1
|
Feldman D, Rodgers-Fouche LH, Ukaegbu C, Yurgelun MB, Syngal S, Chung DC. Cancer Incidence and Mortality in Familial Adenomatous Polyposis Syndrome. Dis Colon Rectum 2025; 68:531-543. [PMID: 39932215 DOI: 10.1097/dcr.0000000000003645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
BACKGROUND Risk-reducing colectomy in familial adenomatous polyposis syndrome is the standard of care. This has increased the importance of surveillance for extracolonic malignancies in postcolectomy individuals. OBJECTIVE We sought to define the present-day incidence of all cancers and mortality in familial adenomatous polyposis. DESIGN Retrospective longitudinal cohort study. SETTINGS Two large academic hospitals. PATIENTS Eligible patients carried an APC pathogenic variant or met clinical criteria for familial adenomatous polyposis. MAIN OUTCOME MEASURES Cancer diagnosis, mortality, and associated risk factors. RESULTS A total of 358 patients were identified. The percentage who exhibited a classic familial adenomatous polyposis phenotype was 63.7%; 21.2% were de novo, and 82.7% had a colectomy. Colorectal cancer was the most common cancer (n = 59; 16.5%). Colorectal cancer diagnoses were associated with de novo familial adenomatous polyposis (OR 7.8 [95% CI, 3.51-17.35]; p < 0.001). Thyroid, duodenal/small bowel, gastric, and neuroendocrine tumors were reported in 7.5%, 3.1%, 2.8%, and 2.5% of patients, respectively. Rates of cancer were similar in classic and attenuated familial adenomatous polyposis. Thirty-nine patients (10.9%) died at a mean age of 49.6 ± 17.1 years. Twenty-six deaths were malignancy-related, and colorectal cancer was the leading cause (n = 10). All colorectal cancer-related deaths occurred in individuals with classic familial adenomatous polyposis, and 9 of 10 individuals were not previously diagnosed with the syndrome. Gastric and duodenal/small bowel cancers were the second leading causes (4 deaths each), and all occurred after colectomy. Fifty-nine percent of all deaths were attributable to a familial adenomatous polyposis-related malignancy or morbidity. LIMITATIONS Retrospective clinical data. CONCLUSIONS Colorectal cancer remains the most common malignancy and cause of death in familial adenomatous polyposis. However, nearly all colorectal cancer-related deaths occurred in individuals unaware of their familial adenomatous polyposis diagnosis, and none occurred in the attenuated syndrome. In patients who had a colectomy, gastric and duodenal/small bowel cancers are now the leading causes of death. See Video Abstract . INCIDENCIA Y MORTALIDAD POR CNCER EN EL SNDROME DE POLIPOSIS ADENOMATOSA FAMILIAR ANTECEDENTES:La colectomía para reducir el riesgo en el síndrome de poliposis adenomatosa familiar es el estándar de atención. Esto ha aumentado la importancia de la vigilancia de las neoplasias malignas extracolónicas en individuos post-colectomía.OBJETIVO:Buscamos definir la incidencia actual de todos los cánceres y la mortalidad en la poliposis adenomatosa familiar.DISEÑO:Estudio de cohorte longitudinal retrospectivo.ESCENARIO:Dos grandes hospitales académicos.PACIENTES:Los pacientes elegibles portaban una variante patogénica de APC o cumplían los criterios clínicos para la poliposis adenomatosa familiar.PRINCIPALES MEDIDAS DE RESULTADOS:Diagnóstico de cáncer, mortalidad,y factores de riesgo asociados.RESULTADOS:Se identificaron 358 pacientes. El 63,7% presentaban un fenotipo clásico de poliposis adenomatosa familiar, el 21,2% eran de novo y el 82,7% se había sometido a una colectomía. El cáncer colorrectal fue el cáncer más común (n = 59, 16,5%). Los diagnósticos de cáncer colorrectal se asociaron con poliposis adenomatosa familiar de novo (odds ratio 7,8 (IC del 95 % 3,51-17,35; p < 0,001)). Se informaron tumores de tiroides, duodenales/intestino delgado, gástricos y neuroendocrinos en el 7,5 %, 3,1 %, 2,8 % y 2,5 % de los pacientes, respectivamente. Las tasas de cáncer fueron similares en la poliposis adenomatosa familiar clásica y atenuada. 39 pacientes (10,9 %) murieron a una edad media de 49,6 ± 17,1 años. 26 muertes estuvieron relacionadas con neoplasias malignas y el cáncer colorrectal fue la causa principal (n = 10). Todas las muertes relacionadas con cáncer colorrectal ocurrieron en individuos con poliposis adenomatosa familiar clásica y 9/10 no habían sido diagnosticados previamente con el síndrome. El cáncer gástrico y de duodeno/intestino delgado fueron las segundas causas principales (4 muertes cada uno), y todas ocurrieron después de una colectomía. El 59% de todas las muertes fueron atribuibles a una neoplasia maligna o morbilidad relacionada con la poliposis adenomatosa familiar.LIMITACIONES:Datos clínicos retrospectivos.CONCLUSIONES:El cáncer colorrectal sigue siendo la neoplasia maligna y la causa de muerte más común en la poliposis adenomatosa familiar. Sin embargo, casi todas las muertes relacionadas con el cáncer colorrectal ocurrieron en personas que desconocían su diagnóstico de poliposis adenomatosa familiar, y ninguna ocurrió en el síndrome atenuado. En los pacientes que se sometieron a una colectomía, los cánceres gástrico y de duodeno/intestino delgado son ahora las principales causas de muerte. (Traducción-Dr Yolanda Colorado ).
Collapse
Affiliation(s)
- Dan Feldman
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Linda H Rodgers-Fouche
- Center for Cancer Risk Assessment, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Chinedu Ukaegbu
- Cancer Genetics and Prevention Division, Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Matthew B Yurgelun
- Cancer Genetics and Prevention Division, Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sapna Syngal
- Cancer Genetics and Prevention Division, Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Daniel C Chung
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Cancer Risk Assessment, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Koçak A, Gülle S, Birlik M. Porcupine inhibitors LGK-974 and ETC-159 inhibit Wnt/β-catenin signaling and result in inhibition of the fibrosis. Toxicol In Vitro 2025; 104:105986. [PMID: 39647516 DOI: 10.1016/j.tiv.2024.105986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVES We evaluated potential therapeutic efficacy of LGK-974 and ETC-159 in fibrotic scleroderma cells. METHODS Primary scleroderma dermal fibroblast cells of mouse origin (SSc fibroblasts) and primary fibrotic lung fibroblast cells of human origin (CCL-191) were used in this study. PORCN inhibitors LGK-974 (S7143, 1 μM; Selleckchem, USA) and ETC-159 (S7143, 10 μM; Selleckchem, USA) were used. The possible therapeutic effects of LGK-974 and ETC-159 on scleroderma cells and fibrosis cells were examined. Cell viability experiments were performed for each substance, and the expression levels of WNT and fibrosis marker genes were determined by qPCR. Western blotting was also used to determine collagen, fibronectin and α-SMA protein markers. RESULTS This study showed that LGK-974 and ETC-159 probable protein-cysteine N-palmitoyltransferase porcupine (PORCN) inhibitors exert potent antifibrotic effects and reduce fibrosis by modulating the TGF-β signaling pathway in scleroderma cells. Using LGK-974 and ETC-159 PORCN inhibitors, either alone or in combination, can affect collagen deposition and fibrosis in patients with SSc. CONCLUSIONS LGK-974 and ETC-159 may be a possible long-term therapeutic target for scleroderma.
