1
|
Wang K, Lin X, Lv X, Xie M, Wu J, Wu JJ, Luo Y. Nanozyme-based aptasensors for the detection of tumor biomarkers. J Biol Eng 2025; 19:13. [PMID: 39920818 PMCID: PMC11806818 DOI: 10.1186/s13036-025-00485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
A nanozyme-based aptasensor combines the unique properties of nanozymes with the specificity of aptamers for the detection of various biomolecules. Nanozymes are nanomaterials that possess enzyme-like properties, demonstrating substantial potential for enhancing the sensing capabilities of biosensors. In recent years, the incorporation of nanozymes into biosensors has opened new avenues for the detection of tumor biomarkers. The unique attributes of nanozymes and aptamers lead to biosensors characterized by high sensitivity, specificity, reproducibility and accuracy in analytical performance. This article reviews the research progress of nanozyme-based aptasensors in tumor biomarker detection over the past decade. We categorize these sensors based on their sensing modes and target types, and examine the properties and applications of the nanozymes employed in these devices, providing a thorough discussion of the strengths and weaknesses associated with each sensor type. Finally, the review highlights the strengths and challenges associated with nanozyme-based biosensors and envisions future developments and applications in this field. The objective is to provide insights for improving biosensor performance in tumor biomarker detection, thereby contributing to advancements in precision cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, 400044, China
| | - Xiaogang Lin
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, 400044, China.
| | - Xiao Lv
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, 400044, China
| | - Mingna Xie
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, 400044, China
| | - Jinyu Wu
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, 400044, China
| | - Jie Jayne Wu
- Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN, 37996, USA.
| | - Yang Luo
- Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| |
Collapse
|
2
|
Geng N, Lin W, Zhang D, Cao W, Feng C, Chen S. Detection of circulating tumor cells in peripheral blood of patients with tongue squamous cell carcinoma and its relationship with clinical features and prognosis: a retrospective study. Discov Oncol 2024; 15:695. [PMID: 39578262 PMCID: PMC11584815 DOI: 10.1007/s12672-024-01583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) are a promising biomarker for assessment of prognosis. The study was to analyse the relationship between preoperative and postoperative peripheral blood CTC and clinical features and prognosis in patients with tongue squamous cell carcinoma (TSCC). METHODS 85 with TSCC and 30 tongues with benign disease who underwent surgical treatment from May 2016 to May 2023 were retrospectively analysed. CTC testing was performed twice for TSCC group before and after surgery and only before the surgery for the benign disease group, only one test was performed before surgery.The association of CTCs with clinical features and progression-free survival (PFS) was also analyzed. RESULTS The positive rates of CTCs in patients with TSCC were 90.6% before treatment and 72.9% after treatment, respectively. CTCs were not detected in patients with benign disease group before treatment. There was no significant difference in the number of CTCs before and after treatment in patients with disease progression (P > 0.05). However, the number of CTCs after treatment in patients with disease remission (DR) and stable disease (SD) was significantly lower than before treatment, and the difference was statistically significant (P < 0.05). The results of the log-rank test demonstrated that the postoperative CTC was associated with the PFS (P < 0.05), whereas the preoperative CTC was not related to the PFS. The Cox proportional hazard regression model indicated that postoperative CTC and lymph node metastasis were independent risk factors. CONCLUSIONS Postoperative CTCs may be an independent risk factor for a poor prognosis in patients with TSCC and CTC may serve as a valuable biomarker for prognostic monitoring for TSCC patients.
