1
|
Wu Q, Tan L, Ren X, Fu C, Chen Z, Ren J, Ma T, Meng X. Metal-Organic Framework-Based Nano-Activators Facilitating Microwave Combined Therapy via a Divide-and-Conquer Tactic for Triple-Negative Breast Cancer. ACS NANO 2023; 17:25575-25590. [PMID: 38095158 DOI: 10.1021/acsnano.3c09734] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Aiming at the clinical problems of high recurrence and metastasis rate of triple-negative breast cancer, a divide-and-conquer tactic is developed. The designed nanoactivators enhance microwave thermo-dynamic-chemotherapy to efficiently kill primary tumors, simultaneously ameliorate the immunosuppressive microenvironment, activate the tumor infiltration of T lymphocytes, and enhance the accumulation and penetration of PD-1/PD-L1 immune agents, ultimately boosting the efficacy of immune checkpoint blocking therapy to achieve efficient inhibition of distal tumors and metastases. Metal-organic framework (MOF)-based MPPT nano-activator is synthesized by packaging chemotherapeutic drug Pyrotinib and immunosuppressant PD-1/PD-L1 inhibitor 2 into MnCa-MOF and then coupling target molecule triphenylphosphine, which significantly improved the accumulation and penetration of Pyrotinib and immunosuppressant in tumors. In addition to the combined treatment of microwave thermo-dynamic-chemotherapy under microwave irradiation, Mn2+ in the nano-activator comprehensively promotes the cGAS-STING pathway to activate innate immunity, microwave therapy, and hypoxia relief are combined to ameliorate the tumor immunosuppressive microenvironment. The released Pyrotinib down-regulates epidermal growth factor receptor and its downstream pathways PI3K/AKT/mTOR and MAPK/ERK signaling pathways to maximize the therapeutic effect of immune checkpoint blocking, which helps to enhance the antitumor efficacy and promote long-term memory immunity. This nano-activator offers a generally promising paradigm for existing clinical triple-negative breast cancer treatment through a divide-and-conquer strategy.
Collapse
Affiliation(s)
- Qiong Wu
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Longfei Tan
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiangling Ren
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Changhui Fu
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zengzhen Chen
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jun Ren
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Tengchuang Ma
- Department of Nuclear Medicine, Harbin Medical University Cancer Hospital, Harbin 150086, Heilongjiang, P. R. China
| | - Xianwei Meng
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
2
|
Hohneck AL, Sadikaj L, Heinemann L, Schroeder M, Riess H, Gerhards A, Burkholder I, Heckel-Reusser S, Gottfried J, Hofheinz RD. Patients with Advanced Pancreatic Cancer Treated with Mistletoe and Hyperthermia in Addition to Palliative Chemotherapy: A Retrospective Single-Center Analysis. Cancers (Basel) 2023; 15:4929. [PMID: 37894296 PMCID: PMC10605673 DOI: 10.3390/cancers15204929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
This retrospective analysis investigated the influence of integrative therapies in addition to palliative chemotherapy in patients with advanced pancreatic cancer, treated at a single institution specialized in integrative oncology between January 2015 and December 2019. In total, 206 consecutive patients were included in the study, whereof 142 patients (68.9%) received palliative chemotherapy (gemcitabine/nab-paclitaxel 33.8%; FOLFIRINOX 35.9%; gemcitabine 30.3%) while the remainder were treated with best supportive and integrative care. Integrative therapies were used in 117 of 142 patients (82.4%) in addition to conventional chemotherapy, whereby mistletoe was used in 117 patients (82.4%) and hyperthermia in 74 patients (52.1%). A total of 107/142 patients (86.3%) died during the observation period, whereby survival times differed significantly depending on the additional use of integrative mistletoe or hyperthermia: chemotherapy alone 8.6 months (95% CI 4.7-15.4), chemotherapy and only mistletoe therapy 11.2 months (95% CI 7.1-14.2), or a combination of chemotherapy with mistletoe and hyperthermia 18.9 months (95% CI 15.2-24.5). While the survival times observed for patients with advanced pancreatic cancer receiving chemotherapy alone are consistent with pivotal phase-III studies and German registry data, we found significantly improved survival using additional mistletoe and/or hyperthermia.