Collapse
Affiliation(s)
- Ayşe Koçak
- Kutahya Health Sciences University, Faculty of Medicine, Department of Medical Biochemistry, Kutahya, Turkey.
| | - Semih Gülle
- Dokuz Eylul University, Faculty of Medicine, Department of Rheumatology & Immunology, Izmir, Turkey
| | - Merih Birlik
- Dokuz Eylul University, Faculty of Medicine, Department of Rheumatology & Immunology, Izmir, Turkey
| |
Collapse
|
3
|
Duszkiewicz R, Strzelczyk J, Chełmecka E, Strzelczyk JK. Evaluation of LRP6, SFRP3, and DVL1 Protein Concentrations in Serum of Patients with Gastroenteropancreatic or Bronchopulmonary Neuroendocrine Tumors. Cancers (Basel) 2024; 17:47. [PMID: 39796676 PMCID: PMC11718808 DOI: 10.3390/cancers17010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/09/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Introduction: Neuroendocrine tumors are a diverse group of tumors predominantly found in the gastrointestinal tract or respiratory system. Methods: This retrospective study aimed to measure the serum concentrations of LRP6 (low-density lipoprotein receptor-related protein 6), SFRP3 (secreted frizzled-related protein 3), and DVL1 (segment polarity protein dishevelled homolog) using the ELISA method in patients with NETs (N = 80) and a control group (N = 62). We evaluated the results against various demographic, clinicopathological, and biochemical characteristics. Results: Our analyses revealed that the concentration of SFRP3 in patients with neuroendocrine tumors was significantly elevated (p < 0.001) compared to the control group. Additionally, DVL1 concentrations were significantly higher (p < 0.01) in patients with BP-NETs compared to GEP-NETs. Furthermore, DVL1 analysis showed a moderate negative correlation with chromogranin A (p < 0.001) and weak negative correlations with serotonin (p < 0.05) and 5-HIAA (p < 0.05). Significant negative correlations were also observed between DVL1 and age in the control group (p < 0.01), and between LRP6 and Ki-67 in the study group. Conclusions: These results suggest that changes in the SFRP3 and DVL1 pathways play a key role in NET development. Elevated levels of these proteins highlight their importance in tumor biology, with SFRP3 and DVL1 potentially being crucial in NET molecular mechanisms. Further research is needed to explore their roles and potential in diagnosis and treatment.
Collapse
Affiliation(s)
- Roksana Duszkiewicz
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana St., 41-808 Zabrze, Poland
| | - Janusz Strzelczyk
- Department of Endocrinology and Neuroendocrine Tumors, Department of Pathophysiology and Endocrinology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia 35 Ceglana St., 40-514 Katowice, Poland
| | - Elżbieta Chełmecka
- Department of Medical Statistics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 30 Ostrogórska St., 41-200 Sosnowiec, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana St., 41-808 Zabrze, Poland
| |
Collapse
|
4
|
Jiang J, Xu J, Ji S, Yu X, Chen J. Unraveling the mysteries of MGMT: Implications for neuroendocrine tumors. Biochim Biophys Acta Rev Cancer 2024; 1879:189184. [PMID: 39303858 DOI: 10.1016/j.bbcan.2024.189184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Neuroendocrine tumors (NETs) are a diverse group of tumors that arise from neuroendocrine cells and are commonly found in various organs. A considerable proportion of NET patients were diagnosed at an advanced or metastatic stage. Alkylating agents are the primary treatment for NET, and O6-methylguanine methyltransferase (MGMT) remains the first-line of defense against DNA damage caused by these agents. Clinical trials have indicated that MGMT promoter methylation or its low/lacked expression can predict a favorable outcome with Temozolomide in NETs. Its status could help select NET patients who can benefit from alkylating agents. Therefore, MGMT status serves as a biomarker to guide decisions on the efficacy of Temozolomide as a personalized treatment option. Additionally, delving into the regulatory mechanisms of MGMT status can lead to the development of MGMT-targeted therapies, benefiting individuals with high levels of MGMT expression. This review aims to explore the polymorphism of MGMT regulation and summarize its clinical implications in NETs, which would help establish the role of MGMT as a biomarker and its potential as a therapeutic target in NETs. Additionally, we explore the benefits of combining Temozolomide and immunotherapy in MGMT hypermethylated subgroups. Future studies can focus on optimizing Temozolomide administration to induce specific immunomodulatory changes.
Collapse
Affiliation(s)
- Jianyun Jiang
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Junfeng Xu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Shunrong Ji
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Xianjun Yu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Tümen D, Heumann P, Huber J, Hahn N, Macek C, Ernst M, Kandulski A, Kunst C, Gülow K. Unraveling Cancer's Wnt Signaling: Dynamic Control through Protein Kinase Regulation. Cancers (Basel) 2024; 16:2686. [PMID: 39123414 PMCID: PMC11312265 DOI: 10.3390/cancers16152686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Since the initial identification of oncogenic Wnt in mice and Drosophila, the Wnt signaling pathway has been subjected to thorough and extensive investigation. Persistent activation of Wnt signaling exerts diverse cancer characteristics, encompassing tumor initiation, tumor growth, cell senescence, cell death, differentiation, and metastasis. Here we review the principal signaling mechanisms and the regulatory influence of pathway-intrinsic and extrinsic kinases on cancer progression. Additionally, we underscore the divergences and intricate interplays of the canonical and non-canonical Wnt signaling pathways and their critical influence in cancer pathophysiology, exhibiting both growth-promoting and growth-suppressing roles across diverse cancer types.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Karsten Gülow
- Department of Internal Medicine I Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (D.T.); (N.H.)
| |
Collapse
|
6
|
Li S, Wang J, Chen H, Hou J, Shen T, Li J, Zhou B, Zhang B, Liu H, Jiang DK. TRIM16 E121D variant affects the risk and prognosis of hepatocellular carcinoma by modulating the Wnt/β-catenin pathway. Mol Carcinog 2023; 62:1686-1699. [PMID: 37477507 DOI: 10.1002/mc.23608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 07/22/2023]
Abstract
TRIM16 has been identified as a tumor suppressor in hepatocellular carcinoma (HCC). This study aimed to investigate whether there are genetic variants in TRIM16 influencing HCC risk and/or prognosis and explore the mechanisms. We performed a gene-wide single-nucleotide polymorphism (SNP) mining in TRIM16. The associations of SNPs with both HCC risk and prognosis were assessed through two independent cohorts respectively. Functional experiments were performed to investigate the underlying mechanisms. A missense variant rs2074890 (G > T, resulting in an amino acid substitution from glutamate to aspartate at code 121, E121D) of TRIM16 was found to be associated with both HCC risk (odds ratio = 0.806, p = 0.023) and prognosis (hazard ratio = 0.44, p = 0.034). Compared to the rs2074890 G allele (corresponding to TRIM16121E ) homozygote carriers, the rs2074890 T allele (corresponding to TRIM16121D ) carriers showed lower HCC risk and better overall survival. Mechanistically, TRIM16121D has stronger ability to inhibit proliferation, migration, and invasion of HCC cells. Furthermore, TRIM16121D could bind to β-catenin better and mediate K48-linked ubiquitination to degrade β-catenin, which leads to inhibition of Wnt/β-catenin pathway. In conclusion, TRIM16 E121D variant impacts both risk and prognosis of HCC via regulation of Wnt/β-catenin pathway, which may lead to better understanding the pathogenesis of HCC.