Collapse
Affiliation(s)
- Ningbo Geng
- Department of Stomatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
- Department of Oral Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, Guang Dong, China.
| | - Weiyi Lin
- Department of Stomatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Oral Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, Guang Dong, China
| | - Dandan Zhang
- Department of Stomatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Oral Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, Guang Dong, China
| | - Wei Cao
- Department of Oral Surgery, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guang Dong, China
| | - Chongjin Feng
- Department of Stomatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Oral Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, Guang Dong, China
| | - Shan Chen
- Department of Stomatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Prosthodontics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guang Dong, China
| |
Collapse
|
3
|
Wan J, Rao Z, Liu H, Wan J. Global research trends in liquid biopsy for ovarian cancer from 1999 to 2023: A 25-year bibliometric analysis. THE JOURNAL OF LIQUID BIOPSY 2024; 5:100158. [PMID: 40027939 PMCID: PMC11863938 DOI: 10.1016/j.jlb.2024.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 03/05/2025]
Abstract
Background Ovarian cancer (OC) is a major cause of gynecological cancer-related death in the world. Liquid biopsy has shown great potential in improving the ovarian cancer detection and treatment. The aim of this study is to explore the previous studies, current hotspots, and future trends of liquid biopsy for OC from a bibliometric perspective. Methods Articles on liquid biopsy in the field of OC were collected from Web of Science (Clarivate Analytics). Subsequently, bibliometric and visual analyses was conducted using bibliometrix, VOSviewer, CiteSpace, and Microsoft Excel. Results A total of 504 scientific papers were retrieved over a 25-year period, of which 285 papers were in the language of English. China has the highest number and other papers came from 41 countries or regions. The journal with the highest publication count was Cancers. There were 2013 authors in total, and Kasimir-Bauer S emerged as the most productive author. The key words that are still exploding are recurrence, predictive value and survival. Conclusion Research on liquid biopsy is booming in the field of OC. This article comprehensively elucidates the subject matter over recent years, and points out emerging trends for in-depth exploration.
Collapse
Affiliation(s)
- Jixian Wan
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Zechuan Rao
- University of California Los Angeles, California, 90095, United States
| | - Huaichao Liu
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Jipeng Wan
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| |
Collapse
|
4
|
Ren F, Fei Q, Qiu K, Zhang Y, Zhang H, Sun L. Liquid biopsy techniques and lung cancer: diagnosis, monitoring and evaluation. J Exp Clin Cancer Res 2024; 43:96. [PMID: 38561776 PMCID: PMC10985944 DOI: 10.1186/s13046-024-03026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
Lung cancer stands as the most prevalent form of cancer globally, posing a significant threat to human well-being. Due to the lack of effective and accurate early diagnostic methods, many patients are diagnosed with advanced lung cancer. Although surgical resection is still a potential means of eradicating lung cancer, patients with advanced lung cancer usually miss the best chance for surgical treatment, and even after surgical resection patients may still experience tumor recurrence. Additionally, chemotherapy, the mainstay of treatment for patients with advanced lung cancer, has the potential to be chemo-resistant, resulting in poor clinical outcomes. The emergence of liquid biopsies has garnered considerable attention owing to their noninvasive nature and the ability for continuous sampling. Technological advancements have propelled circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), extracellular vesicles (EVs), tumor metabolites, tumor-educated platelets (TEPs), and tumor-associated antigens (TAA) to the forefront as key liquid biopsy biomarkers, demonstrating intriguing and encouraging results for early diagnosis and prognostic evaluation of lung cancer. This review provides an overview of molecular biomarkers and assays utilized in liquid biopsies for lung cancer, encompassing CTCs, ctDNA, non-coding RNA (ncRNA), EVs, tumor metabolites, TAAs and TEPs. Furthermore, we expound on the practical applications of liquid biopsies, including early diagnosis, treatment response monitoring, prognostic evaluation, and recurrence monitoring in the context of lung cancer.