Collapse
Affiliation(s)
- Anna Lena Hohneck
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Heidelberg, Germany
- European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Largsi Sadikaj
- Onkologische Praxis Kaiserslautern, 67655 Kaiserslautern, Germany
| | - Lara Heinemann
- Department of Haematology and Oncology, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Heidelberg, Germany (R.-D.H.)
| | | | - Hartmut Riess
- AnthroMed Öschelbronn, Centrum für Integrative Medizin, 75223 Oeschelbronn, Germany; (H.R.)
| | - Annette Gerhards
- AnthroMed Öschelbronn, Centrum für Integrative Medizin, 75223 Oeschelbronn, Germany; (H.R.)
| | - Iris Burkholder
- Department of Nursing and Health, University of Applied Sciences of the Saarland, 66117 Saarbruecken, Germany
| | | | | | - Ralf-Dieter Hofheinz
- Department of Haematology and Oncology, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Heidelberg, Germany (R.-D.H.)
| |
Collapse
|
3
|
Kwon S, Jung S, Baek SH. Combination Therapy of Radiation and Hyperthermia, Focusing on the Synergistic Anti-Cancer Effects and Research Trends. Antioxidants (Basel) 2023; 12:antiox12040924. [PMID: 37107299 PMCID: PMC10136118 DOI: 10.3390/antiox12040924] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Despite significant therapeutic advances, the toxicity of conventional therapies remains a major obstacle to their application. Radiation therapy (RT) is an important component of cancer treatment. Therapeutic hyperthermia (HT) can be defined as the local heating of a tumor to 40-44 °C. Both RT and HT have the advantage of being able to induce and regulate oxidative stress. Here, we discuss the effects and mechanisms of RT and HT based on experimental research investigations and summarize the results by separating them into three phases. Phase (1): RT + HT is effective and does not provide clear mechanisms; phase (2): RT + HT induces apoptosis via oxygenation, DNA damage, and cell cycle arrest; phase (3): RT + HT improves immunological responses and activates immune cells. Overall, RT + HT is an effective cancer modality complementary to conventional therapy and stimulates the immune response, which has the potential to improve cancer treatments, including immunotherapy, in the future.
Collapse
Affiliation(s)
- Seeun Kwon
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Sumin Jung
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| |
Collapse
|
4
|
Zhu J, Wang J, Li Y. Recent advances in magnetic nanocarriers for tumor treatment. Biomed Pharmacother 2023; 159:114227. [PMID: 36638597 DOI: 10.1016/j.biopha.2023.114227] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/25/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Magnetic nanocarriers are nano-platforms that integrate multiple moieties based on magnetic nanoparticles for diagnostic and therapeutic purposes. In recent years, they have become an advanced platform for tumor treatment due to their wide application in magnetic resonance imaging (MRI), biocatalysis, magneto-thermal therapy (MHT), and photoresponsive therapy. Drugs loaded into magnetic nanocarriers can efficiently be directed to targeted areas by precisely reshaping their structural properties. Magnetic nanocarriers allow us to track the location of the therapeutic agent, continuously control the therapeutic process and eventually assess the efficacy of the treatment. They are typically used in synergistic therapeutic applications to achieve precise and effective tumor treatment. Here we review their latest applications in tumor treatment, including stimuli-responsive drug delivery, MHT, photoresponsive therapy, immunotherapy, gene therapy, and synergistic therapy. We consider reducing toxicity, improving antitumor efficacy, and the targeting accuracy of magnetic nanocarriers. The challenges of their clinical translation and prospects in cancer therapy are also discussed.