Collapse
Affiliation(s)
- Shanfeng Li
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Institutes of Liver Diseases Research of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Key Laboratory of Molecular Pathology (Hepatic Diseases) of Guangxi, Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Department of Nosocomial Infection Management, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jialin Wang
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Institutes of Liver Diseases Research of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Haitao Chen
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Institutes of Liver Diseases Research of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jia Hou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Institutes of Liver Diseases Research of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ting Shen
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Institutes of Liver Diseases Research of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Li
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Institutes of Liver Diseases Research of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Institutes of Liver Diseases Research of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bo Zhang
- Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hui Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - De-Ke Jiang
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Institutes of Liver Diseases Research of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Key Laboratory of Molecular Pathology (Hepatic Diseases) of Guangxi, Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
7
|
Kleszcz R, Frąckowiak M, Dorna D, Paluszczak J. Combinations of PRI-724 Wnt/β-Catenin Pathway Inhibitor with Vismodegib, Erlotinib, or HS-173 Synergistically Inhibit Head and Neck Squamous Cancer Cells. Int J Mol Sci 2023; 24:10448. [PMID: 37445628 DOI: 10.3390/ijms241310448] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The Wnt/β-catenin, EGFR, and PI3K pathways frequently undergo upregulation in head and neck squamous carcinoma (HNSCC) cells. Moreover, the Wnt/β-catenin pathway together with Hedgehog (Hh) signaling regulate the activity of cancer stem cells (CSCs). The aim of this study was to investigate the effects of the combinatorial use of the Wnt/β-catenin and Hh pathway inhibitors on viability, cell cycle progression, apoptosis induction, cell migration, and expression of CSC markers in tongue (CAL 27) and hypopharynx (FaDu) cancer cells. Co-inhibition of Wnt signaling with EGFR or PI3K pathways was additionally tested. The cells were treated with selective inhibitors of signaling pathways: Wnt/β-catenin (PRI-724), Hh (vismodegib), EGFR (erlotinib), and PI3K (HS-173). Cell viability was evaluated by the resazurin assay. Cell cycle progression and apoptosis induction were tested by flow cytometric analysis after staining with propidium iodide and Annexin V, respectively. Cell migration was detected by the scratch assay and CSC marker expression by the R-T PCR method. Mixtures of PRI-724 and vismodegib affected cell cycle distribution, greatly reduced cell migration, and downregulated the transcript level of CSC markers, especially POU5F1 encoding OCT4. Combinations of PRI-724 with erlotinib or HS-173 were more potent in inducing apoptosis.
Collapse
Affiliation(s)
- Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcickiego Str., 60-781 Poznań, Poland
| | - Mikołaj Frąckowiak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcickiego Str., 60-781 Poznań, Poland
| | - Dawid Dorna
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcickiego Str., 60-781 Poznań, Poland
| | - Jarosław Paluszczak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcickiego Str., 60-781 Poznań, Poland
| |
Collapse
|
8
|
Eid M, Foukal J, Sochorová D, Tuček Š, Starý K, Kala Z, Mayer J, Němeček R, Trna J, Kunovský L. Management of pheochromocytomas and paragangliomas: Review of current diagnosis and treatment options. Cancer Med 2023. [PMID: 37145019 DOI: 10.1002/cam4.6010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023] Open
Abstract
Pheochromocytomas (PCCs) are rare neuroendocrine tumors derived from the chromaffin cells of the adrenal medulla. When these tumors have an extra-adrenal location, they are called paragangliomas (PGLs) and arise from sympathetic and parasympathetic ganglia, particularly of the para-aortic location. Up to 25% of PCCs/PGLs are associated with inherited genetic disorders. The majority of PCCs/PGLs exhibit indolent behavior. However, according to their affiliation to molecular clusters based on underlying genetic aberrations, their tumorigenesis, location, clinical symptomatology, and potential to metastasize are heterogenous. Thus, PCCs/PGLs are often associated with diagnostic difficulties. In recent years, extensive research revealed a broad genetic background and multiple signaling pathways leading to tumor development. Along with this, the diagnostic and therapeutic options were also expanded. In this review, we focus on the current knowledge and recent advancements in the diagnosis and treatment of PCCs/PGLs with respect to the underlying gene alterations while also discussing future perspectives in this field.
Collapse
Affiliation(s)
- Michal Eid
- Department of Hematology, Oncology and Internal Medicine, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jakub Foukal
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dana Sochorová
- Department of Surgery, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Štěpán Tuček
- Department of Hematology, Oncology and Internal Medicine, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Karel Starý
- Department of Gastroenterology and Internal Medicine, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zdeněk Kala
- Department of Surgery, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiří Mayer
- Department of Hematology, Oncology and Internal Medicine, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Radim Němeček
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Trna
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Gastroenterology and Digestive Endoscopy, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lumír Kunovský
- Department of Surgery, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Gastroenterology and Digestive Endoscopy, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- 2nd Department of Internal Medicine - Gastroenterology and Geriatrics, University Hospital Olomouc, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
9
|
Wnt/β-catenin modulating drugs regulate somatostatin receptor expression and internalization of radiolabelled octreotide in neuroendocrine tumor cells. Nucl Med Commun 2023; 44:259-269. [PMID: 36804512 DOI: 10.1097/mnm.0000000000001666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
BACKGROUND Differentiated neuroendocrine tumors (NETs) express somatostatin receptors (SSTRs), targets for therapy with either unlabeled or radioactively labeled somatostatin analogs (SSA). Associated with worse prognosis, dedifferentiated NET loose SSTR expression, which may be linked to deregulation of Wnt/β-catenin signaling on an intracellular level. The aim of the present study was to investigate the effect of Wnt/β-catenin signaling pathway alterations on SSTR expression and its function in NET. METHODS The NET cell lines BON-1 and QGP-1 were incubated with the Wnt-inhibitors 5-aza-2'-deoxycytidine (5-aza-CdR), Quercetin, or Niclosamide, or the Wnt activator lithium chloride (LiCl). Expression of SSTR1, SSTR2, and SSTR5 was determined by quantitative RT-PCR (qRT-PCR), immunocytomicroscopy and western blot. Changes in the Wnt pathway were analyzed by qRT-PCR of selected target genes and the TaqMan Array Human WNT Pathway. Receptor-associated function was determined by measuring the cellular uptake of [125I-Tyr3] octreotide. RESULTS The mRNAs of SSTRs 1-5 were expressed in both cell lines. Wnt inhibitors caused downregulation of Wnt target genes, while 5-aza-CdR had the highest inhibitory effect. LiCl lead to an upregulation of Wnt genes, which was more marked in QGP-1 cells. SSTR expression increased in both cell lines upon Wnt inhibition. All three Wnt inhibitors lead to a marked increase in the specific uptake of [125I-Tyr3]octreotide, with 5-aza-CdR showing the greatest effect (increase by more than 50% in BON-1 cells), while a decreased uptake of [125I-Tyr3]octreotide was seen upon activation of Wnt signaling by LiCl. CONCLUSIONS We demonstrate here that Wnt signaling orchestrates SSTR expression and function in a preclinical NET model. Wnt inhibition increases [125I-Tyr3]octreotide uptake offering an opportunity to enhance the efficacy of SSTR-targeted theranostic approaches.
Collapse
|
10
|
Abstract
Intercellular communication by Wnt proteins governs many essential processes during development, tissue homeostasis and disease in all metazoans. Many context-dependent effects are initiated in the Wnt-producing cells and depend on the export of lipidated Wnt proteins. Although much focus has been on understanding intracellular Wnt signal transduction, the cellular machinery responsible for Wnt secretion became better understood only recently. After lipid modification by the acyl-transferase Porcupine, Wnt proteins bind their dedicated cargo protein Evi/Wntless for transport and secretion. Evi/Wntless and Porcupine are conserved transmembrane proteins, and their 3D structures were recently determined. In this Review, we summarise studies and structural data highlighting how Wnts are transported from the ER to the plasma membrane, and the role of SNX3-retromer during the recycling of its cargo receptor Evi/Wntless. We also describe the regulation of Wnt export through a post-translational mechanism and review the importance of Wnt secretion for organ development and cancer, and as a future biomarker.
Collapse
Affiliation(s)
- Lucie Wolf
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Chen Y, Chen M, Deng K. Blocking the Wnt/β‑catenin signaling pathway to treat colorectal cancer: Strategies to improve current therapies (Review). Int J Oncol 2022; 62:24. [PMID: 36579676 PMCID: PMC9854240 DOI: 10.3892/ijo.2022.5472] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumor types occurring in the digestive system. The incidence of CRC has exhibits yearly increases and the mortality rate among patients with CRC is high. The Wnt/β‑catenin signaling pathway, which is associated with carcinogenesis, is abnormally activated in CRC. Most patients with CRC have adenomatous polyposis coli mutations, while half of the remaining patients have β‑catenin gene mutations. Therefore, targeting the Wnt/β‑catenin signaling pathway for the treatment of CRC is of clinical value. In recent years, with in‑depth research on the Wnt/β‑catenin signaling pathway, inhibitors have been developed that are able to suppress or hinder the development and progression of CRC. In the present review, the role of the Wnt/β‑catenin signaling pathway in CRC is summarized, the research status on Wnt/β‑catenin pathway inhibitors is outlined and potential targets for inhibition of this pathway are presented.