Collapse
Affiliation(s)
- Fei Ren
- Department of Geriatrics, The First Hospital of China Medical University, Shen Yang, 110000, China
| | - Qian Fei
- Department of Oncology, Shengjing Hospital of China Medical University, Shen Yang, 110000, China
| | - Kun Qiu
- Thoracic Surgery, The First Hospital of China Medical University, Shen Yang, 110000, China
| | - Yuanjie Zhang
- Thoracic Surgery, The First Hospital of China Medical University, Shen Yang, 110000, China
| | - Heyang Zhang
- Department of Hematology, The First Hospital of China Medical University, Shen Yang, 110000, China.
| | - Lei Sun
- Thoracic Surgery, The First Hospital of China Medical University, Shen Yang, 110000, China.
| |
Collapse
|
5
|
Radhakrishnan V, Kaifi JT, Suvilesh KN. Circulating Tumor Cells: How Far Have We Come with Mining These Seeds of Metastasis? Cancers (Basel) 2024; 16:816. [PMID: 38398206 PMCID: PMC10887304 DOI: 10.3390/cancers16040816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Circulating tumor cells (CTCs) are cancer cells that slough off from the tumor and circulate in the peripheral blood and lymphatic system as micro metastases that eventually results in macro metastases. Through a simple blood draw, sensitive CTC detection from clinical samples has proven to be a useful tool for determining the prognosis of cancer. Recent technological developments now make it possible to detect CTCs reliably and repeatedly from a simple and straightforward blood test. Multicenter trials to assess the clinical value of CTCs have demonstrated the prognostic value of these cancer cells. Studies on CTCs have filled huge knowledge gap in understanding the process of metastasis since their identification in the late 19th century. However, these rare cancer cells have not been regularly used to tailor precision medicine and or identify novel druggable targets. In this review, we have attempted to summarize the milestones of CTC-based research from the time of identification to molecular characterization. Additionally, the need for a paradigm shift in dissecting these seeds of metastasis and the possible future avenues to improve CTC-based discoveries are also discussed.
Collapse
Affiliation(s)
- Vijay Radhakrishnan
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA; (V.R.); (J.T.K.)
| | - Jussuf T. Kaifi
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA; (V.R.); (J.T.K.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Kanve N. Suvilesh
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA; (V.R.); (J.T.K.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| |
Collapse
|
6
|
Wishart G, Templeman A, Hendry F, Miller K, Pailhes-Jimenez AS. Molecular Profiling of Circulating Tumour Cells and Circulating Tumour DNA: Complementary Insights from a Single Blood Sample Utilising the Parsortix ® System. Curr Issues Mol Biol 2024; 46:773-787. [PMID: 38248352 PMCID: PMC10814787 DOI: 10.3390/cimb46010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
The study of molecular drivers of cancer is an area of rapid growth and has led to the development of targeted treatments, significantly improving patient outcomes in many cancer types. The identification of actionable mutations informing targeted treatment strategies are now considered essential to the management of cancer. Traditionally, this information has been obtained through biomarker assessment of a tissue biopsy which is costly and can be associated with clinical complications and adverse events. In the last decade, blood-based liquid biopsy has emerged as a minimally invasive, fast, and cost-effective alternative, which is better suited to the requirement for longitudinal monitoring. Liquid biopsies allow for the concurrent study of multiple analytes, such as circulating tumour cells (CTCs) and circulating tumour DNA (ctDNA), from a single blood sample. Although ctDNA assays are commercially more advanced, there is an increasing awareness of the clinical significance of the transcriptome and proteome which can be analysed using CTCs. Herein, we review the literature in which the microfluidic, label-free Parsortix® system is utilised for CTC capture, harvest and analysis, alongside the analysis of ctDNA from a single blood sample. This detailed summary of the literature demonstrates how these two analytes can provide complementary disease information.