Collapse
Affiliation(s)
- Jianmeng Zhu
- Clinical Laboratory of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou Medical College Affiliated Chun'an Hospital, Hangzhou, Zhejiang, PR China.
| | - Jian Wang
- Clinical Laboratory of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou Medical College Affiliated Chun'an Hospital, Hangzhou, Zhejiang, PR China
| | - Yiping Li
- Clinical Laboratory of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou Medical College Affiliated Chun'an Hospital, Hangzhou, Zhejiang, PR China
| |
Collapse
|
5
|
Lu J, Zhu D, Zhang X, Wang J, Cao H, Li L. The crucial role of LncRNA MIR210HG involved in the regulation of human cancer and other disease. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:137-150. [PMID: 36088513 DOI: 10.1007/s12094-022-02943-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) have evoked considerable interest in recent years due to their critical functions in the regulation of disease processes. Abnormal expression of lncRNAs is found in multiple diseases, and lncRNAs have been exploited for diverse medical applications. The lncRNA MIR210HG is a recently discovered lncRNA that is widely dysregulated in human disease. MIR210HG was described to have biological functions with potential roles in disease development, including cell proliferation, invasion, migration, and energy metabolism. And MIR210HG dysregulation was confirmed to have promising clinical values in disease diagnosis, treatment, and prognosis. In this review, we systematically summarize the expression profiles, roles, underlying mechanisms, and clinical applications of MIR210HG in human disease.
Collapse
Affiliation(s)
- Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xiaoqian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
6
|
Combination of OX40 Co-Stimulation, Radiotherapy, and PD-1 Inhibition in a Syngeneic Murine Triple-Negative Breast Cancer Model. Cancers (Basel) 2022; 14:cancers14112692. [PMID: 35681672 PMCID: PMC9179485 DOI: 10.3390/cancers14112692] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary This experimental study was designed in order to investigate the efficacy of the triple combination of radiation (SBRT), PD-1 blockade, and OX40 co-stimulation in a syngeneic murine model using ‘immunologically cold’ triple-negative breast cancer cells. SBRT can induce immunogenic tumor cell deaths and act as an in situ vaccine while OX40 signaling has been shown to improve anticancer immunity combined with PD-1 inhibition via multiple preclinical studies. In our study, triple combination therapy significantly improved primary/abscopal tumor control and reduced lung metastases compared to single or dual therapies. This was found to be through an increased ratio of CD8+ T cells to regulatory T cells and a reduced proportion of exhausted T cells in the tumor microenvironment. Abstract Immune checkpoint inhibitors have been successful in a wide range of tumor types but still have limited efficacy in immunologically cold tumors, such as breast cancers. We hypothesized that the combination of agonistic anti-OX40 (α-OX40) co-stimulation, PD-1 blockade, and radiotherapy would improve the therapeutic efficacy of the immune checkpoint blockade in a syngeneic murine triple-negative breast cancer model. Murine triple-negative breast cancer cells (4T1) were grown in immune-competent BALB/c mice, and tumors were irradiated with 24 Gy in three fractions. PD-1 blockade and α-OX40 were administered five times every other day. Flow cytometric analyses and immunohistochemistry were used to monitor subsequent changes in the immune cell repertoire. The combination of α-OX40, radiotherapy, and PD-1 blockade significantly improved primary tumor control, abscopal effects, and long-term survival beyond 2 months (60%). In the tumor microenvironment, the ratio of CD8+ T cells to CD4 + FOXP3+ regulatory T cells was significantly elevated and exhausted CD8+ T cells (PD-1+, CTLA-4+, TIM-3+, or LAG-3+ cells) were significantly reduced in the triple combination group. Systemically, α-OX40 co-stimulation and radiation significantly increased the CD103+ dendritic cell response in the spleen and plasma IFN-γ, respectively. Together, our results suggest that the combination of α-OX40 co-stimulation and radiation is a viable approach to overcome therapeutic resistance to PD-1 blockade in immunologically cold tumors, such as triple-negative breast cancer.