Collapse
Affiliation(s)
- Yuxiang Chen
- Department of Gastroenterology and Hepatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China,The Laboratory of Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mo Chen
- Department of Gerontology, Tibetan Chengdu Branch Hospital of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China,Department of Gerontology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan 610041, P.R. China,Professor Mo Chen, Department of Gerontology, Tibetan Chengdu Branch Hospital of West China Hospital, Sichuan University, 20 Ximianqiao Cross Street, Chengdu, Sichuan 610041, P.R. China, E-mail:
| | - Kai Deng
- Department of Gastroenterology and Hepatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China,The Laboratory of Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China,Correspondence to: Professor Kai Deng, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041, P.R. China, E-mail:
| |
Collapse
|
12
|
Viol F, Sipos B, Fahl M, Clauditz TS, Amin T, Kriegs M, Nieser M, Izbicki JR, Huber S, Lohse AW, Schrader J. Novel preclinical gastroenteropancreatic neuroendocrine neoplasia models demonstrate the feasibility of mutation-based targeted therapy. Cell Oncol (Dordr) 2022; 45:1401-1419. [PMID: 36269546 PMCID: PMC9747820 DOI: 10.1007/s13402-022-00727-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN) form a rare and remarkably heterogeneous group of tumors. Therefore, establishing personalized therapies is eminently challenging. To achieve progress in preclinical drug development, there is an urgent need for relevant tumor models. METHODS We successfully established three gastroenteropancreatic neuroendocrine tumor (GEP-NET) cell lines (NT-18P, NT-18LM, NT-36) and two gastroenteropancreatic neuroendocrine carcinoma (GEP-NEC) cell lines (NT-32 and NT-38). We performed a comprehensive characterization of morphology, NET differentiation, proliferation and intracellular signaling pathways of these five cell lines and, in addition, of the NT-3 GEP-NET cell line. Additionally, we conducted panel sequencing to identify genomic alterations suitable for mutation-based targeted therapy. RESULTS We found that the GEP-NEN cell lines exhibit a stable neuroendocrine phenotype. Functional kinome profiling revealed a higher activity of serine/threonine kinases (STK) as well as protein tyrosine kinases (PTK) in the GEP-NET cell lines NT-3 and NT-18LM compared to the GEP-NEC cell lines NT-32 and NT-38. Panel sequencing revealed a mutation in Death Domain Associated Protein (DAXX), sensitizing NT-18LM to the Ataxia telangiectasia and Rad3 related (ATR) inhibitor Berzosertib, and a mutation in AT-Rich Interaction Domain 1A (ARID1A), sensitizing NT-38 to the Aurora kinase A inhibitor Alisertib. Small interfering RNA-mediated knock down of DAXX in the DAXX wild type cell line NT-3 sensitized these cells to Berzosertib. CONCLUSIONS The newly established GEP-NET and GEP-NEC cell lines represent comprehensive preclinical in vitro models suitable to decipher GEP-NEN biology and pathogenesis. Additionally, we present the first results of a GEP-NEN-specific mutation-based targeted therapy. These findings open up new potentialities for personalized therapies in GEP-NEN.
Collapse
Affiliation(s)
- Fabrice Viol
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Bence Sipos
- Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
| | - Martina Fahl
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tania Amin
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Malte Kriegs
- Laboratory of Radiobiology & Experimental Radiation Oncology, UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maike Nieser
- Center for Genomics and Transcriptomics, Tübingen, Germany
| | - Jakob R Izbicki
- Department for General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Ansgar W Lohse
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Jörg Schrader
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- Department for General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Medicine, Klinikum Nordfriesland, Husum, Germany.
| |
Collapse
|
13
|
Wu H, Yu Z, Liu Y, Guo L, Teng L, Guo L, Liang L, Wang J, Gao J, Li R, Yang L, Nie X, Su D, Liang Z. Genomic characterization reveals distinct mutation landscapes and therapeutic implications in neuroendocrine carcinomas of the gastrointestinal tract. Cancer Commun (Lond) 2022; 42:1367-1386. [PMID: 36264285 PMCID: PMC9759768 DOI: 10.1002/cac2.12372] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/24/2022] [Accepted: 10/08/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Neuroendocrine carcinomas of the gastrointestinal tract (GI-NECs) remain a disease of grim prognosis with limited therapeutic options. Their molecular characteristics are still undefined. This study aimed to explore the underlying genetic basis and heterogeneity of GI-NECs. METHODS Comprehensive genomic analysis using whole-exome sequencing was performed on 143 formalin-fixed, paraffin-embedded samples of surgically resected GI-NEC with a thorough histological evaluation. Mutational signatures, somatic mutations, and copy number aberrations were analyzed and compared across anatomic locations and histological subtypes. Survival analysis was conducted to identify the independent factors. RESULTS In total, 143 GI-NECs were examined: the stomach, 87 cases (60.8%); the esophagus, 29 cases (20.3%); the colorectum, 20 cases (14.0%); and the small intestine, 7 cases (4.9%). Eighty-three (58.0%) and 60 (42.0%) cases were subclassified into small cell and large cell subtypes, respectively. GI-NECs showed distinct genetic alterations from their lung counterparts and non-neuroendocrine carcinomas in the same locations. Obvious heterogeneity of mutational signatures, somatic mutations, and copy number variations was revealed across anatomic locations rather than histological subtypes. Except for tumor protein p53 (TP53) and retinoblastoma 1 (RB1), the most frequently mutated genes in the stomach, esophagus, colorectum, and small intestine were low-density lipoprotein receptor-related protein 1B (LRP1B), notch receptor 1 (NOTCH1), adenomatosis polyposis coli (APC), catenin beta 1 (CTNNB1), respectively. Mutations in the WNT-β-catenin, NOTCH and erythroblastic leukemia viral oncogene B (ERBB) pathways were prevalently identified in gastric, esophageal, and colorectal NECs, respectively. Importantly, 104 (72.7%) GI-NECs harbored putative clinically relevant alterations, and non-gastric location and RB1 bi-allelic inactivation with copy number alterations were identified as two independent poor prognostic factors. Furthermore, we found that tumor cells in GI-NECs first gain clonal mutations in TP53, RB1, NOTCH1 and APC, followed by subsequent whole-genome doubling (WGD) and post-WGD clonal mutations in LRP1B, CUB and Sushi multiple domains 3 (CSMD3), FAT tumor suppressor homolog 4 (FAT4) and erb-b2 receptor tyrosine kinase 4 (ERBB4), and finally develop subclonal mutations. CONCLUSIONS GI-NECs harbor distinct genomic landscapes and demonstrate significant genetic heterogeneity across different anatomic locations. Moreover, potentially actionable alterations and prognostic factors were revealed for GI-NECs.