Collapse
Affiliation(s)
- Gabrielle Wishart
- ANGLE plc, Guildford GU2 7QB, UK; (A.T.); (F.H.); (K.M.); (A.-S.P.-J.)
| | | | | | | | | |
Collapse
|
7
|
Liquid Biopsy for Oral Cancer Diagnosis: Recent Advances and Challenges. J Pers Med 2023; 13:jpm13020303. [PMID: 36836537 PMCID: PMC9960348 DOI: 10.3390/jpm13020303] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
"Liquid biopsy" is an efficient diagnostic tool used to analyse biomaterials in human body fluids, such as blood, saliva, breast milk, and urine. Various biomaterials derived from a tumour and its microenvironment are released into such body fluids and contain important information for cancer diagnosis. Biomaterial detection can provide "real-time" information about individual tumours, is non-invasive, and is more repeatable than conventional histological analysis. Therefore, over the past two decades, liquid biopsy has been considered an attractive diagnostic tool for malignant tumours. Although biomarkers for oral cancer have not yet been adopted in clinical practice, many molecular candidates have been investigated for liquid biopsies in oral cancer diagnosis, such as the proteome, metabolome, microRNAome, extracellular vesicles, cell-free DNAs, and circulating tumour cells. This review will present recent advances and challenges in liquid biopsy for oral cancer diagnosis.
Collapse
|
8
|
Yang X, Lv J, Zhou Z, Feng D, Zhou R, Yuan B, Wu Q, Yu H, Han J, Cao Q, Gu M, Li P, Yang H, Lu Q. Clinical Application of Circulating Tumor Cells and Circulating Endothelial Cells in Predicting Bladder Cancer Prognosis and Neoadjuvant Chemosensitivity. Front Oncol 2022; 11:802188. [PMID: 35186716 PMCID: PMC8851236 DOI: 10.3389/fonc.2021.802188] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose To investigate the role of circulating rare cells (CRCs), namely, circulating tumor cells (CTCs) and circulating endothelial cells (CECs), in aiding early intervention, treatment decision, and prognostication in bladder cancer. Methods A total of 196 patients with pathologically confirmed bladder cancer, namely, 141 non-muscle invasive bladder cancer (NMIBC) and 55 muscle invasive bladder cancer (MIBC) patients. There were 32 patients who received cisplatin-based neoadjuvant chemotherapy (NAC) followed by radical cystectomy (RC). Subtraction enrichment combined with immunostaining-fluorescence in situ hybridization (SE-iFISH) strategy was used for CTC/CEC detection. Kaplan–Meier analysis and Cox regression were used to evaluate the overall survival (OS) and recurrence-free survival (RFS). Receiver operator characteristic analysis was used to discriminate NAC sensitivity. Results CTCs and CECs were related to clinicopathological characteristics. Triploid CTCs, tetraploid CTCs, and total CECs were found to be higher in incipient patients than in relapse patients (P = 0.036, P = 0.019, and P = 0.025, respectively). The number of total CECs and large cell CECs was also associated with advanced tumor stage (P = 0.028 and P = 0.033) and grade (P = 0.028 and P = 0.041). Remarkably, tumor-biomarker-positive CTCs were associated with worse OS and RFS (P = 0.026 and P = 0.038) in NMIBC patients underwent TURBT. CECs cluster was an independent predictor of recurrence in non-high-risk NMIBC patients underwent TURBT (HR = 9.21, P = 0.040). For NAC analysis, pre-NAC tetraploid CTCs and small cell CTCs demonstrated the capability in discriminating NAC-sensitive from insensitive patients. Additionally, tetraploid CTCs and single CTCs elevated post-NAC would indicate chemoresistance. Conclusion CTCs and CECs may putatively guide in diagnosis, prognosis prediction, and therapeutic decision-making for bladder cancer.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiancheng Lv
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zijian Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dexiang Feng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Baorui Yuan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qikai Wu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Yu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Han
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Cao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengchao Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haiwei Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Circulating cancer biomarkers: current status and future prospects. Cancer Biomark 2022. [DOI: 10.1016/b978-0-12-824302-2.00009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
|
11
|