Collapse
|
7
|
Nanomaterials in cancer: Reviewing the combination of hyperthermia and triggered chemotherapy. J Control Release 2022; 347:89-103. [PMID: 35513211 DOI: 10.1016/j.jconrel.2022.04.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 01/10/2023]
Abstract
Nanoparticle mediated hyperthermia has been explored as a method to increase cancer treatment efficacy by heating tumours inside-out. With that purpose, nanoparticles have been designed and their properties tailored to respond to external stimuli and convert the supplied energy into heat, therefore inducing damage to tumour cells. Moreover, the combination of hyperthermia with chemotherapy has been described as a more effective strategy due to the synergy between the high temperature and the drug's effects, also associated with a remote controlled and on-demand drug release. In this review, the methods behind nanoparticle mediated hyperthermia, namely material design, external stimuli response and energy conversion will be discussed and critically analysed. We will address the most relevant studies on hyperthermia and temperature triggered drug release for cancer treatment. Finally, the advantages, difficulties and challenges of this therapeutic strategy will be discussed, while giving insight for future developments.
Collapse
|
8
|
Jo Y, Han YI, Lee E, Seo J, Oh G, Sung H, Gi Y, Kim H, Park S, Yoon M. The combination of tumor treating fields and hyperthermia has synergistic therapeutic effects in glioblastoma cells by downregulating STAT3. Am J Cancer Res 2022; 12:1423-1432. [PMID: 35411245 PMCID: PMC8984886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023] Open
Abstract
Glioblastoma multiforme (GBM), the most common type of brain tumor, is a very aggressive and treatment-refractory cancer, with a 5-year survival rate of approximately 5%. Hyperthermia (HT) and tumor treating fields (TTF) therapy have been used to treat cancer, either alone or in combination with other treatment methods. Both treatments have been reported to increase the efficacy of other treatment techniques and to improve patient prognosis. The present study evaluated the therapeutic effects of combining HT and TTF on GBM cell lines. Cells were subjected to HT, TTF, HT+TTF, or neither treatment, followed by comparisons of cell proliferation, apoptosis, migration and invasiveness. Clonogenic assays showed that the two treatments had a synergistic effect. The levels of cleaved PARP and cleaved caspase-3 were higher and apoptosis was increased in cells treated with HT+TTF than in cells treated with HT or TTF alone. In addition, HT+TTF showed greater inhibition of GBM cell migration and invasiveness and greater downregulation of STAT3 than either HT or TTF alone. The stronger anticancer effect of HT+TTF suggested that this combination treatment can increase the survival rate of patients with difficult-to-treat cancers such as GBM.
Collapse
Affiliation(s)
- Yunhui Jo
- Institute of Global Health Technology (IGHT), Korea UniversitySeoul, Republic of Korea
| | - Young In Han
- Institute of Global Health Technology (IGHT), Korea UniversitySeoul, Republic of Korea
| | - Eunjun Lee
- Department of Biomedical Engineering, Korea UniversitySeoul, Republic of Korea
| | - Jaehyeon Seo
- Department of Bioconvergence Engineering, Korea UniversitySeoul, Republic of Korea
| | - Geon Oh
- Department of Biomedical Engineering, Korea UniversitySeoul, Republic of Korea
| | - Heehun Sung
- Department of Biomedical Engineering, Korea UniversitySeoul, Republic of Korea
| | - Yongha Gi
- Department of Biomedical Engineering, Korea UniversitySeoul, Republic of Korea
| | - Hyunwoo Kim
- Department of Biomedical Engineering, Korea UniversitySeoul, Republic of Korea
| | - Sangmin Park
- Department of Biomedical Engineering, Korea UniversitySeoul, Republic of Korea
| | - Myonggeun Yoon
- Department of Biomedical Engineering, Korea UniversitySeoul, Republic of Korea
- Department of Bioconvergence Engineering, Korea UniversitySeoul, Republic of Korea
| |
Collapse
|