Collapse
Affiliation(s)
- Huanwen Wu
- Department of PathologyState Key Laboratory of Complex Severe and Rare DiseasesMolecular Pathology Research CenterPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730P. R. China
| | - Zicheng Yu
- Geneplus‐BeijingBeijing102200P. R. China
| | - Yueping Liu
- Department of PathologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebei050011P. R. China
| | - Lei Guo
- Department of PathologyCancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Lianghong Teng
- Department of PathologyXuanwu HospitalCapital Medical UniversityBeijing100053P. R. China
| | - Lingchuan Guo
- Department of PathologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215000P. R. China
| | - Li Liang
- Department of PathologySouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Jing Wang
- Department of PathologyState Key Laboratory of Complex Severe and Rare DiseasesMolecular Pathology Research CenterPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730P. R. China
| | - Jie Gao
- Department of PathologyState Key Laboratory of Complex Severe and Rare DiseasesMolecular Pathology Research CenterPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730P. R. China
| | - Ruiyu Li
- Department of PathologyState Key Laboratory of Complex Severe and Rare DiseasesMolecular Pathology Research CenterPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730P. R. China
| | - Ling Yang
- Geneplus‐BeijingBeijing102200P. R. China
| | - Xiu Nie
- Department of PathologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430022P. R. China
| | - Dan Su
- Department of PathologyThe Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiang310022P. R. China
| | - Zhiyong Liang
- Department of PathologyState Key Laboratory of Complex Severe and Rare DiseasesMolecular Pathology Research CenterPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730P. R. China
| |
Collapse
|
14
|
Wang K, Crona J, Beuschlein F, Grossman AB, Pacak K, Nölting S. Targeted Therapies in Pheochromocytoma and Paraganglioma. J Clin Endocrinol Metab 2022; 107:2963-2972. [PMID: 35973976 PMCID: PMC9923802 DOI: 10.1210/clinem/dgac471] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Indexed: 11/19/2022]
Abstract
Molecular targeted therapy plays an increasingly important role in the treatment of metastatic pheochromocytomas and paragangliomas (PPGLs), which are rare tumors but remain difficult to treat. This mini-review provides an overview of established molecular targeted therapies in present use, and perspectives on those currently under development and evaluation in clinical trials. Recently published research articles, guidelines, and expert views on molecular targeted therapies in PPGLs are systematically reviewed and summarized. Some tyrosine kinase inhibitors (sunitinib, cabozantinib) are already in clinical use with some promising results, but without formal approval for the treatment of PPGLs. Sunitinib is the only therapeutic option which has been investigated in a randomized placebo-controlled clinical trial. It is clinically used as a first-, second-, or third-line therapeutic option for the treatment of progressive metastatic PPGLs. Some other promising molecular targeted therapies (hypoxia-inducible factor 2 alpha [HIF2α] inhibitors, tumor vaccination together with checkpoint inhibitors, antiangiogenic therapies, kinase signaling inhibitors) are under evaluation in clinical trials. The HIF2α inhibitor belzutifan may prove to be particularly interesting for cluster 1B-/VHL/EPAS1-related PPGLs, whereas antiangiogenic therapies seem to be primarily effective in cluster 1A-/SDHx-related PPGLs. Some combination therapies currently being evaluated in clinical trials, such as temozolomide/olaparib, temozolomide/talazoparib, or cabozantinib/atezolizumab, will provide data for novel therapy for metastatic PPGLs. It is likely that advances in such molecular targeted therapies will play an essential role in the future treatment of these tumors, with more personalized therapy options paving the way towards improved therapeutic outcomes.
Collapse
Affiliation(s)
- Katharina Wang
- Department of Internal Medicine IV, University Hospital, LMU Klinikum, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Joakim Crona
- Department of Medical Sciences, Uppsala University, 75185 Uppsala, Sweden
| | - Felix Beuschlein
- Department of Internal Medicine IV, University Hospital, LMU Klinikum, Ludwig Maximilian University of Munich, 80336 Munich, Germany
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Ashley B Grossman
- Green Templeton College, University of Oxford, Oxford OX2 6HG, United Kingdom
- NET Unit, ENETS Centre of Excellence, Royal Free Hospital, London NW3 2QG, United Kingdom
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1109, USA
| | - Svenja Nölting
- Department of Internal Medicine IV, University Hospital, LMU Klinikum, Ludwig Maximilian University of Munich, 80336 Munich, Germany
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
| |
Collapse
|
15
|
Pozas J, Alonso-Gordoa T, Román MS, Santoni M, Thirlwell C, Grande E, Molina-Cerrillo J. Novel therapeutic approaches in GEP-NETs based on genetic and epigenetic alterations. Biochim Biophys Acta Rev Cancer 2022; 1877:188804. [PMID: 36152904 DOI: 10.1016/j.bbcan.2022.188804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/17/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022]
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are heterogeneous malignancies with distinct prognosis based on primary tumor localization, grade, stage and functionality. Surgery remains the only curative option in localized tumors, but systemic therapy is the mainstay of treatment for patients with advanced disease. For decades, the therapeutic landscape of GEP-NETs was limited to chemotherapy regimens with low response rates. The arrival of novel agents such as somatostatin analogues, peptide receptor radionuclide therapy, tyrosine kinase inhibitors or mTOR-targeted drugs, has changed the therapeutic paradigm of GEP-NETs. However, the efficacy of these agents is limited in time and there is scarce knowledge of optimal treatment sequencing. In recent years, massive parallel sequencing techniques have started to unravel the genomic intricacies of these tumors, allowing us to better understand the mechanisms of resistance to current treatments and to develop new targeted agents that will hopefully start an era for personalized treatment in NETs. In this review we aim to summarize the most relevant genomic aberrations and signaling pathways underlying GEP-NET tumorigenesis and potential therapeutic strategies derived from them.
Collapse
Affiliation(s)
- Javier Pozas
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, Medicine School, Alcalá University, Madrid, Spain
| | - Teresa Alonso-Gordoa
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, Medicine School, Alcalá University, Madrid, Spain
| | - Maria San Román
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, Medicine School, Alcalá University, Madrid, Spain
| | | | | | - Enrique Grande
- Medical Oncology Ddepartment. MD Anderson Cancer Center Madrid, 28033 Madrid, Spain
| | - Javier Molina-Cerrillo
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, Medicine School, Alcalá University, Madrid, Spain.
| |
Collapse
|
16
|
Targeted Therapy for Adrenocortical Carcinoma: A Genomic-Based Search for Available and Emerging Options. Cancers (Basel) 2022; 14:cancers14112721. [PMID: 35681700 PMCID: PMC9179357 DOI: 10.3390/cancers14112721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 12/07/2022] Open
Abstract
In rare diseases such as adrenocortical carcinoma (ACC), in silico analysis can help select promising therapy options. We screened all drugs approved by the FDA and those in current clinical studies to identify drugs that target genomic alterations, also known to be present in patients with ACC. We identified FDA-approved drugs in the My Cancer Genome and National Cancer Institute databases and identified genetic alterations that could predict drug response. In total, 155 FDA-approved drugs and 905 drugs in clinical trials were identified and linked to 375 genes of 89 TCGA patients. The most frequent potentially targetable genetic alterations included TP53 (20%), BRD9 (13%), TERT (13%), CTNNB1 (13%), CDK4 (7%), FLT4 (7%), and MDM2 (7%). We identified TP53-modulating drugs to be possibly effective in 20-26% of patients, followed by the Wnt signaling pathway inhibitors (15%), Telomelysin and INO5401 (13%), FHD-609 (13%), etc. According to our data, 67% of ACC patients exhibited genomic alterations that might be targeted by FDA-approved drugs or drugs being tested in current clinical trials. Although there are not many current therapy options directly targeting reported ACC alterations, this study identifies emerging options that could be tested in clinical trials.
Collapse
|
17
|
Danesh Pouya F, Rasmi Y, Nemati M. Signaling Pathways Involved in 5-FU Drug Resistance in Cancer. Cancer Invest 2022; 40:516-543. [PMID: 35320055 DOI: 10.1080/07357907.2022.2055050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anti-metabolite drugs prevent the synthesis of essential cell growth compounds. 5-fluorouracil is used as an anti-metabolic drug in various cancers in the first stage of treatment. Unfortunately, in some cancers, 5-fluorouracil has low effectiveness because of its drug resistance. Studies have shown that drug resistance to 5-fluorouracil is due to the activation of specific signaling pathways and increased expressions of enzymes involved in drug metabolites. However, when 5-fluorouracil is used in combination with other drugs, the sensitivity of cancer cells to 5-fluorouracil increases, and the effect of drug resistance is reversed. This study discusses how the function of 5-fluorouracil in JAK/STAT, Wnt, Notch, NF-κB, and hedgehogs in some cancers.