Zhao X, Zhao J, Tao L, Pan Y, Yang L, Zhang X, Yuan J, Zhu H. Significance of circulating tumor cells in the portal vein regarding metastases and vascular invasion in hepatocellular carcinoma patients. J Gastrointest Oncol 2021; 12:3050-3060. [PMID: 35070429 PMCID: PMC8748049 DOI: 10.21037/jgo-21-734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/08/2021] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Vascular invasion is an important risk factor of poor prognosis in hepatocellular carcinoma (HCC) patients. The detection of circulating tumor cells (CTCs) in the blood is direct evidence of tumor presence. There are few reports on CTCs and metastasis and vascular invasion of HCC. The purpose of this study was to analyze the significance of CTCs in the portal vein regarding metastases and vascular invasion in HCC patients. METHODS A total of 104 HCC patients diagnosed and treated in Zhengzhou University People's Hospital were enrolled. Surgery was performed in 60 individuals. Portal vein blood samples were collected before treatment for CTCs detection. We used the isolation by size of epithelial tumor cells (ISET) and fluorescence in situ hybridization (FISH) to enrich and classify CTCs from blood samples. The patients were divided into metastasis and nonmetastasis groups according to the metastasis status before treatment. Differences in clinical indicators such as alpha-fetoprotein (AFP) levels, tumor size, CTCs count, and macrovascular tumor thrombus between the two groups were analyzed as well as the associations of CTCs count with the above indicators. For individuals with postoperative pathology, the relationship between CTCs counts and microvascular invasion (MVI) was analyzed. RESULTS The amounts of portal vein CTCs were higher in patients with metastases compared with the nonmetastases group (20 vs. 7; z=3.795; P<0.001). Multivariate logistic regression analysis showed that the CTC count was a risk factor for HCC metastasis [odds ratio (OR) =1.044; 95% CI: 1.011-1.079]. The sensitivity and specificity of CTC count in predicting HCC metastasis were 82.93% and 52.38%, respectively. CTC count was significantly correlated with tumor size (rs=0.308; P=0.001), vascular invasion (z=4.211; P<0.001), and MVI (z=12.763; P=0.002). A threshold CTC count of seven showed the most significant power for predicting metastasis. CONCLUSIONS Vascular invasion positivity was closely related to HCC metastasis. Portal vein CTC count before treatment was correlated with vascular invasion and could be considered one of the factors affecting HCC metastasis. However, the ability of CTC count was limited in predicting HCC metastasis due to insufficient specificity.
Collapse
Affiliation(s)
- Xiaojuan Zhao
- Department of Ultrasound, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jingge Zhao
- Clinical Research Center, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Lianyuan Tao
- Department of Hepatobiliary Surgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yujin Pan
- Department of Hepatobiliary Surgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Long Yang
- Department of Ultrasound, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xijun Zhang
- Department of Ultrasound, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jianjun Yuan
- Department of Ultrasound, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Haohui Zhu
- Department of Ultrasound, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
12
|
Zhao Y, Liu L, Zhao J, Du X, Yu Q, Wu J, Wang B, Ou R. Construction and Verification of a Hypoxia-Related 4-lncRNA Model for Prediction of Breast Cancer. Int J Gen Med 2021; 14:4605-4617. [PMID: 34429643 PMCID: PMC8380141 DOI: 10.2147/ijgm.s322007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Breast cancer is the most common form of cancer worldwide and a serious threat to women. Hypoxia is thought to be associated with poor prognosis of patients with cancer. Long non-coding RNAs are differentially expressed during tumorigenesis and can serve as unambiguous molecular biomarkers for the prognosis of breast cancer. Methods Here, we accessed the data from The Cancer Genome Atlas for model construction and performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses to identify biological functions. Four prognostic hypoxia-related lncRNAs identified by univariate, LASSO, and multivariate Cox regression analyses were used to develop a prognostic risk-related signature. Kaplan–Meier and receiver operating characteristic curve analyses were performed, and independent prognostic factor analysis and correlation analysis with clinical characteristics were utilized to evaluate the specificity and sensitivity of the signature. Survival analysis and receiver operating characteristic curve analyses of the validation cohort were operated to corroborate the robustness of the model. Results Our results demonstrate the development of a reliable prognostic gene signature comprising four long non-coding RNAs (AL031316.1, AC004585.1, LINC01235, and ACTA2-AS1). The signature displayed irreplaceable prognostic power for overall survival in patients with breast cancer in both the training and validation cohorts. Furthermore, immune cell infiltration analysis revealed that B cells, CD4 T cells, CD8 T cells, neutrophils, and dendritic cells were significantly different between the high-risk and low-risk groups. The high-risk and low-risk groups could be precisely distinguished using the risk signature to predict patient outcomes. Discussion In summary, our study proves that hypoxia-related long non-coding RNAs serve as accurate indicators of poor prognosis and short overall survival, and are likely to act as potential targets for future cancer therapy.