9
|
Dobiasch S, Kampfer S, Steiger K, Schilling D, Fischer JC, Schmid TE, Weichert W, Wilkens JJ, Combs SE. Histopathological Tumor and Normal Tissue Responses after 3D-Planned Arc Radiotherapy in an Orthotopic Xenograft Mouse Model of Human Pancreatic Cancer. Cancers (Basel) 2021; 13:5656. [PMID: 34830813 PMCID: PMC8616260 DOI: 10.3390/cancers13225656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers. Innovative treatment concepts may enhance oncological outcome. Clinically relevant tumor models are essential in developing new therapeutic strategies. In the present study, we used two human PDAC cell lines for an orthotopic xenograft mouse model and compared treatment characteristics between this in vivo tumor model and PDAC patients. Tumor-bearing mice received stereotactic high-precision irradiation using arc technique after 3D-treatment planning. Induction of DNA damage in tumors and organs at risk (OARs) was histopathologically analyzed by the DNA damage marker γH2AX and compared with results after unprecise whole-abdomen irradiation. Our mouse model and preclinical setup reflect the characteristics of PDAC patients and clinical RT. It was feasible to perform stereotactic high-precision RT after defining tumor and OARs by CT imaging. After stereotactic RT, a high rate of DNA damage was mainly observed in the tumor but not in OARs. The calculated dose distributions and the extent of the irradiation field correlate with histopathological staining and the clinical example. We established and validated 3D-planned stereotactic RT in an orthotopic PDAC mouse model, which reflects the human RT. The efficacy of the whole workflow of imaging, treatment planning, and high-precision RT was proven by longitudinal analysis showing a significant improved survival. Importantly, this model can be used to analyze tumor regression and therapy-related toxicity in one model and will allow drawing clinically relevant conclusions.
Collapse
Affiliation(s)
- Sophie Dobiasch
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Ismaninger Straße 22, 81675 Munich, Germany; (S.K.); (D.S.); (J.C.F.); (T.E.S.); (J.J.W.); (S.E.C.)
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 80336 Munich, Germany;
| | - Severin Kampfer
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Ismaninger Straße 22, 81675 Munich, Germany; (S.K.); (D.S.); (J.C.F.); (T.E.S.); (J.J.W.); (S.E.C.)
- Physics Department, Technical University of Munich (TUM), James-Franck-Str. 1, 85748 Garching, Germany
| | - Katja Steiger
- Institute of Pathology, Technical University of Munich (TUM), Trogerstr. 18, 81675 Munich, Germany;
- Comparative Experimental Pathology, Technical University of Munich (TUM), Trogerstr. 18, 81675 Munich, Germany
| | - Daniela Schilling
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Ismaninger Straße 22, 81675 Munich, Germany; (S.K.); (D.S.); (J.C.F.); (T.E.S.); (J.J.W.); (S.E.C.)
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Julius C. Fischer
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Ismaninger Straße 22, 81675 Munich, Germany; (S.K.); (D.S.); (J.C.F.); (T.E.S.); (J.J.W.); (S.E.C.)
| | - Thomas E. Schmid
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Ismaninger Straße 22, 81675 Munich, Germany; (S.K.); (D.S.); (J.C.F.); (T.E.S.); (J.J.W.); (S.E.C.)
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Wilko Weichert
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 80336 Munich, Germany;
- Institute of Pathology, Technical University of Munich (TUM), Trogerstr. 18, 81675 Munich, Germany;
| | - Jan J. Wilkens
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Ismaninger Straße 22, 81675 Munich, Germany; (S.K.); (D.S.); (J.C.F.); (T.E.S.); (J.J.W.); (S.E.C.)
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Physics Department, Technical University of Munich (TUM), James-Franck-Str. 1, 85748 Garching, Germany
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Ismaninger Straße 22, 81675 Munich, Germany; (S.K.); (D.S.); (J.C.F.); (T.E.S.); (J.J.W.); (S.E.C.)