Collapse
Affiliation(s)
- Fahima Danesh Pouya
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohadeseh Nemati
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
18
|
Nölting S, Bechmann N, Taieb D, Beuschlein F, Fassnacht M, Kroiss M, Eisenhofer G, Grossman A, Pacak K. Personalized Management of Pheochromocytoma and Paraganglioma. Endocr Rev 2022; 43:199-239. [PMID: 34147030 PMCID: PMC8905338 DOI: 10.1210/endrev/bnab019] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Indexed: 02/07/2023]
Abstract
Pheochromocytomas/paragangliomas are characterized by a unique molecular landscape that allows their assignment to clusters based on underlying genetic alterations. With around 30% to 35% of Caucasian patients (a lower percentage in the Chinese population) showing germline mutations in susceptibility genes, pheochromocytomas/paragangliomas have the highest rate of heritability among all tumors. A further 35% to 40% of Caucasian patients (a higher percentage in the Chinese population) are affected by somatic driver mutations. Thus, around 70% of all patients with pheochromocytoma/paraganglioma can be assigned to 1 of 3 main molecular clusters with different phenotypes and clinical behavior. Krebs cycle/VHL/EPAS1-related cluster 1 tumors tend to a noradrenergic biochemical phenotype and require very close follow-up due to the risk of metastasis and recurrence. In contrast, kinase signaling-related cluster 2 tumors are characterized by an adrenergic phenotype and episodic symptoms, with generally a less aggressive course. The clinical correlates of patients with Wnt signaling-related cluster 3 tumors are currently poorly described, but aggressive behavior seems likely. In this review, we explore and explain why cluster-specific (personalized) management of pheochromocytoma/paraganglioma is essential to ascertain clinical behavior and prognosis, guide individual diagnostic procedures (biochemical interpretation, choice of the most sensitive imaging modalities), and provide personalized management and follow-up. Although cluster-specific therapy of inoperable/metastatic disease has not yet entered routine clinical practice, we suggest that informed personalized genetic-driven treatment should be implemented as a logical next step. This review amalgamates published guidelines and expert views within each cluster for a coherent individualized patient management plan.
Collapse
Affiliation(s)
- Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zurich, Switzerland.,Department of Medicine IV, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,Department of Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - David Taieb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, 13273 Marseille, France
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zurich, Switzerland.,Department of Medicine IV, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Martin Fassnacht
- Department of Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Würzburg, Germany
| | - Matthias Kroiss
- Department of Medicine IV, University Hospital, LMU Munich, 80336 Munich, Germany.,Department of Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Würzburg, Germany
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,Department of Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ashley Grossman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX2 6HG, UK.,Centre for Endocrinology, Barts and the London School of Medicine, London EC1M 6BQ, UK.,ENETS Centre of Excellence, Royal Free Hospital, London NW3 2QG, UK
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20847, USA
| |
Collapse
|
19
|
Maharjan CK, Ear PH, Tran CG, Howe JR, Chandrasekharan C, Quelle DE. Pancreatic Neuroendocrine Tumors: Molecular Mechanisms and Therapeutic Targets. Cancers (Basel) 2021; 13:5117. [PMID: 34680266 PMCID: PMC8533967 DOI: 10.3390/cancers13205117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are unique, slow-growing malignancies whose molecular pathogenesis is incompletely understood. With rising incidence of pNETs over the last four decades, larger and more comprehensive 'omic' analyses of patient tumors have led to a clearer picture of the pNET genomic landscape and transcriptional profiles for both primary and metastatic lesions. In pNET patients with advanced disease, those insights have guided the use of targeted therapies that inhibit activated mTOR and receptor tyrosine kinase (RTK) pathways or stimulate somatostatin receptor signaling. Such treatments have significantly benefited patients, but intrinsic or acquired drug resistance in the tumors remains a major problem that leaves few to no effective treatment options for advanced cases. This demands a better understanding of essential molecular and biological events underlying pNET growth, metastasis, and drug resistance. This review examines the known molecular alterations associated with pNET pathogenesis, identifying which changes may be drivers of the disease and, as such, relevant therapeutic targets. We also highlight areas that warrant further investigation at the biological level and discuss available model systems for pNET research. The paucity of pNET models has hampered research efforts over the years, although recently developed cell line, animal, patient-derived xenograft, and patient-derived organoid models have significantly expanded the available platforms for pNET investigations. Advancements in pNET research and understanding are expected to guide improved patient treatments.
Collapse
Affiliation(s)
- Chandra K. Maharjan
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Po Hien Ear
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Catherine G. Tran
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - James R. Howe
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Chandrikha Chandrasekharan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Dawn E. Quelle
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
20
|
Rinke A, Auernhammer CJ, Bodei L, Kidd M, Krug S, Lawlor R, Marinoni I, Perren A, Scarpa A, Sorbye H, Pavel ME, Weber MM, Modlin I, Gress TM. Treatment of advanced gastroenteropancreatic neuroendocrine neoplasia, are we on the way to personalised medicine? Gut 2021; 70:1768-1781. [PMID: 33692095 DOI: 10.1136/gutjnl-2020-321300] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
Gastroenteropancreatic neuroendocrine neoplasia (GEPNEN) comprises clinically as well as prognostically diverse tumour entities often diagnosed at late stage. Current classification provides a uniform terminology and a Ki67-based grading system, thereby facilitating management. Advances in the study of genomic and epigenetic landscapes have amplified knowledge of tumour biology and enhanced identification of prognostic and potentially predictive treatment subgroups. Translation of this genomic and mechanistic biology into advanced GEPNEN management is limited. 'Targeted' treatments such as somatostatin analogues, peptide receptor radiotherapy, tyrosine kinase inhibitors and mammalian target of rapamycin inhibitors are treatment options but predictive tools are lacking. The inability to identify clonal heterogeneity and define critical oncoregulatory pathways prior to therapy, restrict therapeutic efficacy as does the inability to monitor disease status in real time. Chemotherapy in the poor prognosis NEN G3 group, though associated with acceptable response rates, only leads to short-term tumour control and their molecular biology requires delineation to provide new and more specific treatment options.The future requires an exploration of the NEN tumour genome, its microenvironment and an identification of critical oncologic checkpoints for precise drug targeting. In the advance to personalised medical treatment of patients with GEPNEN, clinical trials need to be based on mechanistic and multidimensional characterisation of each tumour in order to identify the therapeutic agent effective for the individual tumour.This review surveys advances in NEN research and delineates the current status of translation with a view to laying the basis for a genome-based personalised medicine management of advanced GEPNEN.
Collapse
Affiliation(s)
- Anja Rinke
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, University Hospital Marburg and Philipps University, Marburg, Germany
| | - Christoph J Auernhammer
- Department of Internal Medicine IV and Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Ludwig Maximilian University, LMU Klinikum, Munich, Germany
| | - Lisa Bodei
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mark Kidd
- Wren Laboratories, Branford, Connecticut, USA
| | - Sebastian Krug
- Clinic for Internal Medicine I, Martin Luther University, Halle, Germany
| | - Rita Lawlor
- Applied Research on Cancer Centre, Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Ilaria Marinoni
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Aurel Perren
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Aldo Scarpa
- Applied Research on Cancer Centre, Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Halfdan Sorbye
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Marianne Ellen Pavel
- Department of Internal Medicine I, Endocrinology, University of Erlangen, Erlangen, Germany
| | - Matthias M Weber
- Department of Internal Medicine I, Endocrinology, Johannes Gutenberg University Hospital Mainz, Mainz, Germany
| | - Irvin Modlin
- Gastroenterological and Endoscopic Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Thomas M Gress
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, University Hospital Marburg and Philipps University, Marburg, Germany
| |
Collapse
|
21
|
Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, Wu C, Wang C, Ye L. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther 2021; 6:307. [PMID: 34456337 PMCID: PMC8403677 DOI: 10.1038/s41392-021-00701-5] [Citation(s) in RCA: 357] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/19/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Wnt/β-catenin signaling has been broadly implicated in human cancers and experimental cancer models of animals. Aberrant activation of Wnt/β-catenin signaling is tightly linked with the increment of prevalence, advancement of malignant progression, development of poor prognostics, and even ascendence of the cancer-associated mortality. Early experimental investigations have proposed the theoretical potential that efficient repression of this signaling might provide promising therapeutic choices in managing various types of cancers. Up to date, many therapies targeting Wnt/β-catenin signaling in cancers have been developed, which is assumed to endow clinicians with new opportunities of developing more satisfactory and precise remedies for cancer patients with aberrant Wnt/β-catenin signaling. However, current facts indicate that the clinical translations of Wnt/β-catenin signaling-dependent targeted therapies have faced un-neglectable crises and challenges. Therefore, in this study, we systematically reviewed the most updated knowledge of Wnt/β-catenin signaling in cancers and relatively targeted therapies to generate a clearer and more accurate awareness of both the developmental stage and underlying limitations of Wnt/β-catenin-targeted therapies in cancers. Insights of this study will help readers better understand the roles of Wnt/β-catenin signaling in cancers and provide insights to acknowledge the current opportunities and challenges of targeting this signaling in cancers.