Collapse
Affiliation(s)
- Ye Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Lixiao Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jinduo Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xuedan Du
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Qiongjie Yu
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jinting Wu
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Bin Wang
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Rongying Ou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
13
|
Dunphy K, O’Mahoney K, Dowling P, O’Gorman P, Bazou D. Clinical Proteomics of Biofluids in Haematological Malignancies. Int J Mol Sci 2021; 22:ijms22158021. [PMID: 34360786 PMCID: PMC8348619 DOI: 10.3390/ijms22158021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022] Open
Abstract
Since the emergence of high-throughput proteomic techniques and advances in clinical technologies, there has been a steady rise in the number of cancer-associated diagnostic, prognostic, and predictive biomarkers being identified and translated into clinical use. The characterisation of biofluids has become a core objective for many proteomic researchers in order to detect disease-associated protein biomarkers in a minimally invasive manner. The proteomes of biofluids, including serum, saliva, cerebrospinal fluid, and urine, are highly dynamic with protein abundance fluctuating depending on the physiological and/or pathophysiological context. Improvements in mass-spectrometric technologies have facilitated the in-depth characterisation of biofluid proteomes which are now considered hosts of a wide array of clinically relevant biomarkers. Promising efforts are being made in the field of biomarker diagnostics for haematologic malignancies. Several serum and urine-based biomarkers such as free light chains, β-microglobulin, and lactate dehydrogenase are quantified as part of the clinical assessment of haematological malignancies. However, novel, minimally invasive proteomic markers are required to aid diagnosis and prognosis and to monitor therapeutic response and minimal residual disease. This review focuses on biofluids as a promising source of proteomic biomarkers in haematologic malignancies and a key component of future diagnostic, prognostic, and disease-monitoring applications.
Collapse
Affiliation(s)
- Katie Dunphy
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Kelly O’Mahoney
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland; (K.O.); (P.O.)
| | - Paul Dowling
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland; (K.O.); (P.O.)
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland; (K.O.); (P.O.)
- Correspondence:
| |
Collapse
|
14
|
Programmed Cell Death Ligand 1 Expression in Circulating Tumor Cells as a Predictor of Treatment Response in Patients with Urothelial Carcinoma. BIOLOGY 2021; 10:biology10070674. [PMID: 34356529 PMCID: PMC8301435 DOI: 10.3390/biology10070674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Programmed cell death ligand 1 (PD-L1) inhibitors are commonly used in treating advanced-stage urothelial carcinoma. Contrary to evaluating PD-L1 expression in tumor biopsy samples, this study assessed whether PD-L1 expression in circulating tumor cells (CTCs) can be a predictor of treatment response to PD-L1 inhibitors. The current study proved that there was no statistically significant correlation between the presence of PD-L1-positive CTCs and PD-L1 expression in tumor tissues. Moreover, PD-L1-positive CTCs at baseline could be used as a biomarker to identify patients suitable for PD-L1 blockade therapy. Dynamic changes in PD-L1-positive CTCs during the course of treatment are predictive factors of immunotherapy response and prognostic factors of disease control. Abstract Programmed cell death ligand 1 (PD-L1) inhibitors are commonly used in treating advanced-stage urothelial carcinoma (UC). Therefore, this study evaluated the relationship between PD-L1 expression in circulating tumor cells (CTCs) and treatment response to PD-L1 inhibitors using blood samples collected from patients with UC (n = 23). Subsequently, PD-L1 expression and its clinical correlation were analyzed. All patients had CTCs before PD-L1 inhibitory treatment, of which 15 had PD-L1-positive CTCs. However, PD-L1-positive expression in CTCs was not correlated with PD-L1 expression in tumor biopsy samples. Patients with PD-L1-positive CTCs had better disease control (DC) rates than those without PD-L1-positive CTCs. Moreover, changes in the proportion of PD-L1-positive CTCs were associated with disease outcomes. Furthermore, the PD-L1-positive CTC count in 9 of 11 patients who achieved DC had significantly decreased (p = 0.01). In four patients with progressive disease, this was higher or did not change. PD-L1-positive CTCs at baseline could be used as a biomarker to identify patients suitable for PD-L1 blockade therapy. Dynamic changes in PD-L1-positive CTCs during the course of treatment are predictive factors of immunotherapy response and prognostic factors of disease control. Hence, PD-L1-positive CTCs could be employed as a real-time molecular biomarker for individualized immunotherapy.