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 80336 Munich, Germany;
| |
Collapse
|
10
|
Singh P, Eley J, Saeed A, Bhandary B, Mahmood N, Chen M, Dukic T, Mossahebi S, Rodrigues DB, Mahmood J, Vujaskovic Z, Shukla HD. Effect of hyperthermia and proton beam radiation as a novel approach in chordoma cells death and its clinical implication to treat chordoma. Int J Radiat Biol 2021; 97:1675-1686. [PMID: 34495790 DOI: 10.1080/09553002.2021.1976861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Chordoma is a locally aggressive tumor that most commonly affects the base of the skull/clivus, cervical, and sacral spine. Conventional radiotherapy (RT), cannot be safely increased further to improve disease control due to the risk of toxicity to the surrounding critical structures. Tumor-targeted hyperthermia (HT) combined with Proton Beam Radiation Therapy (PBRT) is known to act as a potent radiosensitizer in cancer control. In this study, we investigated whether PBRT efficacy for chordoma can be enhanced in combination with HT as a radiosensitizer. MATERIAL AND METHODS Human chordoma cell lines, U-CH2 and Mug-chor1 were treated in vitro with HT followed by PBRT with variable doses. The colony-forming assay was performed, and dose-response was characterized by linear-quadratic model fits. HSP-70 and Brachyury (TBXT) biomarkers for chordoma aggression levels were quantified by western blot analysis. Gene microarray analysis was performed by U133 Arrays. Pathway Analysis was also performed using IPA bioinformatic software. RESULTS Our findings in both U-CH2 and Mug-Chor1 cell lines demonstrate that hyperthermia followed by PBRT has an enhanced cell killing effect when compared with PBRT-alone (p < .01). Western blot analysis showed HT decreased the expression of Brachyury protein (p < .05), which is considered a biomarker for chordoma tumor aggression. HT with PBRT also exhibited an RT-dose-dependent decrease of Brachyury expression (p < .05). We also observed enhanced HSP-70 expression due to HT, RT, and HT + RT combined in both cell lines. Interestingly, genomic data showed 344 genes expressed by the treatment of HT + RT compared to HT (68 genes) or RT (112 genes) as individual treatment. We also identified activation of death receptor and apoptotic pathway in HT + RT treated cells. CONCLUSION We found that Hyperthermia (HT) combined with Proton Beam Radiation (PBRT) could significantly increase chordoma cell death by activating the death receptor pathway and apoptosis which has the promise to treat metastatic chordoma.
Collapse
Affiliation(s)
- Prerna Singh
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John Eley
- Department of Radiation Oncology, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Ali Saeed
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Binny Bhandary
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nayab Mahmood
- College of Information Science, University of Maryland College Park, MD, USA
| | - Minjie Chen
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tijana Dukic
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sina Mossahebi
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dario B Rodrigues
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Javed Mahmood
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zeljko Vujaskovic
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hem D Shukla
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Wishart G, Gupta P, Schettino G, Nisbet A, Velliou E. 3d tissue models as tools for radiotherapy screening for pancreatic cancer. Br J Radiol 2021; 94:20201397. [PMID: 33684308 PMCID: PMC8010544 DOI: 10.1259/bjr.20201397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/14/2022] Open
Abstract
The efficiency of radiotherapy treatment regimes varies from tumour to tumour and from patient to patient but it is generally highly influenced by the tumour microenvironment (TME). The TME can be described as a heterogeneous composition of biological, biophysical, biomechanical and biochemical milieus that influence the tumour survival and its' response to treatment. Preclinical research faces challenges in the replication of these in vivo milieus for predictable treatment response studies. 2D cell culture is a traditional, simplistic and cost-effective approach to culture cells in vitro, however, the nature of the system fails to recapitulate important features of the TME such as structure, cell-cell and cell-matrix interactions. At the same time, the traditional use of animals (Xenografts) in cancer research allows realistic in vivo architecture, however foreign physiology, limited heterogeneity and reduced tumour mutation rates impairs relevance to humans. Furthermore, animal research is very time consuming and costly. Tissue engineering is advancing as a promising biomimetic approach, producing 3D models that capture structural, biophysical, biochemical and biomechanical features, therefore, facilitating more realistic treatment response studies for further clinical application. However, currently, the application of 3D models for radiation response studies is an understudied area of research, especially for pancreatic ductal adenocarcinoma (PDAC), a cancer with a notoriously complex microenvironment. At the same time, specific novel and/or more enhanced radiotherapy tumour-targeting techniques such as MRI-guided radiotherapy and proton therapy are emerging to more effectively target pancreatic cancer cells. However, these emerging technologies may have different biological effectiveness as compared to established photon-based radiotherapy. For example, for MRI-guided radiotherapy, the novel use of static magnetic fields (SMF) during radiation delivery is understudied and not fully understood. Thus, reliable biomimetic platforms to test new radiation delivery strategies are required to more accurately predict in vivo responses. Here, we aim to collate current 3D models for radiation response studies of PDAC, identifying the state of the art and outlines knowledge gaps. Overall, this review paper highlights the need for further research on the use of 3D models for pre-clinical radiotherapy screening including (i) 3D (re)-modeling of the PDAC hypoxic TME to allow for late effects of ionising radiation (ii) the screening of novel radiotherapy approaches and their combinations as well as (iii) a universally accepted 3D-model image quantification method for evaluating TME components in situ that would facilitate accurate post-treatment(s) quantitative comparisons.