Collapse
Affiliation(s)
- Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Changhao Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanqin Zuo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Yitian Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Yao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
22
|
Quintanal-Villalonga A, Taniguchi H, Zhan YA, Hasan MM, Chavan SS, Meng F, Uddin F, Manoj P, Donoghue MTA, Won HH, Chan JM, Ciampricotti M, Chow A, Offin M, Chang JC, Ray-Kirton J, Tischfield SE, Egger J, Bhanot UK, Linkov I, Asher M, Sinha S, Silber J, Iacobuzio-Donahue CA, Roehrl MH, Hollmann TJ, Yu HA, Qiu J, de Stanchina E, Baine MK, Rekhtman N, Poirier JT, Loomis B, Koche RP, Rudin CM, Sen T. Multi-omic analysis of lung tumors defines pathways activated in neuroendocrine transformation. Cancer Discov 2021; 11:3028-3047. [PMID: 34155000 DOI: 10.1158/2159-8290.cd-20-1863] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/30/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022]
Abstract
Lineage plasticity is implicated in treatment resistance in multiple cancers. In lung adenocarcinomas (LUADs) amenable to targeted therapy, transformation to small cell lung cancer (SCLC) is a recognized resistance mechanism. Defining molecular mechanisms of neuroendocrine (NE) transformation in lung cancer has been limited by a paucity of pre-/post-transformation clinical samples. Detailed genomic, epigenomic, transcriptomic, and protein characterization of combined LUAD/SCLC tumors, as well as pre-/post-transformation samples, support that NE transformation is primarily driven by transcriptional reprogramming rather than mutational events. We identify genomic contexts in which NE transformation is favored, including frequent loss of the 3p chromosome arm. We observed enhanced expression of genes involved in PRC2 complex and PI3K/AKT and NOTCH pathways. Pharmacological inhibition of the PI3K/AKT pathway delayed tumor growth and NE transformation in an EGFR-mutant patient-derived xenograft model. Our findings define a novel landscape of potential drivers and therapeutic vulnerabilities of neuroendocrine transformation in lung cancer.
Collapse
Affiliation(s)
| | | | - Yingqian A Zhan
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center
| | - Maysun M Hasan
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center
| | | | - Fanli Meng
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center
| | | | | | - Mark T A Donoghue
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center
| | - Helen H Won
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center
| | | | | | - Andrew Chow
- Medicine, Memorial Sloan Kettering Cancer Center
| | | | - Jason C Chang
- Department of Pathology, Memorial Sloan Kettering Cancer Center
| | | | - Sam E Tischfield
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center
| | | | - Umesh K Bhanot
- Pathology Core Facility, Memorial Sloan Kettering Cancer Center
| | | | - Marina Asher
- Department of Pathology, Memorial Sloan Kettering Cancer Center
| | | | | | | | | | | | - Helena A Yu
- Medicine, Memorial Sloan Kettering Cancer Center
| | - Juan Qiu
- Memorial Sloan Kettering Cancer Center
| | | | | | | | - John T Poirier
- Perlmutter Cancer Center, New York University Langone Health
| | - Brian Loomis
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center
| | - Richard P Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center
| | - Charles M Rudin
- Druckenmiller Center for Lung Cancer Research and Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center
| | | |
Collapse
|
23
|
Kumar V, Vashishta M, Kong L, Wu X, Lu JJ, Guha C, Dwarakanath BS. The Role of Notch, Hedgehog, and Wnt Signaling Pathways in the Resistance of Tumors to Anticancer Therapies. Front Cell Dev Biol 2021; 9:650772. [PMID: 33968932 PMCID: PMC8100510 DOI: 10.3389/fcell.2021.650772] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
Resistance to therapy is the major hurdle in the current cancer management. Cancer cells often rewire their cellular process to alternate mechanisms to resist the deleterious effect mounted by different therapeutic approaches. The major signaling pathways involved in the developmental process, such as Notch, Hedgehog, and Wnt, play a vital role in development, tumorigenesis, and also in the resistance to the various anticancer therapies. Understanding how cancer utilizes these developmental pathways in acquiring the resistance to the multi-therapeutic approach cancer can give rise to a new insight of the anti-therapy resistance mechanisms, which can be explored for the development of a novel therapeutic approach. We present a brief overview of Notch, Hedgehog, and Wnt signaling pathways in cancer and its role in providing resistance to various cancer treatment modalities such as chemotherapy, radiotherapy, molecular targeted therapy, and immunotherapy. Understanding the importance of these molecular networks will provide a rational basis for novel and safer combined anticancer therapeutic approaches for the improvement of cancer treatment by overcoming drug resistance.
Collapse
Affiliation(s)
- Vivek Kumar
- R&D Dept, Shanghai Proton and Heavy Ion Center (SPHIC), Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Mohit Vashishta
- R&D Dept, Shanghai Proton and Heavy Ion Center (SPHIC), Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Lin Kong
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Xiaodong Wu
- R&D Dept, Shanghai Proton and Heavy Ion Center (SPHIC), Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiade J Lu
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Chandan Guha
- Albert Einstein College of Medicine, The Bronx, NY, United States
| | - B S Dwarakanath
- R&D Dept, Shanghai Proton and Heavy Ion Center (SPHIC), Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| |
Collapse
|
24
|
Targeting of Deregulated Wnt/β-Catenin Signaling by PRI-724 and LGK974 Inhibitors in Germ Cell Tumor Cell Lines. Int J Mol Sci 2021; 22:ijms22084263. [PMID: 33923996 PMCID: PMC8073733 DOI: 10.3390/ijms22084263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
The majority of patients with testicular germ cell tumors (GCTs) can be cured with cisplatin-based chemotherapy. However, for a subset of patients present with cisplatin-refractory disease, which confers a poor prognosis, the treatment options are limited. Novel therapies are therefore urgently needed to improve outcomes in this challenging patient population. It has previously been shown that Wnt/β-catenin signaling is active in GCTs suggesting that its inhibitors LGK974 and PRI-724 may show promise in the management of cisplatin-refractory GCTs. We herein investigated whether LGK-974 and PRI-724 provide a treatment effect in cisplatin-resistant GCT cell lines. Taking a genoproteomic approach and utilizing xenograft models we found the increased level of β-catenin in 2 of 4 cisplatin-resistant (CisR) cell lines (TCam-2 CisR and NCCIT CisR) and the decreased level of β-catenin and cyclin D1 in cisplatin-resistant NTERA-2 CisR cell line. While the effect of treatment with LGK974 was limited or none, the NTERA-2 CisR exhibited the increased sensitivity to PRI-724 in comparison with parental cell line. Furthermore, the pro-apoptotic effect of PRI-724 was documented in all cell lines. Our data strongly suggests that a Wnt/β-catenin signaling is altered in cisplatin-resistant GCT cell lines and the inhibition with PRI-724 is effective in NTERA-2 CisR cells. Further evaluation of Wnt/β-catenin pathway inhibition in GCTs is therefore warranted.
