism and mitochondrial function. The aim of this study is a characterisation of metabolic features in molecular subgroups of isocitrate dehydrogenase mutant (IDHmut) and isocitrate dehydrogenase wildtype (IDHwt) gliomas. METHODS We employed DNA methylation pattern analyses with a special focus on metabolic genes, large-scale metabolism panel immunohistochemistry (IHC), qPCR-based determination of mitochondrial DNA copy number and immune cell content using IHC and deconvolution of DNA methylation data. We analysed molecularly characterised gliomas (n = 57) for in depth DNA methylation, a cohort of primary and recurrent gliomas (n = 22) for mitochondrial copy number and validated these results in a large glioma cohort (n = 293). Finally, we investigated the potential of metabolic markers in Bevacizumab (Bev)-treated gliomas (n = 29). RESULTS DNA methylation patterns of metabolic genes successfully distinguished the molecular subtypes of IDHmut and IDHwt gliomas. Promoter methylation of lactate dehydrogenase A negatively correlated with protein expression and was associated with IDHmut gliomas. Mitochondrial DNA copy number was increased in IDHmut tumours and did not change in recurrent tumours. Hierarchical clustering based on metabolism panel IHC revealed distinct subclasses of IDHmut and IDHwt gliomas with an impact on patient outcome. Further quantification of these markers allowed for the prediction of survival under anti-angiogenic therapy. CONCLUSION A mitochondrial signature was associated with increased survival in all analyses, which could indicate tumour subgroups with specific metabolic vulnerabilities.
Collapse
Affiliation(s)
- Yannick Braun
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Katharina Filipski
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany.,German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Simon Bernatz
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Peter Baumgarten
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany.,Department of Neurosurgery, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Bastian Roller
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Jenny Zinke
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Pia S Zeiner
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany.,Dr. Senckenberg Institute for Neurooncology, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Elena Ilina
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Christian Senft
- Department of Neurosurgery, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Michael W Ronellenfitsch
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Centre (DKFZ), Heidelberg, Germany.,Dr. Senckenberg Institute for Neurooncology, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany.,Frankfurt Cancer Institute (FCI), Frankfurt, Germany
| | - Karl H Plate
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany.,German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Centre (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Frankfurt, Germany
| | - Oliver Bähr
- Dr. Senckenberg Institute for Neurooncology, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Elke Hattingen
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany.,Department of Neuroradiology, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Joachim P Steinbach
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Centre (DKFZ), Heidelberg, Germany.,Dr. Senckenberg Institute for Neurooncology, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany.,Frankfurt Cancer Institute (FCI), Frankfurt, Germany
| | - Michel Mittelbronn
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany.,Luxembourg Centre of Neuropathology (LCNP), Luxembourg.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg.,National Centre of Pathology (NCP), Laboratoire national de santé (LNS), Luxembourg.,Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Luxembourg
| | - Patrick N Harter
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany.,German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Centre (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Frankfurt, Germany
| |
Collapse
|
22
|
Jakob M, Sharaf K, Schirmer M, Leu M, Küffer S, Bertlich M, Ihler F, Haubner F, Canis M, Kitz J. Role of cancer stem cell markers ALDH1, BCL11B, BMI-1, and CD44 in the prognosis of advanced HNSCC. Strahlenther Onkol 2020; 197:231-245. [PMID: 32588101 PMCID: PMC7892527 DOI: 10.1007/s00066-020-01653-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