Collapse
Affiliation(s)
| | - Priyanka Gupta
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, UK
| | | | | | | |
Collapse
|
12
|
Chang M, Hou Z, Wang M, Li C, Lin J. Recent Advances in Hyperthermia Therapy-Based Synergistic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004788. [PMID: 33289219 DOI: 10.1002/adma.202004788] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/17/2020] [Indexed: 06/12/2023]
Abstract
The past decades have witnessed hyperthermia therapy (HTT) as an emerging strategy against malignant tumors. Nanomaterial-based photothermal therapy (PTT) and magnetic hyperthermia (MHT), as highly effective and noninvasive treatment models, offer advantages over other strategies in the treatment of different types of tumors. However, both PTT and MHT cannot completely cure cancer due to recurrence and distal metastasis. In recent years, cancer immunotherapy has attracted widespread attention owing to its capability to activate the body's own natural defense to identify, attack, and eradicate cancer cells. Significant efforts have been devoted to studying the activated immune responses caused by hyperthermia-ablated tumors. In this article, the synergistic mechanism of HTT in immunotherapy, including immunogenic cell death and reversal of the immunosuppressive tumor microenvironment is discussed. The reports of the combination of HTT or HTT-based multimodal therapy with immunotherapy, including immunoadjuvant exploitation, immune checkpoint blockade therapy, and adoptive cellular immunotherapy are summarized. As highlighted, these strategies could achieve synergistically enhanced therapeutic outcomes against both primary tumors and metastatic lesions, prevent cancer recurrence, and prolong the survival period. Finally, current challenges and prospective developments in HTT-synergized immunotherapy are also reviewed.
Collapse
Affiliation(s)
- Mengyu Chang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei, 230026, P. R. China
| | - Zhiyao Hou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangdong, 511436, P. R. China
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, P. R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
13
|
Balibegloo M, Rezaei N. Development and clinical application of bispecific antibody in the treatment of colorectal cancer. Expert Rev Clin Immunol 2020; 16:689-709. [PMID: 32536227 DOI: 10.1080/1744666x.2020.1783249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Treatment of colorectal cancer as one of the most commonly diagnosed and a frequent cause of cancer-related deaths is of great challenges in health-related issues. AREAS COVERED Immunotherapy is the fourth pillar of cancer treatment which provides more novel therapeutic options with expanding investigational potentials. One of the modalities in immunotherapy is the use of bispecific antibodies. Despite demonstrating many promising roles, it still needs more advanced studies to identify the actual pros and cons. In this review, the application of bispecific antibody in the treatment of colorectal cancer has been explained, based on preclinical and clinical studies. The literature search was conducted mainly through PubMed in June and September 2019. EXPERT OPINION Bispecific antibody is in its early stages in colorectal cancer treatment, requiring modern technologies in manufacturing, better biomarkers and more specific target antigens, more studies on individual genetic variations, and conducting later phase clinical trials and systematic reviews to achieve better survival benefits.
Collapse
Affiliation(s)
- Maryam Balibegloo
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences , Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education & Research Network (USERN) , Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences , Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN) , Tehran, Iran
| |
Collapse
|