Collapse
|
15
|
Xu T, Li H, Feng D, Dou P, Shi X, Hu C, Xu G. Lipid Profiling of 20 Mammalian Cells by Capillary Microsampling Combined with High-Resolution Spectral Stitching Nanoelectrospray Ionization Direct-Infusion Mass Spectrometry. Anal Chem 2021; 93:10031-10038. [PMID: 34270220 DOI: 10.1021/acs.analchem.1c00373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Studies of cellular metabolism can provide profound insights into the underlying molecular mechanisms and metabolic function. To date, the majority of cellular metabolism studies based on chromatography-mass spectrometry (MS) require population cells to obtain informative metabolome. These methods are not only time-consuming but also not suitable for amount-limited cell samples such as circulating tumor cells, stem cells, and neurons. Therefore, it is extremely essential to develop analytical methods enabling to detect metabolome from tens of cells in a high-throughput and high-sensitivity way. In this work, a novel platform for rapid and sensitive detection of lipidome in 20 mammalian cells was proposed using capillary microsampling combined with high-resolution spectral stitching nanoelectrospray ionization direct-infusion MS. It can be used to collect cells rapidly and accurately via the capillary microprobe, extract lipids directly in a 96-well plate using a spray solvent, and detect more than 500 lipids covering 19 lipid subclasses within 3 min. This novel platform was successfully applied to study the lipid features of different cancer cell types and subtypes as well as target cells from tissue samples. This study provides a strategy for determining the lipid species with rich information in tens of cells and demonstrates great potential for clinical applications.
Collapse
Affiliation(s)
- Tianrun Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Disheng Feng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Dou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xianzhe Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Hu X, Zang X, Lv Y. Detection of circulating tumor cells: Advances and critical concerns. Oncol Lett 2021; 21:422. [PMID: 33850563 PMCID: PMC8025150 DOI: 10.3892/ol.2021.12683] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Metastasis is the main cause of cancer-related death and the major challenge in cancer treatment. Cancer cells in circulation are termed circulating tumor cells (CTCs). Primary tumor metastasis is likely due to CTCs released into the bloodstream. These CTCs extravasate and form fatal metastases in different organs. Analyses of CTCs are clarifying the biological understanding of metastatic cancers. These data are also helpful to monitor disease progression and to inform the development of personalized cancer treatment-based liquid biopsy. However, CTCs are a rare cell population with 1-10 CTCs per ml and are difficult to isolate from blood. Numerous approaches to detect CTCs have been developed based on the physical and biological properties of the cells. The present review summarizes the progress made in detecting CTCs.