Collapse
|
25
|
Antitumoral Activity of the MEK Inhibitor Trametinib (TMT212) Alone and in Combination with the CDK4/6 Inhibitor Ribociclib (LEE011) in Neuroendocrine Tumor Cells In Vitro. Cancers (Basel) 2021; 13:cancers13061485. [PMID: 33807122 PMCID: PMC8004919 DOI: 10.3390/cancers13061485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES This study assessed the antitumoral activity of the MEK inhibitor trametinib (TMT212) and the ERK1/2 inhibitor SCH772984, alone and in combination with the CDK4/6 inhibitor ribociclib (LEE011) in human neuroendocrine tumor (NET) cell lines in vitro. METHODS Human NET cell lines BON1, QGP-1, and NCI-H727 were treated with trametinib or SCH772984, alone and in combination with ribociclib, to assess cell proliferation, cell cycle distribution, and protein signaling using cell proliferation, flow cytometry, and Western blot assays, respectively. RESULTS Trametinib and SCH772984, alone and in combination with ribociclib, significantly reduced NET cell viability and arrested NET cells at the G1 phase of the cell cycle in all three cell lines tested. In addition, trametinib also caused subG1 events and apoptotic PARP cleavage in QGP1 and NCI-H727 cells. A western blot analysis demonstrated the use of trametinib alone and trametinib in combination with ribociclib to decrease the expression of pERK, cMyc, Chk1, pChk2, pCDK1, CyclinD1, and c-myc in a time-dependent manner in NCI-H727 and QGP-1 cells. CONCLUSIONS MEK and ERK inhibition causes antiproliferative effects in human NET cell lines in vitro. The combination of the MEK inhibitor trametinib (TMT212) with the CDK4/6 inhibitor ribociclib (LEE011) causes additive antiproliferative effects. Future preclinical and clinical studies of MEK inhibition in NETs should be performed.
Collapse
|
26
|
Brandi ML, Agarwal SK, Perrier ND, Lines KE, Valk GD, Thakker RV. Multiple Endocrine Neoplasia Type 1: Latest Insights. Endocr Rev 2021; 42:133-170. [PMID: 33249439 PMCID: PMC7958143 DOI: 10.1210/endrev/bnaa031] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Multiple endocrine neoplasia type 1 (MEN1), a rare tumor syndrome that is inherited in an autosomal dominant pattern, is continuing to raise great interest for endocrinology, gastroenterology, surgery, radiology, genetics, and molecular biology specialists. There have been 2 major clinical practice guidance papers published in the past 2 decades, with the most recent published 8 years ago. Since then, several new insights on the basic biology and clinical features of MEN1 have appeared in the literature, and those data are discussed in this review. The genetic and molecular interactions of the MEN1-encoded protein menin with transcription factors and chromatin-modifying proteins in cell signaling pathways mediated by transforming growth factor β/bone morphogenetic protein, a few nuclear receptors, Wnt/β-catenin, and Hedgehog, and preclinical studies in mouse models have facilitated the understanding of the pathogenesis of MEN1-associated tumors and potential pharmacological interventions. The advancements in genetic diagnosis have offered a chance to recognize MEN1-related conditions in germline MEN1 mutation-negative patients. There is rapidly accumulating knowledge about clinical presentation in children, adolescents, and pregnancy that is translatable into the management of these very fragile patients. The discoveries about the genetic and molecular signatures of sporadic neuroendocrine tumors support the development of clinical trials with novel targeted therapies, along with advancements in diagnostic tools and surgical approaches. Finally, quality of life studies in patients affected by MEN1 and related conditions represent an effort necessary to develop a pharmacoeconomic interpretation of the problem. Because advances are being made both broadly and in focused areas, this timely review presents and discusses those studies collectively.
Collapse
Affiliation(s)
| | | | - Nancy D Perrier
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Gerlof D Valk
- University Medical Center Utrecht, CX Utrecht, the Netherlands
| | | |
Collapse
|
27
|
Wnt/β-Catenin Signaling Regulates CXCR4 Expression and [ 68Ga] Pentixafor Internalization in Neuroendocrine Tumor Cells. Diagnostics (Basel) 2021; 11:diagnostics11020367. [PMID: 33671498 PMCID: PMC7926465 DOI: 10.3390/diagnostics11020367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/08/2023] Open
Abstract
Loss of Somatostatin Receptor 2 (SSTR2) expression and rising CXC Chemokine Receptor Type 4 (CXCR4) expression are associated with dedifferentiation in neuroendocrine tumors (NET). In NET, CXCR4 expression is associated with enhanced metastatic and invasive potential and worse prognosis but might be a theragnostic target. Likewise, activation of Wnt/β-catenin signaling may promote a more aggressive phenotype in NET. We hypothesized an interaction of the Wnt/β-catenin pathway with CXCR4 expression and function in NET. The NET cell lines BON-1, QGP-1, and MS-18 were exposed to Wnt inhibitors (5-aza-CdR, quercetin, and niclosamide) or the Wnt activator LiCl. The expressions of Wnt pathway genes and of CXCR4 were studied by qRT-PCR, Western blot, and immunohistochemistry. The effects of Wnt modulators on uptake of the CXCR4 ligand [68Ga] Pentixafor were measured. The Wnt activator LiCl induced upregulation of CXCR4 and Wnt target gene expression. Treatment with the Wnt inhibitors had opposite effects. LiCl significantly increased [68Ga] Pentixafor uptake, while treatment with Wnt inhibitors decreased radiopeptide uptake. Wnt pathway modulation influences CXCR4 expression and function in NET cell lines. Wnt modulation might be a tool to enhance the efficacy of CXCR4-directed therapies in NET or to inhibit CXCR4-dependent proliferative signaling. The underlying mechanisms for the interaction of the Wnt pathway with CXCR4 expression and function have yet to be clarified.
Collapse
|
28
|
The Role of β-Catenin in Th1 Immune Response against Tuberculosis and Profiles of Expression in Patients with Pulmonary Tuberculosis. J Immunol Res 2021; 2021:6625855. [PMID: 33628846 PMCID: PMC7892223 DOI: 10.1155/2021/6625855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/10/2021] [Accepted: 01/23/2021] [Indexed: 12/12/2022] Open
Abstract
β-Catenin is a key molecule of canonical Wnt/β-catenin pathway. Its roles and expression profiles in T cells of tuberculosis (TB) remain unclear. The aim of this study was to explore the role of β-catenin in CD4+ T cells and its expression characteristics in patients with pulmonary tuberculosis (PTB). In this study, CD4+ T cell-specific β-catenin conditional knockout mice (β-CAT-cKO mice) were aerosol infected with Mycobacteria tuberculosis (Mtb) H37RV with wild-type mice as controls. Four weeks after infection, the mRNA expression of IFN-γ, TNF-α, and TCF-7 in the lungs of mice was measured. CD4, CD8, β-catenin, IFN-γ, and TNF-α in mononuclear cells from the lungs and spleens were measured by flow cytometry, and the pathological changes of lungs were also observed. Patients with PTB were enrolled, with blood samples collected and PBMCs isolated. The expressions of β-catenin, IFN-γ, TNF-α, and PD-1 in CD4+ and CD8+ T cells were measured by flow cytometry. Results showed a decreased frequency of and reduced IFN-γ/TNF-α mRNA expression and secretion by CD4+ T cells in the lungs of infected β-CAT-cKO mice compared with infected wild-type controls, and only slightly more inflammatory changes were observed in the lungs. β-catenin expressions in CD4+ and CD8+ T cells were significantly decreased in blood cells of patients with severe PTB compared with those in mild PTB. The stimulation of peripheral blood mononuclear cells (PBMCs) with lithium chloride (LiCl), a stimulant of β-catenin, resulted in the increase in CD4+ T cell frequency, as well as their secretion of IFN-γ and TNF-α. β-Catenin demonstrated a moderately positive correlation with PD-1 in CD4+ T cells. β-Catenin along with PD-1 and IFN-γ in CD4+ T cells had a high correlation with those in CD8+ T cells. In conclusion, β-catenin may be involved in the regulation of Th1 response and CD4+ T cell frequency in TB.
Collapse
|