Purpose Cancer stem cells (CSCs) are held accountable for the progress of head and neck squamous cell carcinoma (HNSCC). In the presented study, the authors evaluated the prognostic value of CSC markers in two particular HNSCC cohorts. Methods This two cohort study consisted of 85 patients with advanced stage HNSCC, treated with primary radio(chemo)therapy (pRCT), and 95 patients with HNSCC, treated with surgery and partially adjuvant radio(chemo)therapy. Overall survival (OS), disease-free survival (DFS), and disease-specific survival (DSS) were assessed. Samples were assessed for the expression of different molecular stem cell markers (ALDH1, BCL11B, BMI‑1, and CD44). Results In the pRCT cohort, none of the baseline patient and tumor features exhibited a statistically significant relation with survival in either the cohort or the human papillomavirus (HPV)-stratified subcohorts. High expression of BMI‑1 significantly decreased OS and DFS, while high expression of CD44 decreased all modes of survival. Multivariate analysis showed significant prognostic influence for all tested CSC markers, with high BMI‑1 and CD44 decreasing survival (BMI-1: OS, DFS, DSS; CD44: OS, DFS) and high ALDH1 and BCL11B showing a beneficial effect on survival (ALDH1: OS, DFS; BCL11B: OS, DSS). In the surgical cohort, classical prognosticators such as HPV status, R1 resection, and nodal status in HPV-negative HNSCC played a significant role, but the tested CSC markers showed no significant effect on prognosis. Conclusion Although validation in independent cohorts is still needed, testing for CSC markers in patients with advanced or late stage HNSCC might be beneficial, especially if many comorbidities exist or disease is irresectable. The findings might guide the development and earlier use of targeted therapies in the future. Electronic supplementary material The online version of this article (10.1007/s00066-020-01653-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mark Jakob
- Department of Otolaryngology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany. .,Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.
| | - Kariem Sharaf
- Department of Otolaryngology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.
| | - Markus Schirmer
- Department of Radiation Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Leu
- Department of Radiation Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Küffer
- Department of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Mattis Bertlich
- Department of Otolaryngology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Friedrich Ihler
- Department of Otolaryngology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.,German Center of Vertigo and Dizziness, University Hospital, LMU Munich, Munich, Germany
| | - Frank Haubner
- Department of Otolaryngology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Martin Canis
- Department of Otolaryngology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Julia Kitz
- Department of Pathology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
23
|
Yang L, Han N, Zhang X, Zhou Y, Chen R, Zhang M. ZWINT: A potential therapeutic biomarker in patients with glioblastoma correlates with cell proliferation and invasion. Oncol Rep 2020; 43:1831-1844. [PMID: 32323832 PMCID: PMC7160549 DOI: 10.3892/or.2020.7573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary intracranial tumor in adults. Chemoradiotherapy resistance and recurrence after surgery are the main malignant progression factors, leading to a high mortality rate. Therefore, the exploration of novel biomarkers and molecular mechanisms of GBM is urgent. Differentially expressed genes (DEGs) of GBM were screened in a TCGA dataset. Homo sapiens ZW10 interacting kinetochore protein (ZWINT) was found to be upregulated in GBM, which was confirmed by immunohistochemical staining of a tissue microarray. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) database. A protein-protein interaction (PPI) network was established by the STRING database, and hub genes were visualized by Cytoscape. The correlation results were verified with the GSE15824 dataset. Bioinformatic analysis confirmed that ZWINT was significantly positively correlated with kinetochore protein NDC80 homolog (NDC80), serine/threonine-protein kinase PLK1 (PLK1) and spindle and kinetochore associated complex subunit 1 (SKA1) and together are involved in regulating mitosis and the cell cycle of GBM. ZWINT expression was knocked down in U251 and U87 MG GBM cells by lentiviral vectors carrying a small hairpin RNA (shRNA) targeting ZWINT. The effect of ZWINT silencing on cell proliferation, invasion and apoptosis was determined by the Celigo assay, MTT assay, Transwell assay, flow cytometry and caspase-3/7 assay in vitro. A subcutaneous xenograft tumor model was established to explore the influence of ZWINT knockdown on GBM growth in vivo. Our preliminary study demonstrated that ZWINT knockdown effectively inhibited proliferation and invasion and induced apoptosis of GBM cells and notably suppressed GBM growth in vivo. Therefore, we speculate that ZWINT may be a potential therapeutic biomarker for GBM, with NDC80 and PLK1 conjointly involved in regulating cell division and the mitotic cell cycle.
Collapse
Affiliation(s)
- Li Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Na Han
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiaoxi Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yangmei Zhou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Rui Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Mengxian Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|