Collapse
Affiliation(s)
- Xiuxiu Hu
- School of Medical Technology, Jiangsu College of Nursing, Huai'an, Jiangsu 22300, P.R. China
| | - Xiaojuan Zang
- Department of Ultrasonography, Huai'an Maternity and Child Health Care Hospital, Huai'an, Jiangsu 223002, P.R. China
| | - Yanguan Lv
- Clinical Medical Laboratory, Huai'an Maternity and Child Health Care Hospital, Huai'an, Jiangsu 223002, P.R. China
| |
Collapse
|
17
|
Robichaud PP, Arseneault M, O'Connell C, Ouellette RJ, Morin PJ. Circulating cell-free DNA as potential diagnostic tools for amyotrophic lateral sclerosis. Neurosci Lett 2021; 750:135813. [PMID: 33705931 DOI: 10.1016/j.neulet.2021.135813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
DNA methylation has garnered much attention in recent years for its diagnostic potential in multiple conditions including cancer and neurodegenerative diseases. Conversely, advances regarding the potential diagnostic relevance of DNA methylation status have been sparse in the field of amyotrophic lateral sclerosis (ALS) even though patients diagnosed with this condition would significantly benefit from improved molecular assays aimed at furthering the current diagnostic and therapeutic options available. This review will provide an overview of the current diagnostic approaches available for ALS diagnosis and discuss the potential clinical usefulness of DNA methylation. We will also present examples of DNA methylation as a diagnostic tool in various types of cancer and neurodegenerative conditions and expand on how circulating cfDNA methylation may be leveraged for the early detection of ALS. In general, this article will reinforce the importance of cfDNA methylation as diagnostic tools and will further highlight its clinical relevance for persons diagnosed with ALS.
Collapse
Affiliation(s)
- Philippe-Pierre Robichaud
- Vitalité Health Network, Dr. Georges-L.-Dumont University Hospital Centre, Department of Genetic Services, 330 Université Ave, Moncton, New Brunswick, E1C 2Z3, Canada; Atlantic Cancer Research Institute, Pavillon Hôtel-Dieu, 35 Providence Street, Moncton, New Brunswick, E1C 8X3, Canada; Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Michael Arseneault
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Colleen O'Connell
- Stan Cassidy Centre for Rehabilitation, 800 Priestman Street, Fredericton, New Brunswick, E3B 0C7, Canada
| | - Rodney J Ouellette
- Atlantic Cancer Research Institute, Pavillon Hôtel-Dieu, 35 Providence Street, Moncton, New Brunswick, E1C 8X3, Canada
| | - Pier Jr Morin
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada.
| |
Collapse
|
18
|
Pinzani P, D'Argenio V, Del Re M, Pellegrini C, Cucchiara F, Salvianti F, Galbiati S. Updates on liquid biopsy: current trends and future perspectives for clinical application in solid tumors. Clin Chem Lab Med 2021; 59:1181-1200. [PMID: 33544478 DOI: 10.1515/cclm-2020-1685] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/20/2021] [Indexed: 01/19/2023]
Abstract
Despite advances in screening and therapeutics cancer continues to be one of the major causes of morbidity and mortality worldwide. The molecular profile of tumor is routinely assessed by surgical or bioptic samples, however, genotyping of tissue has inherent limitations: it represents a single snapshot in time and it is subjected to spatial selection bias owing to tumor heterogeneity. Liquid biopsy has emerged as a novel, non-invasive opportunity of detecting and monitoring cancer in several body fluids instead of tumor tissue. Circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), RNA (mRNA and microRNA), microvesicles, including exosomes and tumor "educated platelets" were recently identified as a source of genomic information in cancer patients which could reflect all subclones present in primary and metastatic lesions allowing sequential monitoring of disease evolution. In this review, we summarize the currently available information concerning liquid biopsy in breast cancer, colon cancer, lung cancer and melanoma. These promising issues still need to be standardized and harmonized across laboratories, before fully adopting liquid biopsy approaches into clinical practice.
Collapse
Affiliation(s)
- Pamela Pinzani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Valeria D'Argenio
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Rome, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Marzia Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Cristina Pellegrini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Federico Cucchiara
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Salvianti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Silvia Galbiati
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|